summaryrefslogtreecommitdiff
path: root/source4/heimdal/lib/hcrypto/imath
diff options
context:
space:
mode:
authorAndrew Bartlett <abartlet@samba.org>2009-09-20 23:18:34 -0700
committerAndrew Bartlett <abartlet@samba.org>2009-11-13 23:19:05 +1100
commit5bc87c14a1f5b45ed86e7ff9663f5f0aa2f70094 (patch)
tree82c3416f2211df07d5fe1e58ee6639f09e465a60 /source4/heimdal/lib/hcrypto/imath
parent12205347163b55e79651921c6858c4d04e1faa51 (diff)
downloadsamba-5bc87c14a1f5b45ed86e7ff9663f5f0aa2f70094.tar.gz
samba-5bc87c14a1f5b45ed86e7ff9663f5f0aa2f70094.tar.bz2
samba-5bc87c14a1f5b45ed86e7ff9663f5f0aa2f70094.zip
s4:heimdal: import lorikeet-heimdal-200909210500 (commit 290db8d23647a27c39b97c189a0b2ef6ec21ca69)
Diffstat (limited to 'source4/heimdal/lib/hcrypto/imath')
-rw-r--r--source4/heimdal/lib/hcrypto/imath/imath.c447
-rw-r--r--source4/heimdal/lib/hcrypto/imath/imath.h12
2 files changed, 230 insertions, 229 deletions
diff --git a/source4/heimdal/lib/hcrypto/imath/imath.c b/source4/heimdal/lib/hcrypto/imath/imath.c
index f8e4154cdc..4e47a76ce2 100644
--- a/source4/heimdal/lib/hcrypto/imath/imath.c
+++ b/source4/heimdal/lib/hcrypto/imath/imath.c
@@ -2,7 +2,7 @@
Name: imath.c
Purpose: Arbitrary precision integer arithmetic routines.
Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
- Info: $Id: imath.c 645 2008-08-03 04:00:30Z sting $
+ Info: $Id: imath.c 826 2009-02-11 16:21:04Z sting $
Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
@@ -40,7 +40,9 @@
#include <assert.h>
#if DEBUG
-#define static
+#define STATIC /* public */
+#else
+#define STATIC static
#endif
/* {{{ Constants */
@@ -58,8 +60,8 @@ const mp_result MP_MINERR = -6;
const mp_sign MP_NEG = 1; /* value is strictly negative */
const mp_sign MP_ZPOS = 0; /* value is non-negative */
-static const char *s_unknown_err = "unknown result code";
-static const char *s_error_msg[] = {
+STATIC const char *s_unknown_err = "unknown result code";
+STATIC const char *s_error_msg[] = {
"error code 0",
"boolean true",
"out of memory",
@@ -72,7 +74,7 @@ static const char *s_error_msg[] = {
/* }}} */
-/* Argument checking macros
+/* Argument checking macros
Use CHECK() where a return value is required; NRCHECK() elsewhere */
#define CHECK(TEST) assert(TEST)
#define NRCHECK(TEST) assert(TEST)
@@ -88,7 +90,7 @@ static const char *s_error_msg[] = {
The use of this table eliminates a dependency upon linkage against
the standard math libraries.
*/
-static const double s_log2[] = {
+STATIC const double s_log2[] = {
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
@@ -172,144 +174,144 @@ do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
#if IMATH_TEST
mp_size default_precision = MP_DEFAULT_PREC;
#else
-static const mp_size default_precision = MP_DEFAULT_PREC;
+STATIC const mp_size default_precision = MP_DEFAULT_PREC;
#endif
/* Minimum number of digits to invoke recursive multiply */
#if IMATH_TEST
mp_size multiply_threshold = MP_MULT_THRESH;
#else
-static const mp_size multiply_threshold = MP_MULT_THRESH;
+STATIC const mp_size multiply_threshold = MP_MULT_THRESH;
#endif
/* }}} */
/* Allocate a buffer of (at least) num digits, or return
NULL if that couldn't be done. */
-static mp_digit *s_alloc(mp_size num);
+STATIC mp_digit *s_alloc(mp_size num);
/* Release a buffer of digits allocated by s_alloc(). */
-static void s_free(void *ptr);
+STATIC void s_free(void *ptr);
/* Insure that z has at least min digits allocated, resizing if
necessary. Returns true if successful, false if out of memory. */
-static int s_pad(mp_int z, mp_size min);
+STATIC int s_pad(mp_int z, mp_size min);
/* Fill in a "fake" mp_int on the stack with a given value */
-static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
+STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
/* Compare two runs of digits of given length, returns <0, 0, >0 */
-static int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
+STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
/* Pack the unsigned digits of v into array t */
-static int s_vpack(mp_small v, mp_digit t[]);
+STATIC int s_vpack(mp_small v, mp_digit t[]);
/* Compare magnitudes of a and b, returns <0, 0, >0 */
-static int s_ucmp(mp_int a, mp_int b);
+STATIC int s_ucmp(mp_int a, mp_int b);
/* Compare magnitudes of a and v, returns <0, 0, >0 */
-static int s_vcmp(mp_int a, mp_small v);
+STATIC int s_vcmp(mp_int a, mp_small v);
/* Unsigned magnitude addition; assumes dc is big enough.
Carry out is returned (no memory allocated). */
-static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned magnitude subtraction. Assumes dc is big enough. */
-static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned recursive multiplication. Assumes dc is big enough. */
-static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned magnitude multiplication. Assumes dc is big enough. */
-static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b);
/* Unsigned recursive squaring. Assumes dc is big enough. */
-static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
+STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
/* Unsigned magnitude squaring. Assumes dc is big enough. */
-static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
+STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
/* Single digit addition. Assumes a is big enough. */
-static void s_dadd(mp_int a, mp_digit b);
+STATIC void s_dadd(mp_int a, mp_digit b);
/* Single digit multiplication. Assumes a is big enough. */
-static void s_dmul(mp_int a, mp_digit b);
+STATIC void s_dmul(mp_int a, mp_digit b);
/* Single digit multiplication on buffers; assumes dc is big enough. */
-static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
+STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
mp_size size_a);
-/* Single digit division. Replaces a with the quotient,
+/* Single digit division. Replaces a with the quotient,
returns the remainder. */
-static mp_digit s_ddiv(mp_int a, mp_digit b);
+STATIC mp_digit s_ddiv(mp_int a, mp_digit b);
/* Quick division by a power of 2, replaces z (no allocation) */
-static void s_qdiv(mp_int z, mp_size p2);
+STATIC void s_qdiv(mp_int z, mp_size p2);
/* Quick remainder by a power of 2, replaces z (no allocation) */
-static void s_qmod(mp_int z, mp_size p2);
+STATIC void s_qmod(mp_int z, mp_size p2);
-/* Quick multiplication by a power of 2, replaces z.
+/* Quick multiplication by a power of 2, replaces z.
Allocates if necessary; returns false in case this fails. */
-static int s_qmul(mp_int z, mp_size p2);
+STATIC int s_qmul(mp_int z, mp_size p2);
/* Quick subtraction from a power of 2, replaces z.
Allocates if necessary; returns false in case this fails. */
-static int s_qsub(mp_int z, mp_size p2);
+STATIC int s_qsub(mp_int z, mp_size p2);
/* Return maximum k such that 2^k divides z. */
-static int s_dp2k(mp_int z);
+STATIC int s_dp2k(mp_int z);
/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
-static int s_isp2(mp_int z);
+STATIC int s_isp2(mp_int z);
/* Set z to 2^k. May allocate; returns false in case this fails. */
-static int s_2expt(mp_int z, mp_small k);
+STATIC int s_2expt(mp_int z, mp_small k);
/* Normalize a and b for division, returns normalization constant */
-static int s_norm(mp_int a, mp_int b);
+STATIC int s_norm(mp_int a, mp_int b);
/* Compute constant mu for Barrett reduction, given modulus m, result
replaces z, m is untouched. */
-static mp_result s_brmu(mp_int z, mp_int m);
+STATIC mp_result s_brmu(mp_int z, mp_int m);
/* Reduce a modulo m, using Barrett's algorithm. */
-static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
+STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
/* Modular exponentiation, using Barrett reduction */
-static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
+STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
/* Unsigned magnitude division. Assumes |a| > |b|. Allocates
temporaries; overwrites a with quotient, b with remainder. */
-static mp_result s_udiv(mp_int a, mp_int b);
+STATIC mp_result s_udiv(mp_int a, mp_int b);
/* Compute the number of digits in radix r required to represent the
given value. Does not account for sign flags, terminators, etc. */
-static int s_outlen(mp_int z, mp_size r);
+STATIC int s_outlen(mp_int z, mp_size r);
/* Guess how many digits of precision will be needed to represent a
radix r value of the specified number of digits. Returns a value
guaranteed to be no smaller than the actual number required. */
-static mp_size s_inlen(int len, mp_size r);
+STATIC mp_size s_inlen(int len, mp_size r);
-/* Convert a character to a digit value in radix r, or
+/* Convert a character to a digit value in radix r, or
-1 if out of range */
-static int s_ch2val(char c, int r);
+STATIC int s_ch2val(char c, int r);
/* Convert a digit value to a character */
-static char s_val2ch(int v, int caps);
+STATIC char s_val2ch(int v, int caps);
/* Take 2's complement of a buffer in place */
-static void s_2comp(unsigned char *buf, int len);
+STATIC void s_2comp(unsigned char *buf, int len);
/* Convert a value to binary, ignoring sign. On input, *limpos is the
bound on how many bytes should be written to buf; on output, *limpos
is set to the number of bytes actually written. */
-static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
+STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
#if DEBUG
/* Dump a representation of the mp_int to standard output */
@@ -340,8 +342,8 @@ mp_result mp_int_init(mp_int z)
mp_int mp_int_alloc(void)
{
mp_int out = malloc(sizeof(mpz_t));
-
- if(out != NULL)
+
+ if(out != NULL)
mp_int_init(out);
return out;
@@ -357,11 +359,11 @@ mp_result mp_int_init_size(mp_int z, mp_size prec)
if(prec == 0)
prec = default_precision;
- else if(prec == 1)
+ else if(prec == 1)
return mp_int_init(z);
- else
+ else
prec = (mp_size) ROUND_PREC(prec);
-
+
if((MP_DIGITS(z) = s_alloc(prec)) == NULL)
return MP_MEMORY;
@@ -369,7 +371,7 @@ mp_result mp_int_init_size(mp_int z, mp_size prec)
MP_USED(z) = 1;
MP_ALLOC(z) = prec;
MP_SIGN(z) = MP_ZPOS;
-
+
return MP_OK;
}
@@ -550,17 +552,18 @@ mp_result mp_int_neg(mp_int a, mp_int c)
/* {{{ mp_int_add(a, b, c) */
mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
-{
- mp_size ua, ub, uc, max;
+{
+ mp_size ua, ub, max;
CHECK(a != NULL && b != NULL && c != NULL);
- ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
+ ua = MP_USED(a); ub = MP_USED(b);
max = MAX(ua, ub);
if(MP_SIGN(a) == MP_SIGN(b)) {
/* Same sign -- add magnitudes, preserve sign of addends */
mp_digit carry;
+ mp_size uc;
if(!s_pad(c, max))
return MP_MEMORY;
@@ -579,7 +582,7 @@ mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
MP_USED(c) = uc;
MP_SIGN(c) = MP_SIGN(a);
- }
+ }
else {
/* Different signs -- subtract magnitudes, preserve sign of greater */
mp_int x, y;
@@ -606,7 +609,7 @@ mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
MP_USED(c) = MP_USED(x);
CLAMP(c);
-
+
/* Give result the sign of the larger */
MP_SIGN(c) = MP_SIGN(x);
}
@@ -634,16 +637,17 @@ mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c)
mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
{
- mp_size ua, ub, uc, max;
+ mp_size ua, ub, max;
CHECK(a != NULL && b != NULL && c != NULL);
- ua = MP_USED(a); ub = MP_USED(b); uc = MP_USED(c);
+ ua = MP_USED(a); ub = MP_USED(b);
max = MAX(ua, ub);
if(MP_SIGN(a) != MP_SIGN(b)) {
/* Different signs -- add magnitudes and keep sign of a */
mp_digit carry;
+ mp_size uc;
if(!s_pad(c, max))
return MP_MEMORY;
@@ -662,7 +666,7 @@ mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
MP_USED(c) = uc;
MP_SIGN(c) = MP_SIGN(a);
- }
+ }
else {
/* Same signs -- subtract magnitudes */
mp_int x, y;
@@ -674,7 +678,7 @@ mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
if(cmp >= 0) {
x = a; y = b; osign = MP_ZPOS;
- }
+ }
else {
x = b; y = a; osign = MP_NEG;
}
@@ -711,7 +715,7 @@ mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c)
/* {{{ mp_int_mul(a, b, c) */
mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
-{
+{
mp_digit *out;
mp_size osize, ua, ub, p = 0;
mp_sign osign;
@@ -723,7 +727,7 @@ mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
mp_int_zero(c);
return MP_OK;
}
-
+
/* Output is positive if inputs have same sign, otherwise negative */
osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
@@ -739,11 +743,11 @@ mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
if((out = s_alloc(p)) == NULL)
return MP_MEMORY;
- }
+ }
else {
if(!s_pad(c, osize))
return MP_MEMORY;
-
+
out = MP_DIGITS(c);
}
ZERO(out, osize);
@@ -764,7 +768,7 @@ mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
MP_SIGN(c) = osign;
-
+
return MP_OK;
}
@@ -805,7 +809,7 @@ mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
/* {{{ mp_int_sqr(a, c) */
mp_result mp_int_sqr(mp_int a, mp_int c)
-{
+{
mp_digit *out;
mp_size osize, p = 0;
@@ -819,9 +823,9 @@ mp_result mp_int_sqr(mp_int a, mp_int c)
if((out = s_alloc(p)) == NULL)
return MP_MEMORY;
- }
+ }
else {
- if(!s_pad(c, osize))
+ if(!s_pad(c, osize))
return MP_MEMORY;
out = MP_DIGITS(c);
@@ -843,7 +847,7 @@ mp_result mp_int_sqr(mp_int a, mp_int c)
MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
MP_SIGN(c) = MP_ZPOS;
-
+
return MP_OK;
}
@@ -860,7 +864,7 @@ mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
mp_sign sa = MP_SIGN(a), sb = MP_SIGN(b);
CHECK(a != NULL && b != NULL && q != r);
-
+
if(CMPZ(b) == 0)
return MP_UNDEF;
else if((cmp = s_ucmp(a, b)) < 0) {
@@ -874,7 +878,7 @@ mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
mp_int_zero(q);
return MP_OK;
- }
+ }
else if(cmp == 0) {
/* If |a| = |b|, no division is required:
q = 1 or -1, r = 0
@@ -891,19 +895,19 @@ mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
}
return MP_OK;
- }
+ }
/* When |a| > |b|, real division is required. We need someplace to
store quotient and remainder, but q and r are allowed to be NULL
or to overlap with the inputs.
*/
if((lg = s_isp2(b)) < 0) {
- if(q && b != q) {
+ if(q && b != q) {
if((res = mp_int_copy(a, q)) != MP_OK)
goto CLEANUP;
else
qout = q;
- }
+ }
else {
qout = TEMP(last);
SETUP(mp_int_init_copy(TEMP(last), a), last);
@@ -914,14 +918,14 @@ mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
goto CLEANUP;
else
rout = r;
- }
+ }
else {
rout = TEMP(last);
SETUP(mp_int_init_copy(TEMP(last), b), last);
}
if((res = s_udiv(qout, rout)) != MP_OK) goto CLEANUP;
- }
+ }
else {
if(q && (res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP;
if(r && (res = mp_int_copy(a, r)) != MP_OK) goto CLEANUP;
@@ -931,7 +935,7 @@ mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
}
/* Recompute signs for output */
- if(rout) {
+ if(rout) {
MP_SIGN(rout) = sa;
if(CMPZ(rout) == 0)
MP_SIGN(rout) = MP_ZPOS;
@@ -965,7 +969,7 @@ mp_result mp_int_mod(mp_int a, mp_int m, mp_int c)
if(m == c) {
mp_int_init(&tmp);
out = &tmp;
- }
+ }
else {
out = c;
}
@@ -1021,7 +1025,7 @@ mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
if(q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
s_qdiv(q, (mp_size) p2);
-
+
if(res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
s_qmod(r, (mp_size) p2);
@@ -1037,7 +1041,7 @@ mp_result mp_int_expt(mp_int a, mp_small b, mp_int c)
mpz_t t;
mp_result res;
unsigned int v = abs(b);
-
+
CHECK(b >= 0 && c != NULL);
if((res = mp_int_init_copy(&t, a)) != MP_OK)
@@ -1056,7 +1060,7 @@ mp_result mp_int_expt(mp_int a, mp_small b, mp_int c)
if((res = mp_int_sqr(&t, &t)) != MP_OK)
goto CLEANUP;
}
-
+
CLEANUP:
mp_int_clear(&t);
return res;
@@ -1071,7 +1075,7 @@ mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
mpz_t t;
mp_result res;
unsigned int v = abs(b);
-
+
CHECK(b >= 0 && c != NULL);
if((res = mp_int_init_value(&t, a)) != MP_OK)
@@ -1090,7 +1094,7 @@ mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
if((res = mp_int_sqr(&t, &t)) != MP_OK)
goto CLEANUP;
}
-
+
CLEANUP:
mp_int_clear(&t);
return res;
@@ -1101,7 +1105,7 @@ mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
/* {{{ mp_int_compare(a, b) */
int mp_int_compare(mp_int a, mp_int b)
-{
+{
mp_sign sa;
CHECK(a != NULL && b != NULL);
@@ -1112,12 +1116,12 @@ int mp_int_compare(mp_int a, mp_int b)
/* If they're both zero or positive, the normal comparison
applies; if both negative, the sense is reversed. */
- if(sa == MP_ZPOS)
+ if(sa == MP_ZPOS)
return cmp;
else
return -cmp;
- }
+ }
else {
if(sa == MP_ZPOS)
return 1;
@@ -1131,7 +1135,7 @@ int mp_int_compare(mp_int a, mp_int b)
/* {{{ mp_int_compare_unsigned(a, b) */
int mp_int_compare_unsigned(mp_int a, mp_int b)
-{
+{
NRCHECK(a != NULL && b != NULL);
return s_ucmp(a, b);
@@ -1142,14 +1146,14 @@ int mp_int_compare_unsigned(mp_int a, mp_int b)
/* {{{ mp_int_compare_zero(z) */
int mp_int_compare_zero(mp_int z)
-{
+{
NRCHECK(z != NULL);
if(MP_USED(z) == 1 && z->digits[0] == 0)
return 0;
else if(MP_SIGN(z) == MP_ZPOS)
return 1;
- else
+ else
return -1;
}
@@ -1171,7 +1175,7 @@ int mp_int_compare_value(mp_int z, mp_small value)
return cmp;
else
return -cmp;
- }
+ }
else {
if(value < 0)
return 1;
@@ -1185,7 +1189,7 @@ int mp_int_compare_value(mp_int z, mp_small value)
/* {{{ mp_int_exptmod(a, b, m, c) */
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
-{
+{
mp_result res;
mp_size um;
mpz_t temp[3];
@@ -1207,11 +1211,11 @@ mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
if(c == b || c == m) {
SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
s = TEMP(2);
- }
+ }
else {
s = c;
}
-
+
if((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
if((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP;
@@ -1283,11 +1287,11 @@ mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c
if(c == b || c == m) {
SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
s = TEMP(1);
- }
+ }
else {
s = c;
}
-
+
if((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
if((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
@@ -1334,7 +1338,7 @@ mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
for(last = 0; last < 2; ++last)
mp_int_init(TEMP(last));
- if((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
+ if((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
goto CLEANUP;
if(mp_int_compare_value(TEMP(0), 1) != 0) {
@@ -1369,7 +1373,7 @@ mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
/* Binary GCD algorithm due to Josef Stein, 1961 */
mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
-{
+{
int ca, cb, k = 0;
mpz_t u, v, t;
mp_result res;
@@ -1380,9 +1384,9 @@ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
cb = CMPZ(b);
if(ca == 0 && cb == 0)
return MP_UNDEF;
- else if(ca == 0)
+ else if(ca == 0)
return mp_int_abs(b, c);
- else if(cb == 0)
+ else if(cb == 0)
return mp_int_abs(a, c);
mp_int_init(&t);
@@ -1395,16 +1399,16 @@ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v);
-
+
k = MIN(div2_u, div2_v);
s_qdiv(&u, (mp_size) k);
s_qdiv(&v, (mp_size) k);
}
-
+
if(mp_int_is_odd(&u)) {
if((res = mp_int_neg(&v, &t)) != MP_OK)
goto CLEANUP;
- }
+ }
else {
if((res = mp_int_copy(&u, &t)) != MP_OK)
goto CLEANUP;
@@ -1416,7 +1420,7 @@ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
if(CMPZ(&t) > 0) {
if((res = mp_int_copy(&t, &u)) != MP_OK)
goto CLEANUP;
- }
+ }
else {
if((res = mp_int_neg(&t, &v)) != MP_OK)
goto CLEANUP;
@@ -1427,13 +1431,13 @@ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
if(CMPZ(&t) == 0)
break;
- }
+ }
if((res = mp_int_abs(&u, c)) != MP_OK)
goto CLEANUP;
if(!s_qmul(c, (mp_size) k))
res = MP_MEMORY;
-
+
CLEANUP:
mp_int_clear(&v);
V: mp_int_clear(&u);
@@ -1450,14 +1454,14 @@ mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
of the elementary matrix operations as we go, so we can get values
x and y satisfying c = ax + by.
*/
-mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
+mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
mp_int x, mp_int y)
-{
+{
int k, last = 0, ca, cb;
mpz_t temp[8];
mp_result res;
-
- CHECK(a != NULL && b != NULL && c != NULL &&
+
+ CHECK(a != NULL && b != NULL && c != NULL &&
(x != NULL || y != NULL));
ca = CMPZ(a);
@@ -1467,7 +1471,7 @@ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
else if(ca == 0) {
if((res = mp_int_abs(b, c)) != MP_OK) return res;
mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK;
- }
+ }
else if(cb == 0) {
if((res = mp_int_abs(a, c)) != MP_OK) return res;
(void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK;
@@ -1475,7 +1479,7 @@ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
/* Initialize temporaries:
A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
- for(last = 0; last < 4; ++last)
+ for(last = 0; last < 4; ++last)
mp_int_init(TEMP(last));
TEMP(0)->digits[0] = 1;
TEMP(3)->digits[0] = 1;
@@ -1489,7 +1493,7 @@ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
-
+
k = MIN(div2_u, div2_v);
s_qdiv(TEMP(4), k);
s_qdiv(TEMP(5), k);
@@ -1501,25 +1505,25 @@ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
for(;;) {
while(mp_int_is_even(TEMP(4))) {
s_qdiv(TEMP(4), 1);
-
+
if(mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
- if((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
+ if((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
goto CLEANUP;
- if((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
+ if((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
goto CLEANUP;
}
s_qdiv(TEMP(0), 1);
s_qdiv(TEMP(1), 1);
}
-
+
while(mp_int_is_even(TEMP(5))) {
s_qdiv(TEMP(5), 1);
if(mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
- if((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
+ if((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
goto CLEANUP;
- if((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
+ if((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
goto CLEANUP;
}
@@ -1531,7 +1535,7 @@ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
if((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP;
if((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP;
if((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP;
- }
+ }
else {
if((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP;
if((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP;
@@ -1546,7 +1550,7 @@ mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
res = MP_MEMORY;
goto CLEANUP;
}
-
+
res = mp_int_copy(TEMP(5), c);
}
@@ -1572,8 +1576,8 @@ mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c)
CHECK(a != NULL && b != NULL && c != NULL);
- /* Since a * b = gcd(a, b) * lcm(a, b), we can compute
- lcm(a, b) = (a / gcd(a, b)) * b.
+ /* Since a * b = gcd(a, b) * lcm(a, b), we can compute
+ lcm(a, b) = (a / gcd(a, b)) * b.
This formulation insures everything works even if the input
variables share space.
@@ -1681,7 +1685,7 @@ mp_result mp_int_root(mp_int a, mp_small b, mp_int c)
if((res = mp_int_copy(TEMP(4), TEMP(1))) != MP_OK)
goto CLEANUP;
}
-
+
if((res = mp_int_copy(TEMP(1), c)) != MP_OK)
goto CLEANUP;
@@ -1693,7 +1697,7 @@ mp_result mp_int_root(mp_int a, mp_small b, mp_int c)
while(--last >= 0)
mp_int_clear(TEMP(last));
- return res;
+ return res;
}
/* }}} */
@@ -1714,10 +1718,10 @@ mp_result mp_int_to_int(mp_int z, mp_small *out)
if((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
mp_int_compare_value(z, MP_SMALL_MIN) < 0)
return MP_RANGE;
-
+
uz = MP_USED(z);
dz = MP_DIGITS(z) + uz - 1;
-
+
while(uz > 0) {
uv <<= MP_DIGIT_BIT/2;
uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
@@ -1740,26 +1744,26 @@ mp_result mp_int_to_uint(mp_int z, mp_usmall *out)
mp_size uz;
mp_digit *dz;
mp_sign sz;
-
+
CHECK(z != NULL);
/* Make sure the value is representable as an int */
sz = MP_SIGN(z);
if(!(sz == MP_ZPOS && mp_int_compare_value(z, UINT_MAX) <= 0))
return MP_RANGE;
-
+
uz = MP_USED(z);
dz = MP_DIGITS(z) + uz - 1;
-
+
while(uz > 0) {
uv <<= MP_DIGIT_BIT/2;
uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
--uz;
}
-
+
if(out)
*out = uv;
-
+
return MP_OK;
}
@@ -1767,7 +1771,7 @@ mp_result mp_int_to_uint(mp_int z, mp_usmall *out)
/* {{{ mp_int_to_string(z, radix, str, limit) */
-mp_result mp_int_to_string(mp_int z, mp_size radix,
+mp_result mp_int_to_string(mp_int z, mp_size radix,
char *str, int limit)
{
mp_result res;
@@ -1780,7 +1784,7 @@ mp_result mp_int_to_string(mp_int z, mp_size radix,
if(CMPZ(z) == 0) {
*str++ = s_val2ch(0, 1);
- }
+ }
else {
mpz_t tmp;
char *h, *t;
@@ -1828,7 +1832,7 @@ mp_result mp_int_to_string(mp_int z, mp_size radix,
/* {{{ mp_int_string_len(z, radix) */
mp_result mp_int_string_len(mp_int z, mp_size radix)
-{
+{
int len;
CHECK(z != NULL);
@@ -1861,7 +1865,7 @@ mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str)
/* {{{ mp_int_read_cstring(z, radix, *str, **end) */
mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
-{
+{
int ch;
CHECK(z != NULL && str != NULL);
@@ -1887,7 +1891,7 @@ mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **e
}
/* Skip leading zeroes */
- while((ch = s_ch2val(*str, radix)) == 0)
+ while((ch = s_ch2val(*str, radix)) == 0)
++str;
/* Make sure there is enough space for the value */
@@ -1901,20 +1905,20 @@ mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **e
s_dadd(z, (mp_digit)ch);
++str;
}
-
+
CLAMP(z);
/* Override sign for zero, even if negative specified. */
if(CMPZ(z) == 0)
MP_SIGN(z) = MP_ZPOS;
-
+
if(end != NULL)
*end = (char *)str;
/* Return a truncation error if the string has unprocessed
characters remaining, so the caller can tell if the whole string
was done */
- if(*str != '\0')
+ if(*str != '\0')
return MP_TRUNC;
else
return MP_OK;
@@ -1959,7 +1963,7 @@ mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
int limpos = limit;
CHECK(z != NULL && buf != NULL);
-
+
res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
if(MP_SIGN(z) == MP_NEG)
@@ -1993,7 +1997,7 @@ mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
MP_SIGN(z) = MP_NEG;
s_2comp(buf, len);
}
-
+
dz = MP_DIGITS(z);
for(tmp = buf, i = len; i > 0; --i, ++tmp) {
s_qmul(z, (mp_size) CHAR_BIT);
@@ -2014,7 +2018,7 @@ mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
mp_result mp_int_binary_len(mp_int z)
{
mp_result res = mp_int_count_bits(z);
- int bytes = mp_int_unsigned_len(z);
+ int bytes;
if(res <= 0)
return res;
@@ -2115,7 +2119,7 @@ const char *mp_error_string(mp_result res)
/* {{{ s_alloc(num) */
-static mp_digit *s_alloc(mp_size num)
+STATIC mp_digit *s_alloc(mp_size num)
{
mp_digit *out = malloc(num * sizeof(mp_digit));
@@ -2137,7 +2141,7 @@ static mp_digit *s_alloc(mp_size num)
/* {{{ s_realloc(old, osize, nsize) */
-static mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
+STATIC mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
{
#if DEBUG > 1
mp_digit *new = s_alloc(nsize);
@@ -2159,7 +2163,7 @@ static mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
/* {{{ s_free(ptr) */
-static void s_free(void *ptr)
+STATIC void s_free(void *ptr)
{
free(ptr);
}
@@ -2168,7 +2172,7 @@ static void s_free(void *ptr)
/* {{{ s_pad(z, min) */
-static int s_pad(mp_int z, mp_size min)
+STATIC int s_pad(mp_int z, mp_size min)
{
if(MP_ALLOC(z) < min) {
mp_size nsize = ROUND_PREC(min);
@@ -2182,7 +2186,7 @@ static int s_pad(mp_int z, mp_size min)
}
else if((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
return 0;
-
+
MP_DIGITS(z) = tmp;
MP_ALLOC(z) = nsize;
}
@@ -2194,7 +2198,7 @@ static int s_pad(mp_int z, mp_size min)
/* {{{ s_fake(z, value, vbuf) */
-static void s_fake(mp_int z, mp_small value, mp_digit vbuf[])
+STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[])
{
mp_size uv = (mp_size) s_vpack(value, vbuf);
@@ -2208,7 +2212,7 @@ static void s_fake(mp_int z, mp_small value, mp_digit vbuf[])
/* {{{ s_cdig(da, db, len) */
-static int s_cdig(mp_digit *da, mp_digit *db, mp_size len)
+STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len)
{
mp_digit *dat = da + len - 1, *dbt = db + len - 1;
@@ -2226,11 +2230,11 @@ static int s_cdig(mp_digit *da, mp_digit *db, mp_size len)
/* {{{ s_vpack(v, t[]) */
-static int s_vpack(mp_small v, mp_digit t[])
+STATIC int s_vpack(mp_small v, mp_digit t[])
{
mp_usmall uv = (mp_usmall) ((v < 0) ? -v : v);
int ndig = 0;
-
+
if(uv == 0)
t[ndig++] = 0;
else {
@@ -2248,15 +2252,15 @@ static int s_vpack(mp_small v, mp_digit t[])
/* {{{ s_ucmp(a, b) */
-static int s_ucmp(mp_int a, mp_int b)
+STATIC int s_ucmp(mp_int a, mp_int b)
{
mp_size ua = MP_USED(a), ub = MP_USED(b);
-
+
if(ua > ub)
return 1;
- else if(ub > ua)
+ else if(ub > ua)
return -1;
- else
+ else
return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
}
@@ -2264,7 +2268,7 @@ static int s_ucmp(mp_int a, mp_int b)
/* {{{ s_vcmp(a, v) */
-static int s_vcmp(mp_int a, mp_small v)
+STATIC int s_vcmp(mp_int a, mp_small v)
{
mp_digit vdig[MP_VALUE_DIGITS(v)];
int ndig = 0;
@@ -2284,7 +2288,7 @@ static int s_vcmp(mp_int a, mp_small v)
/* {{{ s_uadd(da, db, dc, size_a, size_b) */
-static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size pos;
@@ -2319,7 +2323,7 @@ static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
/* {{{ s_usub(da, db, dc, size_a, size_b) */
-static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size pos;
@@ -2340,7 +2344,7 @@ static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
/* Finish the subtraction for remaining upper digits of da */
for(/* */; pos < size_a; ++pos, ++da, ++dc) {
w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word)*da) - w;
+ (mp_word)*da) - w;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
@@ -2354,7 +2358,7 @@ static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
/* {{{ s_kmul(da, db, dc, size_a, size_b) */
-static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size bot_size;
@@ -2374,13 +2378,13 @@ static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
Karatsuba algorithm to compute the product; otherwise use the
normal multiplication algorithm
*/
- if(multiply_threshold &&
- size_a >= multiply_threshold &&
+ if(multiply_threshold &&
+ size_a >= multiply_threshold &&
size_b > bot_size) {
mp_digit *t1, *t2, *t3, carry;
- mp_digit *a_top = da + bot_size;
+ mp_digit *a_top = da + bot_size;
mp_digit *b_top = db + bot_size;
mp_size at_size = size_a - bot_size;
@@ -2389,7 +2393,7 @@ static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
/* Do a single allocation for all three temporary buffers needed;
each buffer must be big enough to hold the product of two
- bottom halves, and one buffer needs space for the completed
+ bottom halves, and one buffer needs space for the completed
product; twice the space is plenty.
*/
if((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
@@ -2423,15 +2427,15 @@ static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
/* Assemble the output value */
COPY(t1, dc, buf_size);
carry = s_uadd(t3, dc + bot_size, dc + bot_size,
- buf_size + 1, buf_size);
+ buf_size + 1, buf_size);
assert(carry == 0);
-
+
carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
- buf_size, buf_size);
+ buf_size, buf_size);
assert(carry == 0);
-
+
s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
- }
+ }
else {
s_umul(da, db, dc, size_a, size_b);
}
@@ -2443,7 +2447,7 @@ static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
/* {{{ s_umul(da, db, dc, size_a, size_b) */
-static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
+STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
mp_size size_a, mp_size size_b)
{
mp_size a, b;
@@ -2472,7 +2476,7 @@ static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
/* {{{ s_ksqr(da, dc, size_a) */
-static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
+STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
{
if(multiply_threshold && size_a > multiply_threshold) {
mp_size bot_size = (size_a + 1) / 2;
@@ -2517,7 +2521,7 @@ static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
s_free(t1); /* note that t2 and t2 are internal pointers only */
- }
+ }
else {
s_usqr(da, dc, size_a);
}
@@ -2529,7 +2533,7 @@ static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
/* {{{ s_usqr(da, dc, size_a) */
-static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
+STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
{
mp_size i, j;
mp_word w;
@@ -2571,7 +2575,7 @@ static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
}
w = w + *dct;
- *dct = (mp_digit)w;
+ *dct = (mp_digit)w;
while((w = UPPER_HALF(w)) != 0) {
++dct; w = w + *dct;
*dct = LOWER_HALF(w);
@@ -2585,7 +2589,7 @@ static void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
/* {{{ s_dadd(a, b) */
-static void s_dadd(mp_int a, mp_digit b)
+STATIC void s_dadd(mp_int a, mp_digit b)
{
mp_word w = 0;
mp_digit *da = MP_DIGITS(a);
@@ -2612,7 +2616,7 @@ static void s_dadd(mp_int a, mp_digit b)
/* {{{ s_dmul(a, b) */
-static void s_dmul(mp_int a, mp_digit b)
+STATIC void s_dmul(mp_int a, mp_digit b)
{
mp_word w = 0;
mp_digit *da = MP_DIGITS(a);
@@ -2635,7 +2639,7 @@ static void s_dmul(mp_int a, mp_digit b)
/* {{{ s_dbmul(da, b, dc, size_a) */
-static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
+STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
{
mp_word w = 0;
@@ -2655,23 +2659,23 @@ static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
/* {{{ s_ddiv(da, d, dc, size_a) */
-static mp_digit s_ddiv(mp_int a, mp_digit b)
+STATIC mp_digit s_ddiv(mp_int a, mp_digit b)
{
mp_word w = 0, qdigit;
mp_size ua = MP_USED(a);
mp_digit *da = MP_DIGITS(a) + ua - 1;
-
+
for(/* */; ua > 0; --ua, --da) {
w = (w << MP_DIGIT_BIT) | *da;
if(w >= b) {
qdigit = w / b;
w = w % b;
- }
+ }
else {
qdigit = 0;
}
-
+
*da = (mp_digit)qdigit;
}
@@ -2683,7 +2687,7 @@ static mp_digit s_ddiv(mp_int a, mp_digit b)
/* {{{ s_qdiv(z, p2) */
-static void s_qdiv(mp_int z, mp_size p2)
+STATIC void s_qdiv(mp_int z, mp_size p2)
{
mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
@@ -2699,7 +2703,7 @@ static void s_qdiv(mp_int z, mp_size p2)
to = MP_DIGITS(z); from = to + ndig;
- for(mark = ndig; mark < uz; ++mark)
+ for(mark = ndig; mark < uz; ++mark)
*to++ = *from++;
MP_USED(z) = uz - ndig;
@@ -2730,7 +2734,7 @@ static void s_qdiv(mp_int z, mp_size p2)
/* {{{ s_qmod(z, p2) */
-static void s_qmod(mp_int z, mp_size p2)
+STATIC void s_qmod(mp_int z, mp_size p2)
{
mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
@@ -2747,7 +2751,7 @@ static void s_qmod(mp_int z, mp_size p2)
/* {{{ s_qmul(z, p2) */
-static int s_qmul(mp_int z, mp_size p2)
+STATIC int s_qmul(mp_int z, mp_size p2)
{
mp_size uz, need, rest, extra, i;
mp_digit *from, *to, d;
@@ -2755,7 +2759,7 @@ static int s_qmul(mp_int z, mp_size p2)
if(p2 == 0)
return 1;
- uz = MP_USED(z);
+ uz = MP_USED(z);
need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT;
/* Figure out if we need an extra digit at the top end; this occurs
@@ -2790,7 +2794,7 @@ static int s_qmul(mp_int z, mp_size p2)
d = 0;
for(i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
mp_digit save = *from;
-
+
*from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
d = save;
}
@@ -2815,7 +2819,7 @@ static int s_qmul(mp_int z, mp_size p2)
/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
The sign of the result is always zero/positive.
*/
-static int s_qsub(mp_int z, mp_size p2)
+STATIC int s_qsub(mp_int z, mp_size p2)
{
mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp;
mp_size tdig = (p2 / MP_DIGIT_BIT), pos;
@@ -2835,7 +2839,7 @@ static int s_qsub(mp_int z, mp_size p2)
*zp = LOWER_HALF(w);
assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
-
+
MP_SIGN(z) = MP_ZPOS;
CLAMP(z);
@@ -2846,7 +2850,7 @@ static int s_qsub(mp_int z, mp_size p2)
/* {{{ s_dp2k(z) */
-static int s_dp2k(mp_int z)
+STATIC int s_dp2k(mp_int z)
{
int k = 0;
mp_digit *dp = MP_DIGITS(z), d;
@@ -2858,7 +2862,7 @@ static int s_dp2k(mp_int z)
k += MP_DIGIT_BIT;
++dp;
}
-
+
d = *dp;
while((d & 1) == 0) {
d >>= 1;
@@ -2872,7 +2876,7 @@ static int s_dp2k(mp_int z)
/* {{{ s_isp2(z) */
-static int s_isp2(mp_int z)
+STATIC int s_isp2(mp_int z)
{
mp_size uz = MP_USED(z), k = 0;
mp_digit *dz = MP_DIGITS(z), d;
@@ -2898,7 +2902,7 @@ static int s_isp2(mp_int z)
/* {{{ s_2expt(z, k) */
-static int s_2expt(mp_int z, mp_small k)
+STATIC int s_2expt(mp_int z, mp_small k)
{
mp_size ndig, rest;
mp_digit *dz;
@@ -2921,7 +2925,7 @@ static int s_2expt(mp_int z, mp_small k)
/* {{{ s_norm(a, b) */
-static int s_norm(mp_int a, mp_int b)
+STATIC int s_norm(mp_int a, mp_int b)
{
mp_digit d = b->digits[MP_USED(b) - 1];
int k = 0;
@@ -2944,7 +2948,7 @@ static int s_norm(mp_int a, mp_int b)
/* {{{ s_brmu(z, m) */
-static mp_result s_brmu(mp_int z, mp_int m)
+STATIC mp_result s_brmu(mp_int z, mp_int m)
{
mp_size um = MP_USED(m) * 2;
@@ -2959,7 +2963,7 @@ static mp_result s_brmu(mp_int z, mp_int m)
/* {{{ s_reduce(x, m, mu, q1, q2) */
-static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
+STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
{
mp_size um = MP_USED(m), umb_p1, umb_m1;
@@ -3008,10 +3012,10 @@ static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
/* Perform modular exponentiation using Barrett's method, where mu is
the reduction constant for m. Assumes a < m, b > 0. */
-static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
+STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
{
mp_digit *db, *dbt, umu, d;
- mpz_t temp[3];
+ mpz_t temp[3];
mp_result res;
int last = 0;
@@ -3063,7 +3067,7 @@ static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
}
mp_int_copy(TEMP(0), c);
}
-
+
d >>= 1;
if(!d) break;
@@ -3077,7 +3081,7 @@ static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
CLEANUP:
while(--last >= 0)
mp_int_clear(TEMP(last));
-
+
return res;
}
@@ -3088,7 +3092,7 @@ static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
/* Precondition: a >= b and b > 0
Postcondition: a' = a / b, b' = a % b
*/
-static mp_result s_udiv(mp_int a, mp_int b)
+STATIC mp_result s_udiv(mp_int a, mp_int b)
{
mpz_t q, r, t;
mp_size ua, ub, qpos = 0;
@@ -3121,16 +3125,16 @@ static mp_result s_udiv(mp_int a, mp_int b)
if(s_ucmp(b, &r) > 0) {
r.digits -= 1;
r.used += 1;
-
- if(++skip > 1 && qpos > 0)
+
+ if(++skip > 1 && qpos > 0)
q.digits[qpos++] = 0;
-
+
CLAMP(&r);
}
else {
mp_word pfx = r.digits[r.used - 1];
mp_word qdigit;
-
+
if(r.used > 1 && pfx <= btop) {
pfx <<= MP_DIGIT_BIT / 2;
pfx <<= MP_DIGIT_BIT / 2;
@@ -3139,22 +3143,19 @@ static mp_result s_udiv(mp_int a, mp_int b)
qdigit = pfx / btop;
if(qdigit > MP_DIGIT_MAX) {
- if(qdigit & MP_DIGIT_MAX)
- qdigit = MP_DIGIT_MAX;
- else
- qdigit = 1;
+ qdigit = MP_DIGIT_MAX;
}
-
+
s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
t.used = ub + 1; CLAMP(&t);
while(s_ucmp(&t, &r) > 0) {
--qdigit;
(void) mp_int_sub(&t, b, &t); /* cannot fail */
}
-
+
s_usub(r.digits, t.digits, r.digits, r.used, t.used);
CLAMP(&r);
-
+
q.digits[qpos++] = (mp_digit) qdigit;
ZERO(t.digits, t.used);
skip = 0;
@@ -3170,10 +3171,10 @@ static mp_result s_udiv(mp_int a, mp_int b)
CLAMP(a);
if(k != 0)
s_qdiv(a, k);
-
+
mp_int_copy(a, b); /* ok: 0 <= r < b */
mp_int_copy(&q, a); /* ok: q <= a */
-
+
mp_int_clear(&t);
CLEANUP:
mp_int_clear(&q);
@@ -3184,7 +3185,7 @@ static mp_result s_udiv(mp_int a, mp_int b)
/* {{{ s_outlen(z, r) */
-static int s_outlen(mp_int z, mp_size r)
+STATIC int s_outlen(mp_int z, mp_size r)
{
mp_result bits;
double raw;
@@ -3201,7 +3202,7 @@ static int s_outlen(mp_int z, mp_size r)
/* {{{ s_inlen(len, r) */
-static mp_size s_inlen(int len, mp_size r)
+STATIC mp_size s_inlen(int len, mp_size r)
{
double raw = (double)len / s_log2[r];
mp_size bits = (mp_size)(raw + 0.5);
@@ -3213,7 +3214,7 @@ static mp_size s_inlen(int len, mp_size r)
/* {{{ s_ch2val(c, r) */
-static int s_ch2val(char c, int r)
+STATIC int s_ch2val(char c, int r)
{
int out;
@@ -3231,7 +3232,7 @@ static int s_ch2val(char c, int r)
/* {{{ s_val2ch(v, caps) */
-static char s_val2ch(int v, int caps)
+STATIC char s_val2ch(int v, int caps)
{
assert(v >= 0);
@@ -3251,7 +3252,7 @@ static char s_val2ch(int v, int caps)
/* {{{ s_2comp(buf, len) */
-static void s_2comp(unsigned char *buf, int len)
+STATIC void s_2comp(unsigned char *buf, int len)
{
int i;
unsigned short s = 1;
@@ -3273,7 +3274,7 @@ static void s_2comp(unsigned char *buf, int len)
/* {{{ s_tobin(z, buf, *limpos) */
-static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
+STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
{
mp_size uz;
mp_digit *dz;
@@ -3340,7 +3341,7 @@ void s_print_buf(char *tag, mp_digit *buf, mp_size num)
fprintf(stderr, "%s: ", tag);
- for(i = num - 1; i >= 0; --i)
+ for(i = num - 1; i >= 0; --i)
fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]);
fputc('\n', stderr);
diff --git a/source4/heimdal/lib/hcrypto/imath/imath.h b/source4/heimdal/lib/hcrypto/imath/imath.h
index 62b51c8fd8..cb877959e9 100644
--- a/source4/heimdal/lib/hcrypto/imath/imath.h
+++ b/source4/heimdal/lib/hcrypto/imath/imath.h
@@ -99,7 +99,7 @@ extern const mp_result MP_MINERR;
/* Values with fewer than this many significant digits use the
standard multiplication algorithm; otherwise, a recursive algorithm
- is used. Choose a value to suit your platform.
+ is used. Choose a value to suit your platform.
*/
#define MP_MULT_THRESH 22
@@ -157,14 +157,14 @@ int mp_int_is_pow2(mp_int z);
mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
mp_int c); /* c = a^b (mod m) */
-mp_result mp_int_exptmod_evalue(mp_int a, mp_small value,
+mp_result mp_int_exptmod_evalue(mp_int a, mp_small value,
mp_int m, mp_int c); /* c = a^v (mod m) */
mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
mp_int m, mp_int c); /* c = v^b (mod m) */
mp_result mp_int_exptmod_known(mp_int a, mp_int b,
mp_int m, mp_int mu,
mp_int c); /* c = a^b (mod m) */
-mp_result mp_int_redux_const(mp_int m, mp_int c);
+mp_result mp_int_redux_const(mp_int m, mp_int c);
mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
@@ -184,16 +184,16 @@ mp_result mp_int_to_uint(mp_int z, mp_usmall *out);
/* Convert to nul-terminated string with the specified radix, writing at
most limit characters including the nul terminator */
-mp_result mp_int_to_string(mp_int z, mp_size radix,
+mp_result mp_int_to_string(mp_int z, mp_size radix,
char *str, int limit);
-/* Return the number of characters required to represent
+/* Return the number of characters required to represent
z in the given radix. May over-estimate. */
mp_result mp_int_string_len(mp_int z, mp_size radix);
/* Read zero-terminated string into z */
mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
+mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
char **end);
/* Return the number of significant bits in z */