diff options
author | Jeremy Allison <jra@samba.org> | 2005-12-06 23:09:01 +0000 |
---|---|---|
committer | Gerald (Jerry) Carter <jerry@samba.org> | 2007-10-10 11:05:45 -0500 |
commit | ba10b979564b782bc0a9729ed6a9e6bcaa1687a8 (patch) | |
tree | d11e4586c7612632616b243f7323b3f622a833a6 /source3/ubiqx/ubi_BinTree.h | |
parent | 83b987befdbba857131102700d237728784b6f69 (diff) | |
download | samba-ba10b979564b782bc0a9729ed6a9e6bcaa1687a8.tar.gz samba-ba10b979564b782bc0a9729ed6a9e6bcaa1687a8.tar.bz2 samba-ba10b979564b782bc0a9729ed6a9e6bcaa1687a8.zip |
r12110: We're using a tdb-based wins backend now. Thanks to the
ubiqx code, which has served us well for many a year..
"Well done, thou good and faithful servant".
Jeremy.
(This used to be commit 32380002e44766669b28621e62a0b74652b1798f)
Diffstat (limited to 'source3/ubiqx/ubi_BinTree.h')
-rw-r--r-- | source3/ubiqx/ubi_BinTree.h | 887 |
1 files changed, 0 insertions, 887 deletions
diff --git a/source3/ubiqx/ubi_BinTree.h b/source3/ubiqx/ubi_BinTree.h deleted file mode 100644 index 43ca1a9871..0000000000 --- a/source3/ubiqx/ubi_BinTree.h +++ /dev/null @@ -1,887 +0,0 @@ -#ifndef UBI_BINTREE_H -#define UBI_BINTREE_H -/* ========================================================================== ** - * ubi_BinTree.h - * - * Copyright (C) 1991-1998 by Christopher R. Hertel - * - * Email: crh@ubiqx.mn.org - * -------------------------------------------------------------------------- ** - * - * This module implements a simple binary tree. - * - * -------------------------------------------------------------------------- ** - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the Free - * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - * - * -------------------------------------------------------------------------- ** - * - * Log: ubi_BinTree.h,v - * Revision 4.12 2004/06/06 04:51:56 crh - * Fixed a small typo in ubi_BinTree.c (leftover testing cruft). - * Did a small amount of formatting touchup to ubi_BinTree.h. - * - * Revision 4.11 2004/06/06 03:14:09 crh - * Rewrote the ubi_btLeafNode() function. It now takes several paths in an - * effort to find a deeper leaf node. There is a small amount of extra - * overhead, but it is limited. - * - * Revision 4.10 2000/06/06 20:38:40 crh - * In the ReplaceNode() function, the old node header was being copied - * to the new node header using a byte-by-byte copy. This was causing - * the 'insure' software testing program to report a memory leak. The - * fix was to do a simple assignement: *newnode = *oldnode; - * This quieted the (errant) memory leak reports and is probably a bit - * faster than the bytewise copy. - * - * Revision 4.9 2000/01/08 23:24:30 crh - * Clarified a variety of if( pointer ) lines, replacing them with - * if( NULL != pointer ). This is more correct, and I have heard - * of at least one (obscure?) system out there that uses a non-zero - * value for NULL. - * Also, speed improvement in Neighbor(). It was comparing pointers - * when it could have compared two gender values. The pointer - * comparison was somewhat indirect (does pointer equal the pointer - * of the parent of the node pointed to by pointer). Urq. - * - * Revision 4.8 1999/09/22 03:40:30 crh - * Modified ubi_btTraverse() and ubi_btKillTree(). They now return an - * unsigned long indicating the number of nodes processed. The change - * is subtle. An empty tree formerly returned False, and now returns - * zero. - * - * Revision 4.7 1998/10/21 06:15:07 crh - * Fixed bugs in FirstOf() and LastOf() reported by Massimo Campostrini. - * See function comments. - * - * Revision 4.6 1998/07/25 17:02:10 crh - * Added the ubi_trNewTree() macro. - * - * Revision 4.5 1998/06/04 21:29:27 crh - * Upper-cased defined constants (eg UBI_BINTREE_H) in some header files. - * This is more "standard", and is what people expect. Weird, eh? - * - * Revision 4.4 1998/06/03 17:42:46 crh - * Further fiddling with sys_include.h. It's now in ubi_BinTree.h which is - * included by all of the binary tree files. - * - * Reminder: Some of the ubi_tr* macros in ubi_BinTree.h are redefined in - * ubi_AVLtree.h and ubi_SplayTree.h. This allows easy swapping - * of tree types by simply changing a header. Unfortunately, the - * macro redefinitions in ubi_AVLtree.h and ubi_SplayTree.h will - * conflict if used together. You must either choose a single tree - * type, or use the underlying function calls directly. Compare - * the two header files for more information. - * - * Revision 4.3 1998/06/02 01:28:43 crh - * Changed ubi_null.h to sys_include.h to make it more generic. - * - * Revision 4.2 1998/05/20 04:32:36 crh - * The C file now includes ubi_null.h. See ubi_null.h for more info. - * Also, the balance and gender fields of the node were declared as - * signed char. As I understand it, at least one SunOS or Solaris - * compiler doesn't like "signed char". The declarations were - * wrong anyway, so I changed them to simple "char". - * - * Revision 4.1 1998/03/31 06:13:47 crh - * Thomas Aglassinger sent E'mail pointing out errors in the - * dereferencing of function pointers, and a missing typecast. - * Thanks, Thomas! - * - * Revision 4.0 1998/03/10 03:16:04 crh - * Added the AVL field 'balance' to the ubi_btNode structure. This means - * that all BinTree modules now use the same basic node structure, which - * greatly simplifies the AVL module. - * Decided that this was a big enough change to justify a new major revision - * number. 3.0 was an error, so we're at 4.0. - * - * Revision 2.6 1998/01/24 06:27:30 crh - * Added ubi_trCount() macro. - * - * Revision 2.5 1997/12/23 03:59:21 crh - * In this version, all constants & macros defined in the header file have - * the ubi_tr prefix. Also cleaned up anything that gcc complained about - * when run with '-pedantic -fsyntax-only -Wall'. - * - * Revision 2.4 1997/07/26 04:11:14 crh - * + Just to be annoying I changed ubi_TRUE and ubi_FALSE to ubi_trTRUE - * and ubi_trFALSE. - * + There is now a type ubi_trBool to go with ubi_trTRUE and ubi_trFALSE. - * + There used to be something called "ubi_TypeDefs.h". I got rid of it. - * + Added function ubi_btLeafNode(). - * - * Revision 2.3 1997/06/03 05:15:27 crh - * Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid conflicts. - * Also changed the interface to function InitTree(). See the comments - * for this function for more information. - * - * Revision 2.2 1995/10/03 22:00:40 CRH - * Ubisized! - * - * Revision 2.1 95/03/09 23:43:46 CRH - * Added the ModuleID static string and function. These modules are now - * self-identifying. - * - * Revision 2.0 95/02/27 22:00:33 CRH - * Revision 2.0 of this program includes the following changes: - * - * 1) A fix to a major typo in the RepaceNode() function. - * 2) The addition of the static function Border(). - * 3) The addition of the public functions FirstOf() and LastOf(), which - * use Border(). These functions are used with trees that allow - * duplicate keys. - * 4) A complete rewrite of the Locate() function. Locate() now accepts - * a "comparison" operator. - * 5) Overall enhancements to both code and comments. - * - * I decided to give this a new major rev number because the interface has - * changed. In particular, there are two new functions, and changes to the - * Locate() function. - * - * Revision 1.0 93/10/15 22:55:04 CRH - * With this revision, I have added a set of #define's that provide a single, - * standard API to all existing tree modules. Until now, each of the three - * existing modules had a different function and typedef prefix, as follows: - * - * Module Prefix - * ubi_BinTree ubi_bt - * ubi_AVLtree ubi_avl - * ubi_SplayTree ubi_spt - * - * To further complicate matters, only those portions of the base module - * (ubi_BinTree) that were superceeded in the new module had the new names. - * For example, if you were using ubi_SplayTree, the locate function was - * called "ubi_sptLocate", but the next and previous functions remained - * "ubi_btNext" and "ubi_btPrev". - * - * This was not too terrible if you were familiar with the modules and knew - * exactly which tree model you wanted to use. If you wanted to be able to - * change modules (for speed comparisons, etc), things could get messy very - * quickly. - * - * So, I have added a set of defined names that get redefined in any of the - * descendant modules. To use this standardized interface in your code, - * simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with - * "ubi_tr". The "ubi_tr" names will resolve to the correct function or - * datatype names for the module that you are using. Just remember to - * include the header for that module in your program file. Because these - * names are handled by the preprocessor, there is no added run-time - * overhead. - * - * Note that the original names do still exist, and can be used if you wish - * to write code directly to a specific module. This should probably only be - * done if you are planning to implement a new descendant type, such as - * red/black trees. CRH - * - * V0.0 - June, 1991 - Written by Christopher R. Hertel (CRH). - * - * ========================================================================== ** - */ - -#include "sys_include.h" /* Global include file, used to adapt the ubiqx - * modules to the host environment and the project - * with which the modules will be used. See - * sys_include.h for more info. - */ - -/* -------------------------------------------------------------------------- ** - * Macros and constants. - * - * General purpose: - * ubi_trTRUE - Boolean TRUE. - * ubi_trFALSE - Boolean FALSE. - * - * Flags used in the tree header: - * ubi_trOVERWRITE - This flag indicates that an existing node may be - * overwritten by a new node with a matching key. - * ubi_trDUPKEY - This flag indicates that the tree allows duplicate - * keys. If the tree does allow duplicates, the - * overwrite flag is ignored. - * - * Node link array index constants: (Each node has an array of three - * pointers. One to the left, one to the right, and one back to the - * parent.) - * ubi_trLEFT - Left child pointer. - * ubi_trPARENT - Parent pointer. - * ubi_trRIGHT - Right child pointer. - * ubi_trEQUAL - Synonym for PARENT. - * - * ubi_trCompOps: These values are used in the ubi_trLocate() function. - * ubi_trLT - request the first instance of the greatest key less than - * the search key. - * ubi_trLE - request the first instance of the greatest key that is less - * than or equal to the search key. - * ubi_trEQ - request the first instance of key that is equal to the - * search key. - * ubi_trGE - request the first instance of a key that is greater than - * or equal to the search key. - * ubi_trGT - request the first instance of the first key that is greater - * than the search key. - * -------------------------------------------------------------------------- ** - */ - -#define ubi_trTRUE 0xFF -#define ubi_trFALSE 0x00 - -#define ubi_trOVERWRITE 0x01 /* Turn on allow overwrite */ -#define ubi_trDUPKEY 0x02 /* Turn on allow duplicate keys */ - -/* Pointer array index constants... */ -#define ubi_trLEFT 0x00 -#define ubi_trPARENT 0x01 -#define ubi_trRIGHT 0x02 -#define ubi_trEQUAL ubi_trPARENT - -typedef enum { - ubi_trLT = 1, - ubi_trLE, - ubi_trEQ, - ubi_trGE, - ubi_trGT - } ubi_trCompOps; - -/* -------------------------------------------------------------------------- ** - * These three macros allow simple manipulation of pointer index values (LEFT, - * RIGHT, and PARENT). - * - * Normalize() - converts {LEFT, PARENT, RIGHT} into {-1, 0 ,1}. C - * uses {negative, zero, positive} values to indicate - * {less than, equal to, greater than}. - * AbNormal() - converts {negative, zero, positive} to {LEFT, PARENT, - * RIGHT} (opposite of Normalize()). Note: C comparison - * functions, such as strcmp(), return {negative, zero, - * positive} values, which are not necessarily {-1, 0, - * 1}. This macro uses the the ubi_btSgn() function to - * compensate. - * RevWay() - converts LEFT to RIGHT and RIGHT to LEFT. PARENT (EQUAL) - * is left as is. - * -------------------------------------------------------------------------- ** - */ - -#define ubi_trNormalize(W) ((char)( (W) - ubi_trEQUAL )) -#define ubi_trAbNormal(W) ((char)( ((char)ubi_btSgn( (long)(W) )) \ - + ubi_trEQUAL )) -#define ubi_trRevWay(W) ((char)( ubi_trEQUAL - ((W) - ubi_trEQUAL) )) - -/* -------------------------------------------------------------------------- ** - * These macros allow us to quickly read the values of the OVERWRITE and - * DUPlicate KEY bits of the tree root flags field. - * -------------------------------------------------------------------------- ** - */ - -#define ubi_trDups_OK(A) \ - ((ubi_trDUPKEY & ((A)->flags))?(ubi_trTRUE):(ubi_trFALSE)) -#define ubi_trOvwt_OK(A) \ - ((ubi_trOVERWRITE & ((A)->flags))?(ubi_trTRUE):(ubi_trFALSE)) - -/* -------------------------------------------------------------------------- ** - * Additional Macros... - * - * ubi_trCount() - Given a pointer to a tree root, this macro returns the - * number of nodes currently in the tree. - * - * ubi_trNewTree() - This macro makes it easy to declare and initialize a - * tree header in one step. The line - * - * static ubi_trNewTree( MyTree, cmpfn, ubi_trDUPKEY ); - * - * is equivalent to - * - * static ubi_trRoot MyTree[1] - * = {{ NULL, cmpfn, 0, ubi_trDUPKEY }}; - * - * -------------------------------------------------------------------------- ** - */ - -#define ubi_trCount( R ) (((ubi_trRootPtr)(R))->count) - -#define ubi_trNewTree( N, C, F ) ubi_trRoot (N)[1] = {{ NULL, (C), 0, (F) }} - -/* -------------------------------------------------------------------------- ** - * Typedefs... - * - * ubi_trBool - Your typcial true or false... - * - * Item Pointer: The ubi_btItemPtr is a generic pointer. It is used to - * indicate a key that is being searched for within the tree. - * Searching occurs whenever the ubi_trFind(), ubi_trLocate(), - * or ubi_trInsert() functions are called. - * -------------------------------------------------------------------------- ** - */ - -typedef unsigned char ubi_trBool; - -typedef void *ubi_btItemPtr; /* A pointer to key data within a node. */ - -/* ------------------------------------------------------------------------- ** - * Binary Tree Node Structure: This structure defines the basic elements of - * the tree nodes. In general you *SHOULD NOT PLAY WITH THESE FIELDS*! - * But, of course, I have to put the structure into this header so that - * you can use it as a building block. - * - * The fields are as follows: - * Link - an array of pointers. These pointers are manipulated by - * the BT routines. The pointers indicate the left and right - * child nodes and the parent node. By keeping track of the - * parent pointer, we avoid the need for recursive routines or - * hand-tooled stacks to keep track of our path back to the - * root. The use of these pointers is subject to change without - * notice. - * gender - a one-byte field indicating whether the node is the RIGHT or - * LEFT child of its parent. If the node is the root of the - * tree, gender will be PARENT. - * balance - only used by the AVL tree module. This field indicates - * the height balance at a given node. See ubi_AVLtree for - * details. - * - * ------------------------------------------------------------------------- ** - */ - -typedef struct ubi_btNodeStruct { - struct ubi_btNodeStruct *Link[ 3 ]; - char gender; - char balance; - } ubi_btNode; - -typedef ubi_btNode *ubi_btNodePtr; /* Pointer to an ubi_btNode structure. */ - -/* ------------------------------------------------------------------------- ** - * The next three typedefs define standard function types used by the binary - * tree management routines. In particular: - * - * ubi_btCompFunc is a pointer to a comparison function. Comparison - * functions are passed an ubi_btItemPtr and an - * ubi_btNodePtr. They return a value that is (<0), 0, - * or (>0) to indicate that the Item is (respectively) - * "less than", "equal to", or "greater than" the Item - * contained within the node. (See ubi_btInitTree()). - * ubi_btActionRtn is a pointer to a function that may be called for each - * node visited when performing a tree traversal (see - * ubi_btTraverse()). The function will be passed two - * parameters: the first is a pointer to a node in the - * tree, the second is a generic pointer that may point to - * anything that you like. - * ubi_btKillNodeRtn is a pointer to a function that will deallocate the - * memory used by a node (see ubi_btKillTree()). Since - * memory management is left up to you, deallocation may - * mean anything that you want it to mean. Just remember - * that the tree *will* be destroyed and that none of the - * node pointers will be valid any more. - * ------------------------------------------------------------------------- ** - */ - -typedef int (*ubi_btCompFunc)( ubi_btItemPtr, ubi_btNodePtr ); - -typedef void (*ubi_btActionRtn)( ubi_btNodePtr, void * ); - -typedef void (*ubi_btKillNodeRtn)( ubi_btNodePtr ); - -/* -------------------------------------------------------------------------- ** - * Tree Root Structure: This structure gives us a convenient handle for - * accessing whole binary trees. The fields are: - * root - A pointer to the root node of the tree. - * count - A count of the number of nodes stored in the tree. - * cmp - A pointer to the comparison routine to be used when building or - * searching the tree. - * flags - A set of bit flags. Two flags are currently defined: - * - * ubi_trOVERWRITE - If set, this flag indicates that a new node should - * (bit 0x01) overwrite an old node if the two have identical - * keys (ie., the keys are equal). - * ubi_trDUPKEY - If set, this flag indicates that the tree is - * (bit 0x02) allowed to contain nodes with duplicate keys. - * - * NOTE: ubi_trInsert() tests ubi_trDUPKEY before ubi_trOVERWRITE. - * - * All of these values are set when you initialize the root structure by - * calling ubi_trInitTree(). - * -------------------------------------------------------------------------- ** - */ - -typedef struct { - ubi_btNodePtr root; /* A pointer to the root node of the tree */ - ubi_btCompFunc cmp; /* A pointer to the tree's comparison function */ - unsigned long count; /* A count of the number of nodes in the tree */ - char flags; /* Overwrite Y|N, Duplicate keys Y|N... */ - } ubi_btRoot; - -typedef ubi_btRoot *ubi_btRootPtr; /* Pointer to an ubi_btRoot structure. */ - - -/* -------------------------------------------------------------------------- ** - * Function Prototypes. - */ - -long ubi_btSgn( long x ); - /* ------------------------------------------------------------------------ ** - * Return the sign of x; {negative,zero,positive} ==> {-1, 0, 1}. - * - * Input: x - a signed long integer value. - * - * Output: the "sign" of x, represented as follows: - * -1 == negative - * 0 == zero (no sign) - * 1 == positive - * - * Note: This utility is provided in order to facilitate the conversion - * of C comparison function return values into BinTree direction - * values: {LEFT, PARENT, EQUAL}. It is INCORPORATED into the - * AbNormal() conversion macro! - * - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr ); - /* ------------------------------------------------------------------------ ** - * Initialize a tree node. - * - * Input: a pointer to a ubi_btNode structure to be initialized. - * Output: a pointer to the initialized ubi_btNode structure (ie. the - * same as the input pointer). - * ------------------------------------------------------------------------ ** - */ - -ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr RootPtr, - ubi_btCompFunc CompFunc, - char Flags ); - /* ------------------------------------------------------------------------ ** - * Initialize the fields of a Tree Root header structure. - * - * Input: RootPtr - a pointer to an ubi_btRoot structure to be - * initialized. - * CompFunc - a pointer to a comparison function that will be used - * whenever nodes in the tree must be compared against - * outside values. - * Flags - One bytes worth of flags. Flags include - * ubi_trOVERWRITE and ubi_trDUPKEY. See the header - * file for more info. - * - * Output: a pointer to the initialized ubi_btRoot structure (ie. the - * same value as RootPtr). - * - * Note: The interface to this function has changed from that of - * previous versions. The <Flags> parameter replaces two - * boolean parameters that had the same basic effect. - * ------------------------------------------------------------------------ ** - */ - -ubi_trBool ubi_btInsert( ubi_btRootPtr RootPtr, - ubi_btNodePtr NewNode, - ubi_btItemPtr ItemPtr, - ubi_btNodePtr *OldNode ); - /* ------------------------------------------------------------------------ ** - * This function uses a non-recursive algorithm to add a new element to the - * tree. - * - * Input: RootPtr - a pointer to the ubi_btRoot structure that indicates - * the root of the tree to which NewNode is to be added. - * NewNode - a pointer to an ubi_btNode structure that is NOT - * part of any tree. - * ItemPtr - A pointer to the sort key that is stored within - * *NewNode. ItemPtr MUST point to information stored - * in *NewNode or an EXACT DUPLICATE. The key data - * indicated by ItemPtr is used to place the new node - * into the tree. - * OldNode - a pointer to an ubi_btNodePtr. When searching - * the tree, a duplicate node may be found. If - * duplicates are allowed, then the new node will - * be simply placed into the tree. If duplicates - * are not allowed, however, then one of two things - * may happen. - * 1) if overwritting *is not* allowed, this - * function will return FALSE (indicating that - * the new node could not be inserted), and - * *OldNode will point to the duplicate that is - * still in the tree. - * 2) if overwritting *is* allowed, then this - * function will swap **OldNode for *NewNode. - * In this case, *OldNode will point to the node - * that was removed (thus allowing you to free - * the node). - * ** If you are using overwrite mode, ALWAYS ** - * ** check the return value of this parameter! ** - * Note: You may pass NULL in this parameter, the - * function knows how to cope. If you do this, - * however, there will be no way to return a - * pointer to an old (ie. replaced) node (which is - * a problem if you are using overwrite mode). - * - * Output: a boolean value indicating success or failure. The function - * will return FALSE if the node could not be added to the tree. - * Such failure will only occur if duplicates are not allowed, - * nodes cannot be overwritten, AND a duplicate key was found - * within the tree. - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btRemove( ubi_btRootPtr RootPtr, - ubi_btNodePtr DeadNode ); - /* ------------------------------------------------------------------------ ** - * This function removes the indicated node from the tree. - * - * Input: RootPtr - A pointer to the header of the tree that contains - * the node to be removed. - * DeadNode - A pointer to the node that will be removed. - * - * Output: This function returns a pointer to the node that was removed - * from the tree (ie. the same as DeadNode). - * - * Note: The node MUST be in the tree indicated by RootPtr. If not, - * strange and evil things will happen to your trees. - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr, - ubi_btItemPtr FindMe, - ubi_trCompOps CompOp ); - /* ------------------------------------------------------------------------ ** - * The purpose of ubi_btLocate() is to find a node or set of nodes given - * a target value and a "comparison operator". The Locate() function is - * more flexible and (in the case of trees that may contain dupicate keys) - * more precise than the ubi_btFind() function. The latter is faster, - * but it only searches for exact matches and, if the tree contains - * duplicates, Find() may return a pointer to any one of the duplicate- - * keyed records. - * - * Input: - * RootPtr - A pointer to the header of the tree to be searched. - * FindMe - An ubi_btItemPtr that indicates the key for which to - * search. - * CompOp - One of the following: - * CompOp Return a pointer to the node with - * ------ --------------------------------- - * ubi_trLT - the last key value that is less - * than FindMe. - * ubi_trLE - the first key matching FindMe, or - * the last key that is less than - * FindMe. - * ubi_trEQ - the first key matching FindMe. - * ubi_trGE - the first key matching FindMe, or the - * first key greater than FindMe. - * ubi_trGT - the first key greater than FindMe. - * Output: - * A pointer to the node matching the criteria listed above under - * CompOp, or NULL if no node matched the criteria. - * - * Notes: - * In the case of trees with duplicate keys, Locate() will behave as - * follows: - * - * Find: 3 Find: 3 - * Keys: 1 2 2 2 3 3 3 3 3 4 4 Keys: 1 1 2 2 2 4 4 5 5 5 6 - * ^ ^ ^ ^ ^ - * LT EQ GT LE GE - * - * That is, when returning a pointer to a node with a key that is LESS - * THAN the target key (FindMe), Locate() will return a pointer to the - * LAST matching node. - * When returning a pointer to a node with a key that is GREATER - * THAN the target key (FindMe), Locate() will return a pointer to the - * FIRST matching node. - * - * See Also: ubi_btFind(), ubi_btFirstOf(), ubi_btLastOf(). - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btFind( ubi_btRootPtr RootPtr, - ubi_btItemPtr FindMe ); - /* ------------------------------------------------------------------------ ** - * This function performs a non-recursive search of a tree for any node - * matching a specific key. - * - * Input: - * RootPtr - a pointer to the header of the tree to be searched. - * FindMe - a pointer to the key value for which to search. - * - * Output: - * A pointer to a node with a key that matches the key indicated by - * FindMe, or NULL if no such node was found. - * - * Note: In a tree that allows duplicates, the pointer returned *might - * not* point to the (sequentially) first occurance of the - * desired key. In such a tree, it may be more useful to use - * ubi_btLocate(). - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btNext( ubi_btNodePtr P ); - /* ------------------------------------------------------------------------ ** - * Given the node indicated by P, find the (sorted order) Next node in the - * tree. - * Input: P - a pointer to a node that exists in a binary tree. - * Output: A pointer to the "next" node in the tree, or NULL if P pointed - * to the "last" node in the tree or was NULL. - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P ); - /* ------------------------------------------------------------------------ ** - * Given the node indicated by P, find the (sorted order) Previous node in - * the tree. - * Input: P - a pointer to a node that exists in a binary tree. - * Output: A pointer to the "previous" node in the tree, or NULL if P - * pointed to the "first" node in the tree or was NULL. - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P ); - /* ------------------------------------------------------------------------ ** - * Given the node indicated by P, find the (sorted order) First node in the - * subtree of which *P is the root. - * Input: P - a pointer to a node that exists in a binary tree. - * Output: A pointer to the "first" node in a subtree that has *P as its - * root. This function will return NULL only if P is NULL. - * Note: In general, you will be passing in the value of the root field - * of an ubi_btRoot structure. - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btLast( ubi_btNodePtr P ); - /* ------------------------------------------------------------------------ ** - * Given the node indicated by P, find the (sorted order) Last node in the - * subtree of which *P is the root. - * Input: P - a pointer to a node that exists in a binary tree. - * Output: A pointer to the "last" node in a subtree that has *P as its - * root. This function will return NULL only if P is NULL. - * Note: In general, you will be passing in the value of the root field - * of an ubi_btRoot structure. - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr, - ubi_btItemPtr MatchMe, - ubi_btNodePtr p ); - /* ------------------------------------------------------------------------ ** - * Given a tree that a allows duplicate keys, and a pointer to a node in - * the tree, this function will return a pointer to the first (traversal - * order) node with the same key value. - * - * Input: RootPtr - A pointer to the root of the tree. - * MatchMe - A pointer to the key value. This should probably - * point to the key within node *p. - * p - A pointer to a node in the tree. - * Output: A pointer to the first node in the set of nodes with keys - * matching <FindMe>. - * Notes: Node *p MUST be in the set of nodes with keys matching - * <FindMe>. If not, this function will return NULL. - * - * 4.7: Bug found & fixed by Massimo Campostrini, - * Istituto Nazionale di Fisica Nucleare, Sezione di Pisa. - * - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr, - ubi_btItemPtr MatchMe, - ubi_btNodePtr p ); - /* ------------------------------------------------------------------------ ** - * Given a tree that a allows duplicate keys, and a pointer to a node in - * the tree, this function will return a pointer to the last (traversal - * order) node with the same key value. - * - * Input: RootPtr - A pointer to the root of the tree. - * MatchMe - A pointer to the key value. This should probably - * point to the key within node *p. - * p - A pointer to a node in the tree. - * Output: A pointer to the last node in the set of nodes with keys - * matching <FindMe>. - * Notes: Node *p MUST be in the set of nodes with keys matching - * <FindMe>. If not, this function will return NULL. - * - * 4.7: Bug found & fixed by Massimo Campostrini, - * Istituto Nazionale di Fisica Nucleare, Sezione di Pisa. - * - * ------------------------------------------------------------------------ ** - */ - -unsigned long ubi_btTraverse( ubi_btRootPtr RootPtr, - ubi_btActionRtn EachNode, - void *UserData ); - /* ------------------------------------------------------------------------ ** - * Traverse a tree in sorted order (non-recursively). At each node, call - * (*EachNode)(), passing a pointer to the current node, and UserData as the - * second parameter. - * - * Input: RootPtr - a pointer to an ubi_btRoot structure that indicates - * the tree to be traversed. - * EachNode - a pointer to a function to be called at each node - * as the node is visited. - * UserData - a generic pointer that may point to anything that - * you choose. - * - * Output: A count of the number of nodes visited. This will be zero - * if the tree is empty. - * - * ------------------------------------------------------------------------ ** - */ - - -unsigned long ubi_btKillTree( ubi_btRootPtr RootPtr, - ubi_btKillNodeRtn FreeNode ); - /* ------------------------------------------------------------------------ ** - * Delete an entire tree (non-recursively) and reinitialize the ubi_btRoot - * structure. Return a count of the number of nodes deleted. - * - * Input: RootPtr - a pointer to an ubi_btRoot structure that indicates - * the root of the tree to delete. - * FreeNode - a function that will be called for each node in the - * tree to deallocate the memory used by the node. - * - * Output: The number of nodes removed from the tree. - * A value of 0 will be returned if: - * - The tree actually contains 0 entries. - * - the value of <RootPtr> is NULL, in which case the tree is - * assumed to be empty - * - the value of <FreeNode> is NULL, in which case entries - * cannot be removed, so 0 is returned. *Make sure that you - * provide a valid value for <FreeNode>*. - * In all other cases, you should get a positive value equal to - * the value of RootPtr->count upon entry. - * - * ------------------------------------------------------------------------ ** - */ - -ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader ); - /* ------------------------------------------------------------------------ ** - * Returns a pointer to a leaf node. - * - * Input: leader - Pointer to a node at which to start the descent. - * - * Output: A pointer to a leaf node, selected in a somewhat arbitrary - * manner but with an effort to dig deep. - * - * Notes: I wrote this function because I was using splay trees as a - * database cache. The cache had a maximum size on it, and I - * needed a way of choosing a node to sacrifice if the cache - * became full. In a splay tree, less recently accessed nodes - * tend toward the bottom of the tree, meaning that leaf nodes - * are good candidates for removal. (I really can't think of - * any other reason to use this function.) - * + In a simple binary tree, or in an AVL tree, the most recently - * added nodes tend to be nearer the bottom, making this a *bad* - * way to choose which node to remove from the cache. - * + Randomizing the traversal order is probably a good idea. You - * can improve the randomization of leaf node selection by passing - * in pointers to nodes other than the root node each time. A - * pointer to any node in the tree will do. Of course, if you - * pass a pointer to a leaf node you'll get the same thing back. - * + In an unbalanced splay tree, if you simply traverse downward - * until you hit a leaf node it is possible to accidentally - * stumble onto a short path. The result will be a leaf node - * that is actually very high in the tree--possibly a very - * recently accessed node. Not good. This function can follow - * multiple paths in an effort to find a leaf node deeper - * in the tree. Following a single path, of course, is the - * fastest way to find a leaf node. A complete traversal would - * be sure to find the deepest leaf but would be very costly in - * terms of time. This function uses a compromise that has - * worked well in testing. - * - * ------------------------------------------------------------------------ ** - */ - - -int ubi_btModuleID( int size, char *list[] ); - /* ------------------------------------------------------------------------ ** - * Returns a set of strings that identify the module. - * - * Input: size - The number of elements in the array <list>. - * list - An array of pointers of type (char *). This array - * should, initially, be empty. This function will fill - * in the array with pointers to strings. - * Output: The number of elements of <list> that were used. If this value - * is less than <size>, the values of the remaining elements are - * not guaranteed. - * - * Notes: Please keep in mind that the pointers returned indicate strings - * stored in static memory. Don't free() them, don't write over - * them, etc. Just read them. - * ------------------------------------------------------------------------ ** - */ - -/* -------------------------------------------------------------------------- ** - * Masquarade... - * - * This set of defines allows you to write programs that will use any of the - * implemented binary tree modules (currently BinTree, AVLtree, and SplayTree). - * Instead of using ubi_bt..., use ubi_tr..., and select the tree type by - * including the appropriate module header. - */ - -#define ubi_trItemPtr ubi_btItemPtr - -#define ubi_trNode ubi_btNode -#define ubi_trNodePtr ubi_btNodePtr - -#define ubi_trRoot ubi_btRoot -#define ubi_trRootPtr ubi_btRootPtr - -#define ubi_trCompFunc ubi_btCompFunc -#define ubi_trActionRtn ubi_btActionRtn -#define ubi_trKillNodeRtn ubi_btKillNodeRtn - -#define ubi_trSgn( x ) ubi_btSgn( x ) - -#define ubi_trInitNode( Np ) ubi_btInitNode( (ubi_btNodePtr)(Np) ) - -#define ubi_trInitTree( Rp, Cf, Fl ) \ - ubi_btInitTree( (ubi_btRootPtr)(Rp), (ubi_btCompFunc)(Cf), (Fl) ) - -#define ubi_trInsert( Rp, Nn, Ip, On ) \ - ubi_btInsert( (ubi_btRootPtr)(Rp), (ubi_btNodePtr)(Nn), \ - (ubi_btItemPtr)(Ip), (ubi_btNodePtr *)(On) ) - -#define ubi_trRemove( Rp, Dn ) \ - ubi_btRemove( (ubi_btRootPtr)(Rp), (ubi_btNodePtr)(Dn) ) - -#define ubi_trLocate( Rp, Ip, Op ) \ - ubi_btLocate( (ubi_btRootPtr)(Rp), \ - (ubi_btItemPtr)(Ip), \ - (ubi_trCompOps)(Op) ) - -#define ubi_trFind( Rp, Ip ) \ - ubi_btFind( (ubi_btRootPtr)(Rp), (ubi_btItemPtr)(Ip) ) - -#define ubi_trNext( P ) ubi_btNext( (ubi_btNodePtr)(P) ) - -#define ubi_trPrev( P ) ubi_btPrev( (ubi_btNodePtr)(P) ) - -#define ubi_trFirst( P ) ubi_btFirst( (ubi_btNodePtr)(P) ) - -#define ubi_trLast( P ) ubi_btLast( (ubi_btNodePtr)(P) ) - -#define ubi_trFirstOf( Rp, Ip, P ) \ - ubi_btFirstOf( (ubi_btRootPtr)(Rp), \ - (ubi_btItemPtr)(Ip), \ - (ubi_btNodePtr)(P) ) - -#define ubi_trLastOf( Rp, Ip, P ) \ - ubi_btLastOf( (ubi_btRootPtr)(Rp), \ - (ubi_btItemPtr)(Ip), \ - (ubi_btNodePtr)(P) ) - -#define ubi_trTraverse( Rp, En, Ud ) \ - ubi_btTraverse((ubi_btRootPtr)(Rp), (ubi_btActionRtn)(En), (void *)(Ud)) - -#define ubi_trKillTree( Rp, Fn ) \ - ubi_btKillTree( (ubi_btRootPtr)(Rp), (ubi_btKillNodeRtn)(Fn) ) - -#define ubi_trLeafNode( Nd ) \ - ubi_btLeafNode( (ubi_btNodePtr)(Nd) ) - -#define ubi_trModuleID( s, l ) ubi_btModuleID( s, l ) - -/* ========================================================================== */ -#endif /* UBI_BINTREE_H */ |