summaryrefslogtreecommitdiff
path: root/lib/tdb2/doc/design.lyx
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2012-06-18 22:30:26 +0930
committerRusty Russell <rusty@rustcorp.com.au>2012-06-19 05:38:06 +0200
commit16cc345d4f84367e70e133200f7aa335c2aae8c6 (patch)
tree955a33c25c19f3127e24ba6b0e108da6b1f7f804 /lib/tdb2/doc/design.lyx
parent76758b9767fad45ff144bbfef3ab84bca5d4650e (diff)
downloadsamba-16cc345d4f84367e70e133200f7aa335c2aae8c6.tar.gz
samba-16cc345d4f84367e70e133200f7aa335c2aae8c6.tar.bz2
samba-16cc345d4f84367e70e133200f7aa335c2aae8c6.zip
TDB2: Goodbye TDB2, Hello NTDB.
This renames everything from tdb2 to ntdb: importantly, we no longer use the tdb_ namespace, so you can link against both ntdb and tdb if you want to. This also enables building of standalone ntdb by the autobuild script. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Diffstat (limited to 'lib/tdb2/doc/design.lyx')
-rw-r--r--lib/tdb2/doc/design.lyx2689
1 files changed, 0 insertions, 2689 deletions
diff --git a/lib/tdb2/doc/design.lyx b/lib/tdb2/doc/design.lyx
deleted file mode 100644
index 0a1d6a14bc..0000000000
--- a/lib/tdb2/doc/design.lyx
+++ /dev/null
@@ -1,2689 +0,0 @@
-#LyX 1.6.7 created this file. For more info see http://www.lyx.org/
-\lyxformat 345
-\begin_document
-\begin_header
-\textclass article
-\use_default_options true
-\language english
-\inputencoding auto
-\font_roman default
-\font_sans default
-\font_typewriter default
-\font_default_family default
-\font_sc false
-\font_osf false
-\font_sf_scale 100
-\font_tt_scale 100
-
-\graphics default
-\paperfontsize default
-\use_hyperref false
-\papersize default
-\use_geometry false
-\use_amsmath 1
-\use_esint 1
-\cite_engine basic
-\use_bibtopic false
-\paperorientation portrait
-\secnumdepth 3
-\tocdepth 3
-\paragraph_separation indent
-\defskip medskip
-\quotes_language english
-\papercolumns 1
-\papersides 1
-\paperpagestyle default
-\tracking_changes true
-\output_changes true
-\author ""
-\author ""
-\end_header
-
-\begin_body
-
-\begin_layout Title
-TDB2: A Redesigning The Trivial DataBase
-\end_layout
-
-\begin_layout Author
-Rusty Russell, IBM Corporation
-\end_layout
-
-\begin_layout Date
-17-March-2011
-\end_layout
-
-\begin_layout Abstract
-The Trivial DataBase on-disk format is 32 bits; with usage cases heading
- towards the 4G limit, that must change.
- This required breakage provides an opportunity to revisit TDB's other design
- decisions and reassess them.
-\end_layout
-
-\begin_layout Section
-Introduction
-\end_layout
-
-\begin_layout Standard
-The Trivial DataBase was originally written by Andrew Tridgell as a simple
- key/data pair storage system with the same API as dbm, but allowing multiple
- readers and writers while being small enough (< 1000 lines of C) to include
- in SAMBA.
- The simple design created in 1999 has proven surprisingly robust and performant
-, used in Samba versions 3 and 4 as well as numerous other projects.
- Its useful life was greatly increased by the (backwards-compatible!) addition
- of transaction support in 2005.
-\end_layout
-
-\begin_layout Standard
-The wider variety and greater demands of TDB-using code has lead to some
- organic growth of the API, as well as some compromises on the implementation.
- None of these, by themselves, are seen as show-stoppers, but the cumulative
- effect is to a loss of elegance over the initial, simple TDB implementation.
- Here is a table of the approximate number of lines of implementation code
- and number of API functions at the end of each year:
-\end_layout
-
-\begin_layout Standard
-\begin_inset Tabular
-<lyxtabular version="3" rows="12" columns="3">
-<features>
-<column alignment="center" valignment="top" width="0">
-<column alignment="center" valignment="top" width="0">
-<column alignment="center" valignment="top" width="0">
-<row>
-<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-Year End
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-API Functions
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-Lines of C Code Implementation
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-1999
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-13
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-1195
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2000
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-24
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-1725
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2001
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-32
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2228
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2002
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-35
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2481
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2003
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-35
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2552
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2004
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-40
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2584
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2005
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-38
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2647
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2006
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-52
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-3754
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2007
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-66
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-4398
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2008
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-71
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-4768
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2009
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-73
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-5715
-\end_layout
-
-\end_inset
-</cell>
-</row>
-</lyxtabular>
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-This review is an attempt to catalog and address all the known issues with
- TDB and create solutions which address the problems without significantly
- increasing complexity; all involved are far too aware of the dangers of
- second system syndrome in rewriting a successful project like this.
-\end_layout
-
-\begin_layout Section
-API Issues
-\end_layout
-
-\begin_layout Subsection
-tdb_open_ex Is Not Expandable
-\end_layout
-
-\begin_layout Standard
-The tdb_open() call was expanded to tdb_open_ex(), which added an optional
- hashing function and an optional logging function argument.
- Additional arguments to open would require the introduction of a tdb_open_ex2
- call etc.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\begin_inset CommandInset label
-LatexCommand label
-name "attributes"
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-tdb_open() will take a linked-list of attributes:
-\end_layout
-
-\begin_layout LyX-Code
-enum tdb_attribute {
-\end_layout
-
-\begin_layout LyX-Code
- TDB_ATTRIBUTE_LOG = 0,
-\end_layout
-
-\begin_layout LyX-Code
- TDB_ATTRIBUTE_HASH = 1
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout LyX-Code
-struct tdb_attribute_base {
-\end_layout
-
-\begin_layout LyX-Code
- enum tdb_attribute attr;
-\end_layout
-
-\begin_layout LyX-Code
- union tdb_attribute *next;
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout LyX-Code
-struct tdb_attribute_log {
-\end_layout
-
-\begin_layout LyX-Code
- struct tdb_attribute_base base; /* .attr = TDB_ATTRIBUTE_LOG */
-\end_layout
-
-\begin_layout LyX-Code
- tdb_log_func log_fn;
-\end_layout
-
-\begin_layout LyX-Code
- void *log_private;
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout LyX-Code
-struct tdb_attribute_hash {
-\end_layout
-
-\begin_layout LyX-Code
- struct tdb_attribute_base base; /* .attr = TDB_ATTRIBUTE_HASH */
-\end_layout
-
-\begin_layout LyX-Code
- tdb_hash_func hash_fn;
-\end_layout
-
-\begin_layout LyX-Code
- void *hash_private;
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout LyX-Code
-union tdb_attribute {
-\end_layout
-
-\begin_layout LyX-Code
- struct tdb_attribute_base base;
-\end_layout
-
-\begin_layout LyX-Code
- struct tdb_attribute_log log;
-\end_layout
-
-\begin_layout LyX-Code
- struct tdb_attribute_hash hash;
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout Standard
-This allows future attributes to be added, even if this expands the size
- of the union.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-tdb_traverse Makes Impossible Guarantees
-\end_layout
-
-\begin_layout Standard
-tdb_traverse (and tdb_firstkey/tdb_nextkey) predate transactions, and it
- was thought that it was important to guarantee that all records which exist
- at the start and end of the traversal would be included, and no record
- would be included twice.
-\end_layout
-
-\begin_layout Standard
-This adds complexity (see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "Reliable-Traversal-Adds"
-
-\end_inset
-
-) and does not work anyway for records which are altered (in particular,
- those which are expanded may be effectively deleted and re-added behind
- the traversal).
-\end_layout
-
-\begin_layout Subsubsection
-\begin_inset CommandInset label
-LatexCommand label
-name "traverse-Proposed-Solution"
-
-\end_inset
-
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Abandon the guarantee.
- You will see every record if no changes occur during your traversal, otherwise
- you will see some subset.
- You can prevent changes by using a transaction or the locking API.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
- Delete-during-traverse will still delete every record, too (assuming no
- other changes).
-\end_layout
-
-\begin_layout Subsection
-Nesting of Transactions Is Fraught
-\end_layout
-
-\begin_layout Standard
-TDB has alternated between allowing nested transactions and not allowing
- them.
- Various paths in the Samba codebase assume that transactions will nest,
- and in a sense they can: the operation is only committed to disk when the
- outer transaction is committed.
- There are two problems, however:
-\end_layout
-
-\begin_layout Enumerate
-Canceling the inner transaction will cause the outer transaction commit
- to fail, and will not undo any operations since the inner transaction began.
- This problem is soluble with some additional internal code.
-\end_layout
-
-\begin_layout Enumerate
-An inner transaction commit can be cancelled by the outer transaction.
- This is desirable in the way which Samba's database initialization code
- uses transactions, but could be a surprise to any users expecting a successful
- transaction commit to expose changes to others.
-\end_layout
-
-\begin_layout Standard
-The current solution is to specify the behavior at tdb_open(), with the
- default currently that nested transactions are allowed.
- This flag can also be changed at runtime.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Given the usage patterns, it seems that the
-\begin_inset Quotes eld
-\end_inset
-
-least-surprise
-\begin_inset Quotes erd
-\end_inset
-
- behavior of disallowing nested transactions should become the default.
- Additionally, it seems the outer transaction is the only code which knows
- whether inner transactions should be allowed, so a flag to indicate this
- could be added to tdb_transaction_start.
- However, this behavior can be simulated with a wrapper which uses tdb_add_flags
-() and tdb_remove_flags(), so the API should not be expanded for this relatively
--obscure case.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete; the nesting flag has been removed.
-\end_layout
-
-\begin_layout Subsection
-Incorrect Hash Function is Not Detected
-\end_layout
-
-\begin_layout Standard
-tdb_open_ex() allows the calling code to specify a different hash function
- to use, but does not check that all other processes accessing this tdb
- are using the same hash function.
- The result is that records are missing from tdb_fetch().
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The header should contain an example hash result (eg.
- the hash of 0xdeadbeef), and tdb_open_ex() should check that the given
- hash function produces the same answer, or fail the tdb_open call.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-tdb_set_max_dead/TDB_VOLATILE Expose Implementation
-\end_layout
-
-\begin_layout Standard
-In response to scalability issues with the free list (
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "TDB-Freelist-Is"
-
-\end_inset
-
-) two API workarounds have been incorporated in TDB: tdb_set_max_dead()
- and the TDB_VOLATILE flag to tdb_open.
- The latter actually calls the former with an argument of
-\begin_inset Quotes eld
-\end_inset
-
-5
-\begin_inset Quotes erd
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-This code allows deleted records to accumulate without putting them in the
- free list.
- On delete we iterate through each chain and free them in a batch if there
- are more than max_dead entries.
- These are never otherwise recycled except as a side-effect of a tdb_repack.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-With the scalability problems of the freelist solved, this API can be removed.
- The TDB_VOLATILE flag may still be useful as a hint that store and delete
- of records will be at least as common as fetch in order to allow some internal
- tuning, but initially will become a no-op.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
- Unknown flags cause tdb_open() to fail as well, so they can be detected
- at runtime.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "TDB-Files-Cannot"
-
-\end_inset
-
-TDB Files Cannot Be Opened Multiple Times In The Same Process
-\end_layout
-
-\begin_layout Standard
-No process can open the same TDB twice; we check and disallow it.
- This is an unfortunate side-effect of fcntl locks, which operate on a per-file
- rather than per-file-descriptor basis, and do not nest.
- Thus, closing any file descriptor on a file clears all the locks obtained
- by this process, even if they were placed using a different file descriptor!
-\end_layout
-
-\begin_layout Standard
-Note that even if this were solved, deadlock could occur if operations were
- nested: this is a more manageable programming error in most cases.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-We could lobby POSIX to fix the perverse rules, or at least lobby Linux
- to violate them so that the most common implementation does not have this
- restriction.
- This would be a generally good idea for other fcntl lock users.
-\end_layout
-
-\begin_layout Standard
-Samba uses a wrapper which hands out the same tdb_context to multiple callers
- if this happens, and does simple reference counting.
- We should do this inside the tdb library, which already emulates lock nesting
- internally; it would need to recognize when deadlock occurs within a single
- process.
- This would create a new failure mode for tdb operations (while we currently
- handle locking failures, they are impossible in normal use and a process
- encountering them can do little but give up).
-\end_layout
-
-\begin_layout Standard
-I do not see benefit in an additional tdb_open flag to indicate whether
- re-opening is allowed, as though there may be some benefit to adding a
- call to detect when a tdb_context is shared, to allow other to create such
- an API.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-TDB API Is Not POSIX Thread-safe
-\end_layout
-
-\begin_layout Standard
-The TDB API uses an error code which can be queried after an operation to
- determine what went wrong.
- This programming model does not work with threads, unless specific additional
- guarantees are given by the implementation.
- In addition, even otherwise-independent threads cannot open the same TDB
- (as in
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "TDB-Files-Cannot"
-
-\end_inset
-
-).
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Reachitecting the API to include a tdb_errcode pointer would be a great
- deal of churn, but fortunately most functions return 0 on success and -1
- on error: we can change these to return 0 on success and a negative error
- code on error, and the API remains similar to previous.
- The tdb_fetch, tdb_firstkey and tdb_nextkey functions need to take a TDB_DATA
- pointer and return an error code.
- It is also simpler to have tdb_nextkey replace its key argument in place,
- freeing up any old .dptr.
-\end_layout
-
-\begin_layout Standard
-Internal locking is required to make sure that fcntl locks do not overlap
- between threads, and also that the global list of tdbs is maintained.
-\end_layout
-
-\begin_layout Standard
-The aim is that building tdb with -DTDB_PTHREAD will result in a pthread-safe
- version of the library, and otherwise no overhead will exist.
- Alternatively, a hooking mechanism similar to that proposed for
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "Proposed-Solution-locking-hook"
-
-\end_inset
-
- could be used to enable pthread locking at runtime.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Incomplete; API has been changed but thread safety has not been implemented.
-\end_layout
-
-\begin_layout Subsection
-*_nonblock Functions And *_mark Functions Expose Implementation
-\end_layout
-
-\begin_layout Standard
-CTDB
-\begin_inset Foot
-status collapsed
-
-\begin_layout Plain Layout
-Clustered TDB, see http://ctdb.samba.org
-\end_layout
-
-\end_inset
-
- wishes to operate on TDB in a non-blocking manner.
- This is currently done as follows:
-\end_layout
-
-\begin_layout Enumerate
-Call the _nonblock variant of an API function (eg.
- tdb_lockall_nonblock).
- If this fails:
-\end_layout
-
-\begin_layout Enumerate
-Fork a child process, and wait for it to call the normal variant (eg.
- tdb_lockall).
-\end_layout
-
-\begin_layout Enumerate
-If the child succeeds, call the _mark variant to indicate we already have
- the locks (eg.
- tdb_lockall_mark).
-\end_layout
-
-\begin_layout Enumerate
-Upon completion, tell the child to release the locks (eg.
- tdb_unlockall).
-\end_layout
-
-\begin_layout Enumerate
-Indicate to tdb that it should consider the locks removed (eg.
- tdb_unlockall_mark).
-\end_layout
-
-\begin_layout Standard
-There are several issues with this approach.
- Firstly, adding two new variants of each function clutters the API for
- an obscure use, and so not all functions have three variants.
- Secondly, it assumes that all paths of the functions ask for the same locks,
- otherwise the parent process will have to get a lock which the child doesn't
- have under some circumstances.
- I don't believe this is currently the case, but it constrains the implementatio
-n.
-
-\end_layout
-
-\begin_layout Subsubsection
-\begin_inset CommandInset label
-LatexCommand label
-name "Proposed-Solution-locking-hook"
-
-\end_inset
-
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Implement a hook for locking methods, so that the caller can control the
- calls to create and remove fcntl locks.
- In this scenario, ctdbd would operate as follows:
-\end_layout
-
-\begin_layout Enumerate
-Call the normal API function, eg tdb_lockall().
-\end_layout
-
-\begin_layout Enumerate
-When the lock callback comes in, check if the child has the lock.
- Initially, this is always false.
- If so, return 0.
- Otherwise, try to obtain it in non-blocking mode.
- If that fails, return EWOULDBLOCK.
-\end_layout
-
-\begin_layout Enumerate
-Release locks in the unlock callback as normal.
-\end_layout
-
-\begin_layout Enumerate
-If tdb_lockall() fails, see if we recorded a lock failure; if so, call the
- child to repeat the operation.
-\end_layout
-
-\begin_layout Enumerate
-The child records what locks it obtains, and returns that information to
- the parent.
-\end_layout
-
-\begin_layout Enumerate
-When the child has succeeded, goto 1.
-\end_layout
-
-\begin_layout Standard
-This is flexible enough to handle any potential locking scenario, even when
- lock requirements change.
- It can be optimized so that the parent does not release locks, just tells
- the child which locks it doesn't need to obtain.
-\end_layout
-
-\begin_layout Standard
-It also keeps the complexity out of the API, and in ctdbd where it is needed.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Incomplete.
-\end_layout
-
-\begin_layout Subsection
-tdb_chainlock Functions Expose Implementation
-\end_layout
-
-\begin_layout Standard
-tdb_chainlock locks some number of records, including the record indicated
- by the given key.
- This gave atomicity guarantees; no-one can start a transaction, alter,
- read or delete that key while the lock is held.
-\end_layout
-
-\begin_layout Standard
-It also makes the same guarantee for any other key in the chain, which is
- an internal implementation detail and potentially a cause for deadlock.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-None.
- It would be nice to have an explicit single entry lock which effected no
- other keys.
- Unfortunately, this won't work for an entry which doesn't exist.
- Thus while chainlock may be implemented more efficiently for the existing
- case, it will still have overlap issues with the non-existing case.
- So it is best to keep the current (lack of) guarantee about which records
- will be effected to avoid constraining our implementation.
-\end_layout
-
-\begin_layout Subsection
-Signal Handling is Not Race-Free
-\end_layout
-
-\begin_layout Standard
-The tdb_setalarm_sigptr() call allows the caller's signal handler to indicate
- that the tdb locking code should return with a failure, rather than trying
- again when a signal is received (and errno == EAGAIN).
- This is usually used to implement timeouts.
-\end_layout
-
-\begin_layout Standard
-Unfortunately, this does not work in the case where the signal is received
- before the tdb code enters the fcntl() call to place the lock: the code
- will sleep within the fcntl() code, unaware that the signal wants it to
- exit.
- In the case of long timeouts, this does not happen in practice.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The locking hooks proposed in
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "Proposed-Solution-locking-hook"
-
-\end_inset
-
- would allow the user to decide on whether to fail the lock acquisition
- on a signal.
- This allows the caller to choose their own compromise: they could narrow
- the race by checking immediately before the fcntl call.
-\begin_inset Foot
-status collapsed
-
-\begin_layout Plain Layout
-It may be possible to make this race-free in some implementations by having
- the signal handler alter the struct flock to make it invalid.
- This will cause the fcntl() lock call to fail with EINVAL if the signal
- occurs before the kernel is entered, otherwise EAGAIN.
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Incomplete.
-\end_layout
-
-\begin_layout Subsection
-The API Uses Gratuitous Typedefs, Capitals
-\end_layout
-
-\begin_layout Standard
-typedefs are useful for providing source compatibility when types can differ
- across implementations, or arguably in the case of function pointer definitions
- which are hard for humans to parse.
- Otherwise it is simply obfuscation and pollutes the namespace.
-\end_layout
-
-\begin_layout Standard
-Capitalization is usually reserved for compile-time constants and macros.
-\end_layout
-
-\begin_layout Description
-TDB_CONTEXT There is no reason to use this over 'struct tdb_context'; the
- definition isn't visible to the API user anyway.
-\end_layout
-
-\begin_layout Description
-TDB_DATA There is no reason to use this over struct TDB_DATA; the struct
- needs to be understood by the API user.
-\end_layout
-
-\begin_layout Description
-struct
-\begin_inset space ~
-\end_inset
-
-TDB_DATA This would normally be called 'struct tdb_data'.
-\end_layout
-
-\begin_layout Description
-enum
-\begin_inset space ~
-\end_inset
-
-TDB_ERROR Similarly, this would normally be enum tdb_error.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-None.
- Introducing lower case variants would please pedants like myself, but if
- it were done the existing ones should be kept.
- There is little point forcing a purely cosmetic change upon tdb users.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "tdb_log_func-Doesnt-Take"
-
-\end_inset
-
-tdb_log_func Doesn't Take The Private Pointer
-\end_layout
-
-\begin_layout Standard
-For API compatibility reasons, the logging function needs to call tdb_get_loggin
-g_private() to retrieve the pointer registered by the tdb_open_ex for logging.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-It should simply take an extra argument, since we are prepared to break
- the API/ABI.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-Various Callback Functions Are Not Typesafe
-\end_layout
-
-\begin_layout Standard
-The callback functions in tdb_set_logging_function (after
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "tdb_log_func-Doesnt-Take"
-
-\end_inset
-
- is resolved), tdb_parse_record, tdb_traverse, tdb_traverse_read and tdb_check
- all take void * and must internally convert it to the argument type they
- were expecting.
-\end_layout
-
-\begin_layout Standard
-If this type changes, the compiler will not produce warnings on the callers,
- since it only sees void *.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-With careful use of macros, we can create callback functions which give
- a warning when used on gcc and the types of the callback and its private
- argument differ.
- Unsupported compilers will not give a warning, which is no worse than now.
- In addition, the callbacks become clearer, as they need not use void *
- for their parameter.
-\end_layout
-
-\begin_layout Standard
-See CCAN's typesafe_cb module at http://ccan.ozlabs.org/info/typesafe_cb.html
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-TDB_CLEAR_IF_FIRST Must Be Specified On All Opens, tdb_reopen_all Problematic
-\end_layout
-
-\begin_layout Standard
-The TDB_CLEAR_IF_FIRST flag to tdb_open indicates that the TDB file should
- be cleared if the caller discovers it is the only process with the TDB
- open.
- However, if any caller does not specify TDB_CLEAR_IF_FIRST it will not
- be detected, so will have the TDB erased underneath them (usually resulting
- in a crash).
-\end_layout
-
-\begin_layout Standard
-There is a similar issue on fork(); if the parent exits (or otherwise closes
- the tdb) before the child calls tdb_reopen_all() to establish the lock
- used to indicate the TDB is opened by someone, a TDB_CLEAR_IF_FIRST opener
- at that moment will believe it alone has opened the TDB and will erase
- it.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Remove TDB_CLEAR_IF_FIRST.
- Other workarounds are possible, but see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "TDB_CLEAR_IF_FIRST-Imposes-Performance"
-
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-Extending The Header Is Difficult
-\end_layout
-
-\begin_layout Standard
-We have reserved (zeroed) words in the TDB header, which can be used for
- future features.
- If the future features are compulsory, the version number must be updated
- to prevent old code from accessing the database.
- But if the future feature is optional, we have no way of telling if older
- code is accessing the database or not.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The header should contain a
-\begin_inset Quotes eld
-\end_inset
-
-format variant
-\begin_inset Quotes erd
-\end_inset
-
- value (64-bit).
- This is divided into two 32-bit parts:
-\end_layout
-
-\begin_layout Enumerate
-The lower part reflects the format variant understood by code accessing
- the database.
-\end_layout
-
-\begin_layout Enumerate
-The upper part reflects the format variant you must understand to write
- to the database (otherwise you can only open for reading).
-\end_layout
-
-\begin_layout Standard
-The latter field can only be written at creation time, the former should
- be written under the OPEN_LOCK when opening the database for writing, if
- the variant of the code is lower than the current lowest variant.
-\end_layout
-
-\begin_layout Standard
-This should allow backwards-compatible features to be added, and detection
- if older code (which doesn't understand the feature) writes to the database.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-Record Headers Are Not Expandible
-\end_layout
-
-\begin_layout Standard
-If we later want to add (say) checksums on keys and data, it would require
- another format change, which we'd like to avoid.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-We often have extra padding at the tail of a record.
- If we ensure that the first byte (if any) of this padding is zero, we will
- have a way for future changes to detect code which doesn't understand a
- new format: the new code would write (say) a 1 at the tail, and thus if
- there is no tail or the first byte is 0, we would know the extension is
- not present on that record.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-TDB Does Not Use Talloc
-\end_layout
-
-\begin_layout Standard
-Many users of TDB (particularly Samba) use the talloc allocator, and thus
- have to wrap TDB in a talloc context to use it conveniently.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The allocation within TDB is not complicated enough to justify the use of
- talloc, and I am reluctant to force another (excellent) library on TDB
- users.
- Nonetheless a compromise is possible.
- An attribute (see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "attributes"
-
-\end_inset
-
-) can be added later to tdb_open() to provide an alternate allocation mechanism,
- specifically for talloc but usable by any other allocator (which would
- ignore the
-\begin_inset Quotes eld
-\end_inset
-
-context
-\begin_inset Quotes erd
-\end_inset
-
- argument).
-\end_layout
-
-\begin_layout Standard
-This would form a talloc heirarchy as expected, but the caller would still
- have to attach a destructor to the tdb context returned from tdb_open to
- close it.
- All TDB_DATA fields would be children of the tdb_context, and the caller
- would still have to manage them (using talloc_free() or talloc_steal()).
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Deferred.
-\end_layout
-
-\begin_layout Section
-Performance And Scalability Issues
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "TDB_CLEAR_IF_FIRST-Imposes-Performance"
-
-\end_inset
-
-TDB_CLEAR_IF_FIRST Imposes Performance Penalty
-\end_layout
-
-\begin_layout Standard
-When TDB_CLEAR_IF_FIRST is specified, a 1-byte read lock is placed at offset
- 4 (aka.
- the ACTIVE_LOCK).
- While these locks never conflict in normal tdb usage, they do add substantial
- overhead for most fcntl lock implementations when the kernel scans to detect
- if a lock conflict exists.
- This is often a single linked list, making the time to acquire and release
- a fcntl lock O(N) where N is the number of processes with the TDB open,
- not the number actually doing work.
-\end_layout
-
-\begin_layout Standard
-In a Samba server it is common to have huge numbers of clients sitting idle,
- and thus they have weaned themselves off the TDB_CLEAR_IF_FIRST flag.
-\begin_inset Foot
-status collapsed
-
-\begin_layout Plain Layout
-There is a flag to tdb_reopen_all() which is used for this optimization:
- if the parent process will outlive the child, the child does not need the
- ACTIVE_LOCK.
- This is a workaround for this very performance issue.
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Remove the flag.
- It was a neat idea, but even trivial servers tend to know when they are
- initializing for the first time and can simply unlink the old tdb at that
- point.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-TDB Files Have a 4G Limit
-\end_layout
-
-\begin_layout Standard
-This seems to be becoming an issue (so much for
-\begin_inset Quotes eld
-\end_inset
-
-trivial
-\begin_inset Quotes erd
-\end_inset
-
-!), particularly for ldb.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-A new, incompatible TDB format which uses 64 bit offsets internally rather
- than 32 bit as now.
- For simplicity of endian conversion (which TDB does on the fly if required),
- all values will be 64 bit on disk.
- In practice, some upper bits may be used for other purposes, but at least
- 56 bits will be available for file offsets.
-\end_layout
-
-\begin_layout Standard
-tdb_open() will automatically detect the old version, and even create them
- if TDB_VERSION6 is specified to tdb_open.
-\end_layout
-
-\begin_layout Standard
-32 bit processes will still be able to access TDBs larger than 4G (assuming
- that their off_t allows them to seek to 64 bits), they will gracefully
- fall back as they fail to mmap.
- This can happen already with large TDBs.
-\end_layout
-
-\begin_layout Standard
-Old versions of tdb will fail to open the new TDB files (since 28 August
- 2009, commit 398d0c29290: prior to that any unrecognized file format would
- be erased and initialized as a fresh tdb!)
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-TDB Records Have a 4G Limit
-\end_layout
-
-\begin_layout Standard
-This has not been a reported problem, and the API uses size_t which can
- be 64 bit on 64 bit platforms.
- However, other limits may have made such an issue moot.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Record sizes will be 64 bit, with an error returned on 32 bit platforms
- which try to access such records (the current implementation would return
- TDB_ERR_OOM in a similar case).
- It seems unlikely that 32 bit keys will be a limitation, so the implementation
- may not support this (see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "sub:Records-Incur-A"
-
-\end_inset
-
-).
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-Hash Size Is Determined At TDB Creation Time
-\end_layout
-
-\begin_layout Standard
-TDB contains a number of hash chains in the header; the number is specified
- at creation time, and defaults to 131.
- This is such a bottleneck on large databases (as each hash chain gets quite
- long), that LDB uses 10,000 for this hash.
- In general it is impossible to know what the 'right' answer is at database
- creation time.
-\end_layout
-
-\begin_layout Subsubsection
-\begin_inset CommandInset label
-LatexCommand label
-name "sub:Hash-Size-Solution"
-
-\end_inset
-
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-After comprehensive performance testing on various scalable hash variants
-\begin_inset Foot
-status collapsed
-
-\begin_layout Plain Layout
-http://rusty.ozlabs.org/?p=89 and http://rusty.ozlabs.org/?p=94 This was annoying
- because I was previously convinced that an expanding tree of hashes would
- be very close to optimal.
-\end_layout
-
-\end_inset
-
-, it became clear that it is hard to beat a straight linear hash table which
- doubles in size when it reaches saturation.
- Unfortunately, altering the hash table introduces serious locking complications
-: the entire hash table needs to be locked to enlarge the hash table, and
- others might be holding locks.
- Particularly insidious are insertions done under tdb_chainlock.
-\end_layout
-
-\begin_layout Standard
-Thus an expanding layered hash will be used: an array of hash groups, with
- each hash group exploding into pointers to lower hash groups once it fills,
- turning into a hash tree.
- This has implications for locking: we must lock the entire group in case
- we need to expand it, yet we don't know how deep the tree is at that point.
-\end_layout
-
-\begin_layout Standard
-Note that bits from the hash table entries should be stolen to hold more
- hash bits to reduce the penalty of collisions.
- We can use the otherwise-unused lower 3 bits.
- If we limit the size of the database to 64 exabytes, we can use the top
- 8 bits of the hash entry as well.
- These 11 bits would reduce false positives down to 1 in 2000 which is more
- than we need: we can use one of the bits to indicate that the extra hash
- bits are valid.
- This means we can choose not to re-hash all entries when we expand a hash
- group; simply use the next bits we need and mark them invalid.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "TDB-Freelist-Is"
-
-\end_inset
-
-TDB Freelist Is Highly Contended
-\end_layout
-
-\begin_layout Standard
-TDB uses a single linked list for the free list.
- Allocation occurs as follows, using heuristics which have evolved over
- time:
-\end_layout
-
-\begin_layout Enumerate
-Get the free list lock for this whole operation.
-\end_layout
-
-\begin_layout Enumerate
-Multiply length by 1.25, so we always over-allocate by 25%.
-\end_layout
-
-\begin_layout Enumerate
-Set the slack multiplier to 1.
-\end_layout
-
-\begin_layout Enumerate
-Examine the current freelist entry: if it is > length but < the current
- best case, remember it as the best case.
-\end_layout
-
-\begin_layout Enumerate
-Multiply the slack multiplier by 1.05.
-\end_layout
-
-\begin_layout Enumerate
-If our best fit so far is less than length * slack multiplier, return it.
- The slack will be turned into a new free record if it's large enough.
-\end_layout
-
-\begin_layout Enumerate
-Otherwise, go onto the next freelist entry.
-\end_layout
-
-\begin_layout Standard
-Deleting a record occurs as follows:
-\end_layout
-
-\begin_layout Enumerate
-Lock the hash chain for this whole operation.
-\end_layout
-
-\begin_layout Enumerate
-Walk the chain to find the record, keeping the prev pointer offset.
-\end_layout
-
-\begin_layout Enumerate
-If max_dead is non-zero:
-\end_layout
-
-\begin_deeper
-\begin_layout Enumerate
-Walk the hash chain again and count the dead records.
-\end_layout
-
-\begin_layout Enumerate
-If it's more than max_dead, bulk free all the dead ones (similar to steps
- 4 and below, but the lock is only obtained once).
-\end_layout
-
-\begin_layout Enumerate
-Simply mark this record as dead and return.
-
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-Get the free list lock for the remainder of this operation.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset CommandInset label
-LatexCommand label
-name "right-merging"
-
-\end_inset
-
-Examine the following block to see if it is free; if so, enlarge the current
- block and remove that block from the free list.
- This was disabled, as removal from the free list was O(entries-in-free-list).
-\end_layout
-
-\begin_layout Enumerate
-Examine the preceeding block to see if it is free: for this reason, each
- block has a 32-bit tailer which indicates its length.
- If it is free, expand it to cover our new block and return.
-\end_layout
-
-\begin_layout Enumerate
-Otherwise, prepend ourselves to the free list.
-\end_layout
-
-\begin_layout Standard
-Disabling right-merging (step
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "right-merging"
-
-\end_inset
-
-) causes fragmentation; the other heuristics proved insufficient to address
- this, so the final answer to this was that when we expand the TDB file
- inside a transaction commit, we repack the entire tdb.
-\end_layout
-
-\begin_layout Standard
-The single list lock limits our allocation rate; due to the other issues
- this is not currently seen as a bottleneck.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The first step is to remove all the current heuristics, as they obviously
- interact, then examine them once the lock contention is addressed.
-\end_layout
-
-\begin_layout Standard
-The free list must be split to reduce contention.
- Assuming perfect free merging, we can at most have 1 free list entry for
- each entry.
- This implies that the number of free lists is related to the size of the
- hash table, but as it is rare to walk a large number of free list entries
- we can use far fewer, say 1/32 of the number of hash buckets.
-\end_layout
-
-\begin_layout Standard
-It seems tempting to try to reuse the hash implementation which we use for
- records here, but we have two ways of searching for free entries: for allocatio
-n we search by size (and possibly zone) which produces too many clashes
- for our hash table to handle well, and for coalescing we search by address.
- Thus an array of doubly-linked free lists seems preferable.
-\end_layout
-
-\begin_layout Standard
-There are various benefits in using per-size free lists (see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "sub:TDB-Becomes-Fragmented"
-
-\end_inset
-
-) but it's not clear this would reduce contention in the common case where
- all processes are allocating/freeing the same size.
- Thus we almost certainly need to divide in other ways: the most obvious
- is to divide the file into zones, and using a free list (or table of free
- lists) for each.
- This approximates address ordering.
-\end_layout
-
-\begin_layout Standard
-Unfortunately it is difficult to know what heuristics should be used to
- determine zone sizes, and our transaction code relies on being able to
- create a
-\begin_inset Quotes eld
-\end_inset
-
-recovery area
-\begin_inset Quotes erd
-\end_inset
-
- by simply appending to the file (difficult if it would need to create a
- new zone header).
- Thus we use a linked-list of free tables; currently we only ever create
- one, but if there is more than one we choose one at random to use.
- In future we may use heuristics to add new free tables on contention.
- We only expand the file when all free tables are exhausted.
-\end_layout
-
-\begin_layout Standard
-The basic algorithm is as follows.
- Freeing is simple:
-\end_layout
-
-\begin_layout Enumerate
-Identify the correct free list.
-\end_layout
-
-\begin_layout Enumerate
-Lock the corresponding list.
-\end_layout
-
-\begin_layout Enumerate
-Re-check the list (we didn't have a lock, sizes could have changed): relock
- if necessary.
-\end_layout
-
-\begin_layout Enumerate
-Place the freed entry in the list.
-\end_layout
-
-\begin_layout Standard
-Allocation is a little more complicated, as we perform delayed coalescing
- at this point:
-\end_layout
-
-\begin_layout Enumerate
-Pick a free table; usually the previous one.
-\end_layout
-
-\begin_layout Enumerate
-Lock the corresponding list.
-\end_layout
-
-\begin_layout Enumerate
-If the top entry is -large enough, remove it from the list and return it.
-\end_layout
-
-\begin_layout Enumerate
-Otherwise, coalesce entries in the list.If there was no entry large enough,
- unlock the list and try the next largest list
-\end_layout
-
-\begin_layout Enumerate
-If no list has an entry which meets our needs, try the next free table.
-\end_layout
-
-\begin_layout Enumerate
-If no zone satisfies, expand the file.
-\end_layout
-
-\begin_layout Standard
-This optimizes rapid insert/delete of free list entries by not coalescing
- them all the time..
- First-fit address ordering ordering seems to be fairly good for keeping
- fragmentation low (see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "sub:TDB-Becomes-Fragmented"
-
-\end_inset
-
-).
- Note that address ordering does not need a tailer to coalesce, though if
- we needed one we could have one cheaply: see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "sub:Records-Incur-A"
-
-\end_inset
-
-.
-
-\end_layout
-
-\begin_layout Standard
-Each free entry has the free table number in the header: less than 255.
- It also contains a doubly-linked list for easy deletion.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "sub:TDB-Becomes-Fragmented"
-
-\end_inset
-
-TDB Becomes Fragmented
-\end_layout
-
-\begin_layout Standard
-Much of this is a result of allocation strategy
-\begin_inset Foot
-status collapsed
-
-\begin_layout Plain Layout
-The Memory Fragmentation Problem: Solved? Johnstone & Wilson 1995 ftp://ftp.cs.ute
-xas.edu/pub/garbage/malloc/ismm98.ps
-\end_layout
-
-\end_inset
-
- and deliberate hobbling of coalescing; internal fragmentation (aka overallocati
-on) is deliberately set at 25%, and external fragmentation is only cured
- by the decision to repack the entire db when a transaction commit needs
- to enlarge the file.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The 25% overhead on allocation works in practice for ldb because indexes
- tend to expand by one record at a time.
- This internal fragmentation can be resolved by having an
-\begin_inset Quotes eld
-\end_inset
-
-expanded
-\begin_inset Quotes erd
-\end_inset
-
- bit in the header to note entries that have previously expanded, and allocating
- more space for them.
-\end_layout
-
-\begin_layout Standard
-There are is a spectrum of possible solutions for external fragmentation:
- one is to use a fragmentation-avoiding allocation strategy such as best-fit
- address-order allocator.
- The other end of the spectrum would be to use a bump allocator (very fast
- and simple) and simply repack the file when we reach the end.
-\end_layout
-
-\begin_layout Standard
-There are three problems with efficient fragmentation-avoiding allocators:
- they are non-trivial, they tend to use a single free list for each size,
- and there's no evidence that tdb allocation patterns will match those recorded
- for general allocators (though it seems likely).
-\end_layout
-
-\begin_layout Standard
-Thus we don't spend too much effort on external fragmentation; we will be
- no worse than the current code if we need to repack on occasion.
- More effort is spent on reducing freelist contention, and reducing overhead.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "sub:Records-Incur-A"
-
-\end_inset
-
-Records Incur A 28-Byte Overhead
-\end_layout
-
-\begin_layout Standard
-Each TDB record has a header as follows:
-\end_layout
-
-\begin_layout LyX-Code
-struct tdb_record {
-\end_layout
-
-\begin_layout LyX-Code
- tdb_off_t next; /* offset of the next record in the list */
-\end_layout
-
-\begin_layout LyX-Code
- tdb_len_t rec_len; /* total byte length of record */
-\end_layout
-
-\begin_layout LyX-Code
- tdb_len_t key_len; /* byte length of key */
-\end_layout
-
-\begin_layout LyX-Code
- tdb_len_t data_len; /* byte length of data */
-\end_layout
-
-\begin_layout LyX-Code
- uint32_t full_hash; /* the full 32 bit hash of the key */
-\end_layout
-
-\begin_layout LyX-Code
- uint32_t magic; /* try to catch errors */
-\end_layout
-
-\begin_layout LyX-Code
- /* the following union is implied:
-\end_layout
-
-\begin_layout LyX-Code
- union {
-\end_layout
-
-\begin_layout LyX-Code
- char record[rec_len];
-\end_layout
-
-\begin_layout LyX-Code
- struct {
-\end_layout
-
-\begin_layout LyX-Code
- char key[key_len];
-\end_layout
-
-\begin_layout LyX-Code
- char data[data_len];
-\end_layout
-
-\begin_layout LyX-Code
- }
-\end_layout
-
-\begin_layout LyX-Code
- uint32_t totalsize; (tailer)
-\end_layout
-
-\begin_layout LyX-Code
- }
-\end_layout
-
-\begin_layout LyX-Code
- */
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout Standard
-Naively, this would double to a 56-byte overhead on a 64 bit implementation.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-We can use various techniques to reduce this for an allocated block:
-\end_layout
-
-\begin_layout Enumerate
-The 'next' pointer is not required, as we are using a flat hash table.
-\end_layout
-
-\begin_layout Enumerate
-'rec_len' can instead be expressed as an addition to key_len and data_len
- (it accounts for wasted or overallocated length in the record).
- Since the record length is always a multiple of 8, we can conveniently
- fit it in 32 bits (representing up to 35 bits).
-\end_layout
-
-\begin_layout Enumerate
-'key_len' and 'data_len' can be reduced.
- I'm unwilling to restrict 'data_len' to 32 bits, but instead we can combine
- the two into one 64-bit field and using a 5 bit value which indicates at
- what bit to divide the two.
- Keys are unlikely to scale as fast as data, so I'm assuming a maximum key
- size of 32 bits.
-\end_layout
-
-\begin_layout Enumerate
-'full_hash' is used to avoid a memcmp on the
-\begin_inset Quotes eld
-\end_inset
-
-miss
-\begin_inset Quotes erd
-\end_inset
-
- case, but this is diminishing returns after a handful of bits (at 10 bits,
- it reduces 99.9% of false memcmp).
- As an aside, as the lower bits are already incorporated in the hash table
- resolution, the upper bits should be used here.
- Note that it's not clear that these bits will be a win, given the extra
- bits in the hash table itself (see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "sub:Hash-Size-Solution"
-
-\end_inset
-
-).
-\end_layout
-
-\begin_layout Enumerate
-'magic' does not need to be enlarged: it currently reflects one of 5 values
- (used, free, dead, recovery, and unused_recovery).
- It is useful for quick sanity checking however, and should not be eliminated.
-\end_layout
-
-\begin_layout Enumerate
-'tailer' is only used to coalesce free blocks (so a block to the right can
- find the header to check if this block is free).
- This can be replaced by a single 'free' bit in the header of the following
- block (and the tailer only exists in free blocks).
-\begin_inset Foot
-status collapsed
-
-\begin_layout Plain Layout
-This technique from Thomas Standish.
- Data Structure Techniques.
- Addison-Wesley, Reading, Massachusetts, 1980.
-\end_layout
-
-\end_inset
-
- The current proposed coalescing algorithm doesn't need this, however.
-\end_layout
-
-\begin_layout Standard
-This produces a 16 byte used header like this:
-\end_layout
-
-\begin_layout LyX-Code
-struct tdb_used_record {
-\end_layout
-
-\begin_layout LyX-Code
- uint32_t used_magic : 16,
-\end_layout
-
-\begin_layout LyX-Code
-
-\end_layout
-
-\begin_layout LyX-Code
- key_data_divide: 5,
-\end_layout
-
-\begin_layout LyX-Code
- top_hash: 11;
-\end_layout
-
-\begin_layout LyX-Code
- uint32_t extra_octets;
-\end_layout
-
-\begin_layout LyX-Code
- uint64_t key_and_data_len;
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout Standard
-And a free record like this:
-\end_layout
-
-\begin_layout LyX-Code
-struct tdb_free_record {
-\end_layout
-
-\begin_layout LyX-Code
- uint64_t free_magic: 8,
-\end_layout
-
-\begin_layout LyX-Code
- prev : 56;
-\end_layout
-
-\begin_layout LyX-Code
-
-\end_layout
-
-\begin_layout LyX-Code
- uint64_t free_table: 8,
-\end_layout
-
-\begin_layout LyX-Code
- total_length : 56
-\end_layout
-
-\begin_layout LyX-Code
- uint64_t next;;
-\end_layout
-
-\begin_layout LyX-Code
-};
-\end_layout
-
-\begin_layout Standard
-Note that by limiting valid offsets to 56 bits, we can pack everything we
- need into 3 64-byte words, meaning our minimum record size is 8 bytes.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-Transaction Commit Requires 4 fdatasync
-\end_layout
-
-\begin_layout Standard
-The current transaction algorithm is:
-\end_layout
-
-\begin_layout Enumerate
-write_recovery_data();
-\end_layout
-
-\begin_layout Enumerate
-sync();
-\end_layout
-
-\begin_layout Enumerate
-write_recovery_header();
-\end_layout
-
-\begin_layout Enumerate
-sync();
-\end_layout
-
-\begin_layout Enumerate
-overwrite_with_new_data();
-\end_layout
-
-\begin_layout Enumerate
-sync();
-\end_layout
-
-\begin_layout Enumerate
-remove_recovery_header();
-\end_layout
-
-\begin_layout Enumerate
-sync();
-\end_layout
-
-\begin_layout Standard
-On current ext3, each sync flushes all data to disk, so the next 3 syncs
- are relatively expensive.
- But this could become a performance bottleneck on other filesystems such
- as ext4.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Neil Brown points out that this is overzealous, and only one sync is needed:
-\end_layout
-
-\begin_layout Enumerate
-Bundle the recovery data, a transaction counter and a strong checksum of
- the new data.
-\end_layout
-
-\begin_layout Enumerate
-Strong checksum that whole bundle.
-\end_layout
-
-\begin_layout Enumerate
-Store the bundle in the database.
-\end_layout
-
-\begin_layout Enumerate
-Overwrite the oldest of the two recovery pointers in the header (identified
- using the transaction counter) with the offset of this bundle.
-\end_layout
-
-\begin_layout Enumerate
-sync.
-\end_layout
-
-\begin_layout Enumerate
-Write the new data to the file.
-\end_layout
-
-\begin_layout Standard
-Checking for recovery means identifying the latest bundle with a valid checksum
- and using the new data checksum to ensure that it has been applied.
- This is more expensive than the current check, but need only be done at
- open.
- For running databases, a separate header field can be used to indicate
- a transaction in progress; we need only check for recovery if this is set.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Deferred.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "sub:TDB-Does-Not"
-
-\end_inset
-
-TDB Does Not Have Snapshot Support
-\end_layout
-
-\begin_layout Subsubsection
-Proposed SolutionNone.
- At some point you say
-\begin_inset Quotes eld
-\end_inset
-
-use a real database
-\begin_inset Quotes erd
-\end_inset
-
- (but see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "replay-attribute"
-
-\end_inset
-
-).
-\end_layout
-
-\begin_layout Standard
-But as a thought experiment, if we implemented transactions to only overwrite
- free entries (this is tricky: there must not be a header in each entry
- which indicates whether it is free, but use of presence in metadata elsewhere),
- and a pointer to the hash table, we could create an entirely new commit
- without destroying existing data.
- Then it would be easy to implement snapshots in a similar way.
-\end_layout
-
-\begin_layout Standard
-This would not allow arbitrary changes to the database, such as tdb_repack
- does, and would require more space (since we have to preserve the current
- and future entries at once).
- If we used hash trees rather than one big hash table, we might only have
- to rewrite some sections of the hash, too.
-\end_layout
-
-\begin_layout Standard
-We could then implement snapshots using a similar method, using multiple
- different hash tables/free tables.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Deferred.
-\end_layout
-
-\begin_layout Subsection
-Transactions Cannot Operate in Parallel
-\end_layout
-
-\begin_layout Standard
-This would be useless for ldb, as it hits the index records with just about
- every update.
- It would add significant complexity in resolving clashes, and cause the
- all transaction callers to write their code to loop in the case where the
- transactions spuriously failed.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-None (but see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "replay-attribute"
-
-\end_inset
-
-).
- We could solve a small part of the problem by providing read-only transactions.
- These would allow one write transaction to begin, but it could not commit
- until all r/o transactions are done.
- This would require a new RO_TRANSACTION_LOCK, which would be upgraded on
- commit.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Deferred.
-\end_layout
-
-\begin_layout Subsection
-Default Hash Function Is Suboptimal
-\end_layout
-
-\begin_layout Standard
-The Knuth-inspired multiplicative hash used by tdb is fairly slow (especially
- if we expand it to 64 bits), and works best when the hash bucket size is
- a prime number (which also means a slow modulus).
- In addition, it is highly predictable which could potentially lead to a
- Denial of Service attack in some TDB uses.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-The Jenkins lookup3 hash
-\begin_inset Foot
-status open
-
-\begin_layout Plain Layout
-http://burtleburtle.net/bob/c/lookup3.c
-\end_layout
-
-\end_inset
-
- is a fast and superbly-mixing hash.
- It's used by the Linux kernel and almost everything else.
- This has the particular properties that it takes an initial seed, and produces
- two 32 bit hash numbers, which we can combine into a 64-bit hash.
-\end_layout
-
-\begin_layout Standard
-The seed should be created at tdb-creation time from some random source,
- and placed in the header.
- This is far from foolproof, but adds a little bit of protection against
- hash bombing.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-\begin_inset CommandInset label
-LatexCommand label
-name "Reliable-Traversal-Adds"
-
-\end_inset
-
-Reliable Traversal Adds Complexity
-\end_layout
-
-\begin_layout Standard
-We lock a record during traversal iteration, and try to grab that lock in
- the delete code.
- If that grab on delete fails, we simply mark it deleted and continue onwards;
- traversal checks for this condition and does the delete when it moves off
- the record.
-\end_layout
-
-\begin_layout Standard
-If traversal terminates, the dead record may be left indefinitely.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-Remove reliability guarantees; see
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "traverse-Proposed-Solution"
-
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Complete.
-\end_layout
-
-\begin_layout Subsection
-Fcntl Locking Adds Overhead
-\end_layout
-
-\begin_layout Standard
-Placing a fcntl lock means a system call, as does removing one.
- This is actually one reason why transactions can be faster (everything
- is locked once at transaction start).
- In the uncontended case, this overhead can theoretically be eliminated.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-None.
-\end_layout
-
-\begin_layout Standard
-We tried this before with spinlock support, in the early days of TDB, and
- it didn't make much difference except in manufactured benchmarks.
-\end_layout
-
-\begin_layout Standard
-We could use spinlocks (with futex kernel support under Linux), but it means
- that we lose automatic cleanup when a process dies with a lock.
- There is a method of auto-cleanup under Linux, but it's not supported by
- other operating systems.
- We could reintroduce a clear-if-first-style lock and sweep for dead futexes
- on open, but that wouldn't help the normal case of one concurrent opener
- dying.
- Increasingly elaborate repair schemes could be considered, but they require
- an ABI change (everyone must use them) anyway, so there's no need to do
- this at the same time as everything else.
-\end_layout
-
-\begin_layout Subsection
-Some Transactions Don't Require Durability
-\end_layout
-
-\begin_layout Standard
-Volker points out that gencache uses a CLEAR_IF_FIRST tdb for normal (fast)
- usage, and occasionally empties the results into a transactional TDB.
- This kind of usage prioritizes performance over durability: as long as
- we are consistent, data can be lost.
-\end_layout
-
-\begin_layout Standard
-This would be more neatly implemented inside tdb: a
-\begin_inset Quotes eld
-\end_inset
-
-soft
-\begin_inset Quotes erd
-\end_inset
-
- transaction commit (ie.
- syncless) which meant that data may be reverted on a crash.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\end_layout
-
-\begin_layout Standard
-None.
-\end_layout
-
-\begin_layout Standard
-Unfortunately any transaction scheme which overwrites old data requires
- a sync before that overwrite to avoid the possibility of corruption.
-\end_layout
-
-\begin_layout Standard
-It seems possible to use a scheme similar to that described in
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "sub:TDB-Does-Not"
-
-\end_inset
-
-,where transactions are committed without overwriting existing data, and
- an array of top-level pointers were available in the header.
- If the transaction is
-\begin_inset Quotes eld
-\end_inset
-
-soft
-\begin_inset Quotes erd
-\end_inset
-
- then we would not need a sync at all: existing processes would pick up
- the new hash table and free list and work with that.
-\end_layout
-
-\begin_layout Standard
-At some later point, a sync would allow recovery of the old data into the
- free lists (perhaps when the array of top-level pointers filled).
- On crash, tdb_open() would examine the array of top levels, and apply the
- transactions until it encountered an invalid checksum.
-\end_layout
-
-\begin_layout Subsection
-Tracing Is Fragile, Replay Is External
-\end_layout
-
-\begin_layout Standard
-The current TDB has compile-time-enabled tracing code, but it often breaks
- as it is not enabled by default.
- In a similar way, the ctdb code has an external wrapper which does replay
- tracing so it can coordinate cluster-wide transactions.
-\end_layout
-
-\begin_layout Subsubsection
-Proposed Solution
-\begin_inset CommandInset label
-LatexCommand label
-name "replay-attribute"
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Tridge points out that an attribute can be later added to tdb_open (see
-
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "attributes"
-
-\end_inset
-
-) to provide replay/trace hooks, which could become the basis for this and
- future parallel transactions and snapshot support.
-\end_layout
-
-\begin_layout Subsubsection
-Status
-\end_layout
-
-\begin_layout Standard
-Deferred.
-\end_layout
-
-\end_body
-\end_document