diff options
author | Stefan Metzmacher <metze@samba.org> | 2011-07-15 09:10:30 +0200 |
---|---|---|
committer | Stefan Metzmacher <metze@samba.org> | 2011-07-15 11:15:05 +0200 |
commit | 255e3e18e00f717d99f3bc57c8a8895ff624f3c3 (patch) | |
tree | a2933c88f38e8dd7fe612be8dd458d05918b1f15 /source4/heimdal/lib/hcrypto/libtommath | |
parent | 70da27838bb3f6ed9c36add06ce0ccdf467ab1c3 (diff) | |
download | samba-255e3e18e00f717d99f3bc57c8a8895ff624f3c3.tar.gz samba-255e3e18e00f717d99f3bc57c8a8895ff624f3c3.tar.bz2 samba-255e3e18e00f717d99f3bc57c8a8895ff624f3c3.zip |
s4:heimdal: import lorikeet-heimdal-201107150856 (commit 48936803fae4a2fb362c79365d31f420c917b85b)
Diffstat (limited to 'source4/heimdal/lib/hcrypto/libtommath')
67 files changed, 351 insertions, 351 deletions
diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_mp_invmod.c b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_mp_invmod.c index ff03dfffe3..f4780d8e8c 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_mp_invmod.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_mp_invmod.c @@ -15,10 +15,10 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* computes the modular inverse via binary extended euclidean algorithm, - * that is c = 1/a mod b +/* computes the modular inverse via binary extended euclidean algorithm, + * that is c = 1/a mod b * - * Based on slow invmod except this is optimized for the case where b is + * Based on slow invmod except this is optimized for the case where b is * odd as per HAC Note 14.64 on pp. 610 */ int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_digs.c b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_digs.c index 91e10d670f..90f161b102 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_digs.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_digs.c @@ -17,15 +17,15 @@ /* Fast (comba) multiplier * - * This is the fast column-array [comba] multiplier. It is - * designed to compute the columns of the product first - * then handle the carries afterwards. This has the effect + * This is the fast column-array [comba] multiplier. It is + * designed to compute the columns of the product first + * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * - * This has been modified to produce a variable number of - * digits of output so if say only a half-product is required - * you don't have to compute the upper half (a feature + * This has been modified to produce a variable number of + * digits of output so if say only a half-product is required + * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. @@ -49,7 +49,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* clear the carry */ _W = 0; - for (ix = 0; ix < pa; ix++) { + for (ix = 0; ix < pa; ix++) { int tx, ty; int iy; mp_digit *tmpx, *tmpy; @@ -62,7 +62,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) tmpx = a->dp + tx; tmpy = b->dp + ty; - /* this is the number of times the loop will iterrate, essentially + /* this is the number of times the loop will iterrate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_high_digs.c b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_high_digs.c index 5b114d717a..a03b9f1324 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_high_digs.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_mul_high_digs.c @@ -41,7 +41,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* number of output digits to produce */ pa = a->used + b->used; _W = 0; - for (ix = digs; ix < pa; ix++) { + for (ix = digs; ix < pa; ix++) { int tx, ty, iy; mp_digit *tmpx, *tmpy; @@ -53,7 +53,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) tmpx = a->dp + tx; tmpy = b->dp + ty; - /* this is the number of times the loop will iterrate, essentially its + /* this is the number of times the loop will iterrate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(a->used-tx, ty+1); @@ -69,7 +69,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* make next carry */ _W = _W >> ((mp_word)DIGIT_BIT); } - + /* setup dest */ olduse = c->used; c->used = pa; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_sqr.c b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_sqr.c index 19e92ef180..848eaf0463 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_sqr.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_fast_s_mp_sqr.c @@ -16,10 +16,10 @@ */ /* the jist of squaring... - * you do like mult except the offset of the tmpx [one that - * starts closer to zero] can't equal the offset of tmpy. + * you do like mult except the offset of the tmpx [one that + * starts closer to zero] can't equal the offset of tmpy. * So basically you set up iy like before then you min it with - * (ty-tx) so that it never happens. You double all those + * (ty-tx) so that it never happens. You double all those * you add in the inner loop After that loop you do the squares and add them in. @@ -41,7 +41,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b) /* number of output digits to produce */ W1 = 0; - for (ix = 0; ix < pa; ix++) { + for (ix = 0; ix < pa; ix++) { int tx, ty, iy; mp_word _W; mp_digit *tmpy; @@ -62,7 +62,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b) */ iy = MIN(a->used-tx, ty+1); - /* now for squaring tx can never equal ty + /* now for squaring tx can never equal ty * we halve the distance since they approach at a rate of 2x * and we have to round because odd cases need to be executed */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_2expt.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_2expt.c index f422ffc994..11a508c7fb 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_2expt.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_2expt.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* computes a = 2**b +/* computes a = 2**b * * Simple algorithm which zeroes the int, grows it then just sets one bit * as required. diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_abs.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_abs.c index 09dd7229eb..d97e8db05f 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_abs.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_abs.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* b = |a| +/* b = |a| * * Simple function copies the input and fixes the sign to positive */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clamp.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clamp.c index 359c2ff24d..2a565e8dbd 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clamp.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clamp.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* trim unused digits +/* trim unused digits * * This is used to ensure that leading zero digits are * trimed and the leading "used" digit will be non-zero diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clear_multi.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clear_multi.c index daaea79a3b..e5e3da340a 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clear_multi.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_clear_multi.c @@ -16,7 +16,7 @@ */ #include <stdarg.h> -void mp_clear_multi(mp_int *mp, ...) +void mp_clear_multi(mp_int *mp, ...) { mp_int* next_mp = mp; va_list args; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp.c index 533f36bf93..ccd2c8eb9b 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp.c @@ -27,7 +27,7 @@ mp_cmp (mp_int * a, mp_int * b) return MP_GT; } } - + /* compare digits */ if (a->sign == MP_NEG) { /* if negative compare opposite direction */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp_mag.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp_mag.c index 693eb7cc72..4a505238a0 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp_mag.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cmp_mag.c @@ -25,7 +25,7 @@ int mp_cmp_mag (mp_int * a, mp_int * b) if (a->used > b->used) { return MP_GT; } - + if (a->used < b->used) { return MP_LT; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cnt_lsb.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cnt_lsb.c index 66d1a74714..2d4a8d4f0f 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cnt_lsb.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_cnt_lsb.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -static const int lnz[16] = { +static const int lnz[16] = { 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_count_bits.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_count_bits.c index 8bc5657a33..5dfd5f375c 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_count_bits.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_count_bits.c @@ -29,7 +29,7 @@ mp_count_bits (mp_int * a) /* get number of digits and add that */ r = (a->used - 1) * DIGIT_BIT; - + /* take the last digit and count the bits in it */ q = a->dp[a->used - 1]; while (q > ((mp_digit) 0)) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div.c index aee9c94324..2c364b396f 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div.c @@ -40,7 +40,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) } return res; } - + /* init our temps */ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { return res; @@ -50,7 +50,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) mp_set(&tq, 1); n = mp_count_bits(a) - mp_count_bits(b); if (((res = mp_abs(a, &ta)) != MP_OKAY) || - ((res = mp_abs(b, &tb)) != MP_OKAY) || + ((res = mp_abs(b, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { goto LBL_ERR; @@ -87,17 +87,17 @@ LBL_ERR: #else -/* integer signed division. +/* integer signed division. * c*b + d == a [e.g. a/b, c=quotient, d=remainder] * HAC pp.598 Algorithm 14.20 * - * Note that the description in HAC is horribly - * incomplete. For example, it doesn't consider - * the case where digits are removed from 'x' in - * the inner loop. It also doesn't consider the + * Note that the description in HAC is horribly + * incomplete. For example, it doesn't consider + * the case where digits are removed from 'x' in + * the inner loop. It also doesn't consider the * case that y has fewer than three digits, etc.. * - * The overall algorithm is as described as + * The overall algorithm is as described as * 14.20 from HAC but fixed to treat these cases. */ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) @@ -187,7 +187,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) continue; } - /* step 3.1 if xi == yt then set q{i-t-1} to b-1, + /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x.dp[i] == y.dp[t]) { q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); @@ -201,10 +201,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); } - /* while (q{i-t-1} * (yt * b + y{t-1})) > - xi * b**2 + xi-1 * b + xi-2 - - do q{i-t-1} -= 1; + /* while (q{i-t-1} * (yt * b + y{t-1})) > + xi * b**2 + xi-1 * b + xi-2 + + do q{i-t-1} -= 1; */ q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; do { @@ -255,10 +255,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) } } - /* now q is the quotient and x is the remainder - * [which we have to normalize] + /* now q is the quotient and x is the remainder + * [which we have to normalize] */ - + /* get sign before writing to c */ x.sign = x.used == 0 ? MP_ZPOS : a->sign; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_3.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_3.c index 3c60269ece..78e2381b6e 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_3.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_3.c @@ -23,14 +23,14 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) mp_word w, t; mp_digit b; int res, ix; - + /* b = 2**DIGIT_BIT / 3 */ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3); if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } - + q.used = a->used; q.sign = a->sign; w = 0; @@ -68,7 +68,7 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d) mp_exch(&q, c); } mp_clear(&q); - + return res; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_d.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_d.c index 6a26d4f0cf..7bd372c20d 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_d.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_div_d.c @@ -79,13 +79,13 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) if ((res = mp_init_size(&q, a->used)) != MP_OKAY) { return res; } - + q.used = a->used; q.sign = a->sign; w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]); - + if (w >= b) { t = (mp_digit)(w / b); w -= ((mp_word)t) * ((mp_word)b); @@ -94,17 +94,17 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d) } q.dp[ix] = (mp_digit)t; } - + if (d != NULL) { *d = (mp_digit)w; } - + if (c != NULL) { mp_clamp(&q); mp_exch(&q, c); } mp_clear(&q); - + return res; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_dr_setup.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_dr_setup.c index 1d7d856ef0..b7d5ed7c03 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_dr_setup.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_dr_setup.c @@ -21,7 +21,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d) /* the casts are required if DIGIT_BIT is one less than * the number of bits in a mp_digit [e.g. DIGIT_BIT==31] */ - *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - + *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - ((mp_word)a->dp[0])); } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exch.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exch.c index 38574e0a5e..ee551bc3e1 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exch.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exch.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* swap the elements of two integers, for cases where you can't simply swap the +/* swap the elements of two integers, for cases where you can't simply swap the * mp_int pointers around */ void diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod.c index 023191657a..56d7c11d26 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod.c @@ -59,7 +59,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) err = mp_exptmod(&tmpG, &tmpX, P, Y); mp_clear_multi(&tmpG, &tmpX, NULL); return err; -#else +#else /* no invmod */ return MP_VAL; #endif @@ -86,7 +86,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) dr = mp_reduce_is_2k(P) << 1; } #endif - + /* if the modulus is odd or dr != 0 use the montgomery method */ #ifdef BN_MP_EXPTMOD_FAST_C if (mp_isodd (P) == 1 || dr != 0) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod_fast.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod_fast.c index 2a3b3c9e81..64fbe7fe21 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod_fast.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exptmod_fast.c @@ -84,7 +84,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode /* determine and setup reduction code */ if (redmode == 0) { -#ifdef BN_MP_MONTGOMERY_SETUP_C +#ifdef BN_MP_MONTGOMERY_SETUP_C /* now setup montgomery */ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { goto LBL_M; @@ -99,7 +99,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode if (((P->used * 2 + 1) < MP_WARRAY) && P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { redux = fast_mp_montgomery_reduce; - } else + } else #endif { #ifdef BN_MP_MONTGOMERY_REDUCE_C @@ -150,7 +150,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { goto LBL_RES; } -#else +#else err = MP_VAL; goto LBL_RES; #endif diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exteuclid.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exteuclid.c index e6c4ce2b85..daf0c95ea6 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exteuclid.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_exteuclid.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* Extended euclidean algorithm of (a, b) produces +/* Extended euclidean algorithm of (a, b) produces a*u1 + b*u2 = u3 */ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3) diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_find_prime.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_find_prime.c index 0458744fc7..ef7b6532c5 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_find_prime.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_find_prime.c @@ -1,7 +1,7 @@ /* TomsFastMath, a fast ISO C bignum library. - * + * * This project is public domain and free for all purposes. - * + * * Love Hornquist Astrand <lha@h5l.org> */ #include <tommath.h> diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fread.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fread.c index b344b6f05d..52f7f32f0d 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fread.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fread.c @@ -19,10 +19,10 @@ int mp_fread(mp_int *a, int radix, FILE *stream) { int err, ch, neg, y; - + /* clear a */ mp_zero(a); - + /* if first digit is - then set negative */ ch = fgetc(stream); if (ch == '-') { @@ -31,7 +31,7 @@ int mp_fread(mp_int *a, int radix, FILE *stream) } else { neg = MP_ZPOS; } - + for (;;) { /* find y in the radix map */ for (y = 0; y < radix; y++) { @@ -42,7 +42,7 @@ int mp_fread(mp_int *a, int radix, FILE *stream) if (y == radix) { break; } - + /* shift up and add */ if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) { return err; @@ -50,13 +50,13 @@ int mp_fread(mp_int *a, int radix, FILE *stream) if ((err = mp_add_d(a, y, a)) != MP_OKAY) { return err; } - + ch = fgetc(stream); } if (mp_cmp_d(a, 0) != MP_EQ) { a->sign = neg; } - + return MP_OKAY; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fwrite.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fwrite.c index a0b4c6b6d1..dc4529ba22 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fwrite.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_fwrite.c @@ -19,7 +19,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream) { char *buf; int err, len, x; - + if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) { return err; } @@ -28,19 +28,19 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream) if (buf == NULL) { return MP_MEM; } - + if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) { XFREE (buf); return err; } - + for (x = 0; x < len; x++) { if (fputc(buf[x], stream) == EOF) { XFREE (buf); return MP_VAL; } } - + XFREE (buf); return MP_OKAY; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_gcd.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_gcd.c index b39ba9041d..89795d564e 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_gcd.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_gcd.c @@ -76,17 +76,17 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c) /* swap u and v to make sure v is >= u */ mp_exch(&u, &v); } - + /* subtract smallest from largest */ if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { goto LBL_V; } - + /* Divide out all factors of two */ if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { goto LBL_V; - } - } + } + } /* multiply by 2**k which we divided out at the beginning */ if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_get_int.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_get_int.c index 17162e2bf1..e8e9b1d440 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_get_int.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_get_int.c @@ -16,7 +16,7 @@ */ /* get the lower 32-bits of an mp_int */ -unsigned long mp_get_int(mp_int * a) +unsigned long mp_get_int(mp_int * a) { int i; unsigned long res; @@ -30,7 +30,7 @@ unsigned long mp_get_int(mp_int * a) /* get most significant digit of result */ res = DIGIT(a,i); - + while (--i >= 0) { res = (res << DIGIT_BIT) | DIGIT(a,i); } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_multi.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_multi.c index 59dc3a9ea7..56e8602767 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_multi.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_multi.c @@ -16,7 +16,7 @@ */ #include <stdarg.h> -int mp_init_multi(mp_int *mp, ...) +int mp_init_multi(mp_int *mp, ...) { mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ int n = 0; /* Number of ok inits */ @@ -30,11 +30,11 @@ int mp_init_multi(mp_int *mp, ...) succeeded in init-ing, then return error. */ va_list clean_args; - + /* end the current list */ va_end(args); - - /* now start cleaning up */ + + /* now start cleaning up */ cur_arg = mp; va_start(clean_args, mp); while (n--) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_size.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_size.c index 8e014183a3..9578ac754c 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_size.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_init_size.c @@ -21,8 +21,8 @@ int mp_init_size (mp_int * a, int size) int x; /* pad size so there are always extra digits */ - size += (MP_PREC * 2) - (size % MP_PREC); - + size += (MP_PREC * 2) - (size % MP_PREC); + /* alloc mem */ a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); if (a->dp == NULL) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod.c index 154651468f..ac1a952319 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod.c @@ -32,9 +32,9 @@ int mp_invmod (mp_int * a, mp_int * b, mp_int * c) #ifdef BN_MP_INVMOD_SLOW_C return mp_invmod_slow(a, b, c); -#endif - +#else return MP_VAL; +#endif } #endif diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod_slow.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod_slow.c index eedd47dcf1..4ec487efae 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod_slow.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_invmod_slow.c @@ -27,7 +27,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) } /* init temps */ - if ((res = mp_init_multi(&x, &y, &u, &v, + if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) { return res; } @@ -154,14 +154,14 @@ top: goto LBL_ERR; } } - + /* too big */ while (mp_cmp_mag(&C, b) != MP_LT) { if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { goto LBL_ERR; } } - + /* C is now the inverse */ mp_exch (&C, c); res = MP_OKAY; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_is_square.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_is_square.c index 50c524444e..027fcd2f5a 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_is_square.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_is_square.c @@ -38,7 +38,7 @@ static const char rem_105[105] = { }; /* Store non-zero to ret if arg is square, and zero if not */ -int mp_is_square(mp_int *arg,int *ret) +int mp_is_square(mp_int *arg,int *ret) { int res; mp_digit c; @@ -46,7 +46,7 @@ int mp_is_square(mp_int *arg,int *ret) unsigned long r; /* Default to Non-square :) */ - *ret = MP_NO; + *ret = MP_NO; if (arg->sign == MP_NEG) { return MP_VAL; @@ -80,8 +80,8 @@ int mp_is_square(mp_int *arg,int *ret) r = mp_get_int(&t); /* Check for other prime modules, note it's not an ERROR but we must * free "t" so the easiest way is to goto ERR. We know that res - * is already equal to MP_OKAY from the mp_mod call - */ + * is already equal to MP_OKAY from the mp_mod call + */ if ( (1L<<(r%11)) & 0x5C4L ) goto ERR; if ( (1L<<(r%13)) & 0x9E4L ) goto ERR; if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_isprime.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_isprime.c index 07ce86f296..d3678d5dc1 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_isprime.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_isprime.c @@ -1,10 +1,10 @@ /* TomsFastMath, a fast ISO C bignum library. - * + * * This project is meant to fill in where LibTomMath * falls short. That is speed ;-) * * This project is public domain and free for all purposes. - * + * * Tom St Denis, tomstdenis@gmail.com */ #include <tommath.h> diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_mul.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_mul.c index 8ea2c2792a..72a2319c06 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_mul.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_mul.c @@ -15,33 +15,33 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* c = |a| * |b| using Karatsuba Multiplication using +/* c = |a| * |b| using Karatsuba Multiplication using * three half size multiplications * - * Let B represent the radix [e.g. 2**DIGIT_BIT] and - * let n represent half of the number of digits in + * Let B represent the radix [e.g. 2**DIGIT_BIT] and + * let n represent half of the number of digits in * the min(a,b) * * a = a1 * B**n + a0 * b = b1 * B**n + b0 * - * Then, a * b => + * Then, a * b => a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 * - * Note that a1b1 and a0b0 are used twice and only need to be - * computed once. So in total three half size (half # of - * digit) multiplications are performed, a0b0, a1b1 and + * Note that a1b1 and a0b0 are used twice and only need to be + * computed once. So in total three half size (half # of + * digit) multiplications are performed, a0b0, a1b1 and * (a1+b1)(a0+b0) * * Note that a multiplication of half the digits requires - * 1/4th the number of single precision multiplications so in - * total after one call 25% of the single precision multiplications - * are saved. Note also that the call to mp_mul can end up back - * in this function if the a0, a1, b0, or b1 are above the threshold. - * This is known as divide-and-conquer and leads to the famous - * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than - * the standard O(N**2) that the baseline/comba methods use. - * Generally though the overhead of this method doesn't pay off + * 1/4th the number of single precision multiplications so in + * total after one call 25% of the single precision multiplications + * are saved. Note also that the call to mp_mul can end up back + * in this function if the a0, a1, b0, or b1 are above the threshold. + * This is known as divide-and-conquer and leads to the famous + * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than + * the standard O(N**2) that the baseline/comba methods use. + * Generally though the overhead of this method doesn't pay off * until a certain size (N ~ 80) is reached. */ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) @@ -109,7 +109,7 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) } } - /* only need to clamp the lower words since by definition the + /* only need to clamp the lower words since by definition the * upper words x1/y1 must have a known number of digits */ mp_clamp (&x0); @@ -117,7 +117,7 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) /* now calc the products x0y0 and x1y1 */ /* after this x0 is no longer required, free temp [x0==t2]! */ - if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) + if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1; /* x0y0 = x0*y0 */ if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) goto X1Y1; /* x1y1 = x1*y1 */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_sqr.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_sqr.c index a5e198be12..56692c5ae7 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_sqr.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_karatsuba_sqr.c @@ -15,11 +15,11 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* Karatsuba squaring, computes b = a*a using three +/* Karatsuba squaring, computes b = a*a using three * half size squarings * - * See comments of karatsuba_mul for details. It - * is essentially the same algorithm but merely + * See comments of karatsuba_mul for details. It + * is essentially the same algorithm but merely * tuned to perform recursive squarings. */ int mp_karatsuba_sqr (mp_int * a, mp_int * b) diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul.c index 8b1117a63b..816e7b2f0b 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul.c @@ -25,29 +25,29 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c) #ifdef BN_MP_TOOM_MUL_C if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { res = mp_toom_mul(a, b, c); - } else + } else #endif #ifdef BN_MP_KARATSUBA_MUL_C /* use Karatsuba? */ if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { res = mp_karatsuba_mul (a, b, c); - } else + } else #endif { /* can we use the fast multiplier? * - * The fast multiplier can be used if the output will - * have less than MP_WARRAY digits and the number of + * The fast multiplier can be used if the output will + * have less than MP_WARRAY digits and the number of * digits won't affect carry propagation */ int digs = a->used + b->used + 1; #ifdef BN_FAST_S_MP_MUL_DIGS_C if ((digs < MP_WARRAY) && - MIN(a->used, b->used) <= + MIN(a->used, b->used) <= (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { res = fast_s_mp_mul_digs (a, b, c, digs); - } else + } else #endif #ifdef BN_S_MP_MUL_DIGS_C res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2.c index 02455fc35d..f90654832b 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2.c @@ -35,24 +35,24 @@ int mp_mul_2(mp_int * a, mp_int * b) /* alias for source */ tmpa = a->dp; - + /* alias for dest */ tmpb = b->dp; /* carry */ r = 0; for (x = 0; x < a->used; x++) { - - /* get what will be the *next* carry bit from the - * MSB of the current digit + + /* get what will be the *next* carry bit from the + * MSB of the current digit */ rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); - + /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; - - /* copy the carry that would be from the source - * digit into the next iteration + + /* copy the carry that would be from the source + * digit into the next iteration */ r = rr; } @@ -64,8 +64,8 @@ int mp_mul_2(mp_int * a, mp_int * b) ++(b->used); } - /* now zero any excess digits on the destination - * that we didn't write to + /* now zero any excess digits on the destination + * that we didn't write to */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2d.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2d.c index efeff2e751..d023b382cc 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2d.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_mul_2d.c @@ -69,7 +69,7 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c) /* set the carry to the carry bits of the current word */ r = rr; } - + /* set final carry */ if (r != 0) { c->dp[(c->used)++] = r; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_n_root.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_n_root.c index 0e7bedca72..85d335cb9e 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_n_root.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_n_root.c @@ -15,14 +15,14 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* find the n'th root of an integer +/* find the n'th root of an integer * - * Result found such that (c)**b <= a and (c+1)**b > a + * Result found such that (c)**b <= a and (c+1)**b > a * - * This algorithm uses Newton's approximation - * x[i+1] = x[i] - f(x[i])/f'(x[i]) - * which will find the root in log(N) time where - * each step involves a fair bit. This is not meant to + * This algorithm uses Newton's approximation + * x[i+1] = x[i] - f(x[i])/f'(x[i]) + * which will find the root in log(N) time where + * each step involves a fair bit. This is not meant to * find huge roots [square and cube, etc]. */ int mp_n_root (mp_int * a, mp_digit b, mp_int * c) @@ -61,31 +61,31 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c) } /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ - + /* t3 = t1**(b-1) */ - if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { + if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { goto LBL_T3; } /* numerator */ /* t2 = t1**b */ - if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { + if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { goto LBL_T3; } /* t2 = t1**b - a */ - if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { + if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { goto LBL_T3; } /* denominator */ /* t3 = t1**(b-1) * b */ - if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { + if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { goto LBL_T3; } /* t3 = (t1**b - a)/(b * t1**(b-1)) */ - if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { + if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { goto LBL_T3; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_fermat.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_fermat.c index c23d77f6de..8e74a337c5 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_fermat.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_fermat.c @@ -16,7 +16,7 @@ */ /* performs one Fermat test. - * + * * If "a" were prime then b**a == b (mod a) since the order of * the multiplicative sub-group would be phi(a) = a-1. That means * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a). diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_is_divisible.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_is_divisible.c index 8e7871c2c6..766cde95a6 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_is_divisible.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_is_divisible.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* determines if an integers is divisible by one +/* determines if an integers is divisible by one * of the first PRIME_SIZE primes or not * * sets result to 0 if not, 1 if yes diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_miller_rabin.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_miller_rabin.c index ddf03582ac..60a8c48eae 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_miller_rabin.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_miller_rabin.c @@ -15,11 +15,11 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* Miller-Rabin test of "a" to the base of "b" as described in +/* Miller-Rabin test of "a" to the base of "b" as described in * HAC pp. 139 Algorithm 4.24 * * Sets result to 0 if definitely composite or 1 if probably prime. - * Randomly the chance of error is no more than 1/4 and often + * Randomly the chance of error is no more than 1/4 and often * very much lower. */ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) @@ -33,7 +33,7 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result) /* ensure b > 1 */ if (mp_cmp_d(b, 1) != MP_GT) { return MP_VAL; - } + } /* get n1 = a - 1 */ if ((err = mp_init_copy (&n1, a)) != MP_OKAY) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_next_prime.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_next_prime.c index daf2ec7c64..a2897f0878 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_next_prime.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_next_prime.c @@ -22,7 +22,7 @@ */ int mp_prime_next_prime(mp_int *a, int t, int bbs_style) { - int err, res, x, y; + int err, res = MP_NO, x, y; mp_digit res_tab[PRIME_SIZE], step, kstep; mp_int b; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_random_ex.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_random_ex.c index 07aae4b072..7b0d15c94d 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_random_ex.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_prime_random_ex.c @@ -18,7 +18,7 @@ /* makes a truly random prime of a given size (bits), * * Flags are as follows: - * + * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero @@ -63,7 +63,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; if (flags & LTM_PRIME_2MSB_ON) { maskOR_msb |= 0x80 >> ((9 - size) & 7); - } + } /* get the maskOR_lsb */ maskOR_lsb = 1; @@ -77,7 +77,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback err = MP_VAL; goto error; } - + /* work over the MSbyte */ tmp[0] &= maskAND; tmp[0] |= 1 << ((size - 1) & 7); @@ -91,7 +91,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } - if (res == MP_NO) { + if (res == MP_NO) { continue; } @@ -99,7 +99,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback /* see if (a-1)/2 is prime */ if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; } if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; } - + /* is it prime? */ if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; } } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_radix_size.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_radix_size.c index 1b61e3a1be..af94be8676 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_radix_size.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_radix_size.c @@ -54,7 +54,7 @@ int mp_radix_size (mp_int * a, int radix, int *size) } /* force temp to positive */ - t.sign = MP_ZPOS; + t.sign = MP_ZPOS; /* fetch out all of the digits */ while (mp_iszero (&t) == MP_NO) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_read_radix.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_read_radix.c index 91c46c22f7..35ca886736 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_read_radix.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_read_radix.c @@ -29,8 +29,8 @@ int mp_read_radix (mp_int * a, const char *str, int radix) return MP_VAL; } - /* if the leading digit is a - * minus set the sign to negative. + /* if the leading digit is a + * minus set the sign to negative. */ if (*str == '-') { ++str; @@ -41,7 +41,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix) /* set the integer to the default of zero */ mp_zero (a); - + /* process each digit of the string */ while (*str) { /* if the radix < 36 the conversion is case insensitive @@ -55,9 +55,9 @@ int mp_read_radix (mp_int * a, const char *str, int radix) } } - /* if the char was found in the map + /* if the char was found in the map * and is less than the given radix add it - * to the number, otherwise exit the loop. + * to the number, otherwise exit the loop. */ if (y < radix) { if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) { @@ -71,7 +71,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix) } ++str; } - + /* set the sign only if a != 0 */ if (mp_iszero(a) != 1) { a->sign = neg; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce.c index 21d0730905..ae57a6a003 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* reduces x mod m, assumes 0 < x < m**2, mu is +/* reduces x mod m, assumes 0 < x < m**2, mu is * precomputed via mp_reduce_setup. * From HAC pp.604 Algorithm 14.42 */ @@ -30,7 +30,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) } /* q1 = x / b**(k-1) */ - mp_rshd (&q, um - 1); + mp_rshd (&q, um - 1); /* according to HAC this optimization is ok */ if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { @@ -46,8 +46,8 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { goto CLEANUP; } -#else - { +#else + { res = MP_VAL; goto CLEANUP; } @@ -55,7 +55,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) } /* q3 = q2 / b**(k+1) */ - mp_rshd (&q, um + 1); + mp_rshd (&q, um + 1); /* x = x mod b**(k+1), quick (no division) */ if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { @@ -87,7 +87,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) goto CLEANUP; } } - + CLEANUP: mp_clear (&q); diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k.c index d9620c221c..1c4a751dda 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k.c @@ -20,35 +20,35 @@ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) { mp_int q; int p, res; - + if ((res = mp_init(&q)) != MP_OKAY) { return res; } - - p = mp_count_bits(n); + + p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } - + if (d != 1) { /* q = q * d */ - if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { + if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { goto ERR; } } - + /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } - + if (mp_cmp_mag(a, n) != MP_LT) { s_mp_sub(a, n, a); goto top; } - + ERR: mp_clear(&q); return res; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_l.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_l.c index f06103d6a6..71abeaebba 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_l.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_l.c @@ -15,7 +15,7 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* reduces a modulo n where n is of the form 2**p - d +/* reduces a modulo n where n is of the form 2**p - d This differs from reduce_2k since "d" can be larger than a single digit. */ @@ -23,33 +23,33 @@ int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) { mp_int q; int p, res; - + if ((res = mp_init(&q)) != MP_OKAY) { return res; } - - p = mp_count_bits(n); + + p = mp_count_bits(n); top: /* q = a/2**p, a = a mod 2**p */ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { goto ERR; } - + /* q = q * d */ - if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { + if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { goto ERR; } - + /* a = a + q */ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { goto ERR; } - + if (mp_cmp_mag(a, n) != MP_LT) { s_mp_sub(a, n, a); goto top; } - + ERR: mp_clear(&q); return res; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup.c index a80e7a22f2..dca723c815 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup.c @@ -20,22 +20,22 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d) { int res, p; mp_int tmp; - + if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } - + p = mp_count_bits(a); if ((res = mp_2expt(&tmp, p)) != MP_OKAY) { mp_clear(&tmp); return res; } - + if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) { mp_clear(&tmp); return res; } - + *d = tmp.dp[0]; mp_clear(&tmp); return MP_OKAY; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup_l.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup_l.c index 7cf002e888..cc59a6e715 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup_l.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_2k_setup_l.c @@ -20,19 +20,19 @@ int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) { int res; mp_int tmp; - + if ((res = mp_init(&tmp)) != MP_OKAY) { return res; } - + if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { goto ERR; } - + if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { goto ERR; } - + ERR: mp_clear(&tmp); return res; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k.c index 7308be73e2..c8d25d83e2 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k.c @@ -20,7 +20,7 @@ int mp_reduce_is_2k(mp_int *a) { int ix, iy, iw; mp_digit iz; - + if (a->used == 0) { return MP_NO; } else if (a->used == 1) { @@ -29,7 +29,7 @@ int mp_reduce_is_2k(mp_int *a) iy = mp_count_bits(a); iz = 1; iw = 1; - + /* Test every bit from the second digit up, must be 1 */ for (ix = DIGIT_BIT; ix < iy; ix++) { if ((a->dp[iw] & iz) == 0) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k_l.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k_l.c index 14a4d21846..ad006f39c5 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k_l.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_is_2k_l.c @@ -19,7 +19,7 @@ int mp_reduce_is_2k_l(mp_int *a) { int ix, iy; - + if (a->used == 0) { return MP_NO; } else if (a->used == 1) { @@ -32,7 +32,7 @@ int mp_reduce_is_2k_l(mp_int *a) } } return (iy >= (a->used/2)) ? MP_YES : MP_NO; - + } return MP_NO; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_setup.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_setup.c index 370f20bb17..035419bf34 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_setup.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_reduce_setup.c @@ -21,7 +21,7 @@ int mp_reduce_setup (mp_int * a, mp_int * b) { int res; - + if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { return res; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_rshd.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_rshd.c index 2a693c5a5b..ed13ce59a4 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_rshd.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_rshd.c @@ -42,8 +42,8 @@ void mp_rshd (mp_int * a, int b) /* top [offset into digits] */ top = a->dp + b; - /* this is implemented as a sliding window where - * the window is b-digits long and digits from + /* this is implemented as a sliding window where + * the window is b-digits long and digits from * the top of the window are copied to the bottom * * e.g. @@ -61,7 +61,7 @@ void mp_rshd (mp_int * a, int b) *bottom++ = 0; } } - + /* remove excess digits */ a->used -= b; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_set_int.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_set_int.c index cf10ea1a44..3072e76e1c 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_set_int.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_set_int.c @@ -21,7 +21,7 @@ int mp_set_int (mp_int * a, unsigned long b) int x, res; mp_zero (a); - + /* set four bits at a time */ for (x = 0; x < 8; x++) { /* shift the number up four bits */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqr.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqr.c index 868ccbbaef..90f4dd6d72 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqr.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqr.c @@ -26,18 +26,18 @@ mp_sqr (mp_int * a, mp_int * b) if (a->used >= TOOM_SQR_CUTOFF) { res = mp_toom_sqr(a, b); /* Karatsuba? */ - } else + } else #endif #ifdef BN_MP_KARATSUBA_SQR_C if (a->used >= KARATSUBA_SQR_CUTOFF) { res = mp_karatsuba_sqr (a, b); - } else + } else #endif { #ifdef BN_FAST_S_MP_SQR_C /* can we use the fast comba multiplier? */ - if ((a->used * 2 + 1) < MP_WARRAY && - a->used < + if ((a->used * 2 + 1) < MP_WARRAY && + a->used < (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { res = fast_s_mp_sqr (a, b); } else diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqrt.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqrt.c index 8fd057ceed..8391297f7e 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqrt.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_sqrt.c @@ -16,7 +16,7 @@ */ /* this function is less generic than mp_n_root, simpler and faster */ -int mp_sqrt(mp_int *arg, mp_int *ret) +int mp_sqrt(mp_int *arg, mp_int *ret) { int res; mp_int t1,t2; @@ -43,7 +43,7 @@ int mp_sqrt(mp_int *arg, mp_int *ret) /* First approx. (not very bad for large arg) */ mp_rshd (&t1,t1.used/2); - /* t1 > 0 */ + /* t1 > 0 */ if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { goto E1; } @@ -54,7 +54,7 @@ int mp_sqrt(mp_int *arg, mp_int *ret) goto E1; } /* And now t1 > sqrt(arg) */ - do { + do { if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) { goto E1; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toom_mul.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toom_mul.c index ad5d9e9b64..b996342466 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toom_mul.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toom_mul.c @@ -15,28 +15,28 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* multiplication using the Toom-Cook 3-way algorithm +/* multiplication using the Toom-Cook 3-way algorithm * - * Much more complicated than Karatsuba but has a lower - * asymptotic running time of O(N**1.464). This algorithm is - * only particularly useful on VERY large inputs + * Much more complicated than Karatsuba but has a lower + * asymptotic running time of O(N**1.464). This algorithm is + * only particularly useful on VERY large inputs * (we're talking 1000s of digits here...). */ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) { mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2; int res, B; - + /* init temps */ - if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, - &a0, &a1, &a2, &b0, &b1, + if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, + &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) { return res; } - + /* B */ B = MIN(a->used, b->used) / 3; - + /* a = a2 * B**2 + a1 * B + a0 */ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) { goto ERR; @@ -52,7 +52,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) goto ERR; } mp_rshd(&a2, B*2); - + /* b = b2 * B**2 + b1 * B + b0 */ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) { goto ERR; @@ -68,17 +68,17 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) goto ERR; } mp_rshd(&b2, B*2); - + /* w0 = a0*b0 */ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) { goto ERR; } - + /* w4 = a2 * b2 */ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) { goto ERR; } - + /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) { goto ERR; @@ -92,7 +92,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) { goto ERR; } @@ -105,11 +105,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) { goto ERR; } - + /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) { goto ERR; @@ -123,7 +123,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) { goto ERR; } @@ -136,11 +136,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) { goto ERR; } - + if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) { goto ERR; } - + /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) { @@ -158,19 +158,19 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) { goto ERR; } - - /* now solve the matrix - + + /* now solve the matrix + 0 0 0 0 1 1 2 4 8 16 1 1 1 1 1 16 8 4 2 1 1 0 0 0 0 - - using 12 subtractions, 4 shifts, - 2 small divisions and 1 small multiplication + + using 12 subtractions, 4 shifts, + 2 small divisions and 1 small multiplication */ - + /* r1 - r4 */ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) { goto ERR; @@ -242,7 +242,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) { goto ERR; } - + /* at this point shift W[n] by B*n */ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) { goto ERR; @@ -255,8 +255,8 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) } if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) { goto ERR; - } - + } + if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) { goto ERR; } @@ -268,15 +268,15 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c) } if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) { goto ERR; - } - + } + ERR: - mp_clear_multi(&w0, &w1, &w2, &w3, &w4, - &a0, &a1, &a2, &b0, &b1, + mp_clear_multi(&w0, &w1, &w2, &w3, &w4, + &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL); return res; -} - +} + #endif /* $Source: /cvs/libtom/libtommath/bn_mp_toom_mul.c,v $ */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toradix_n.c b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toradix_n.c index 796ed55c65..28085124ea 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toradix_n.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_mp_toradix_n.c @@ -15,9 +15,9 @@ * Tom St Denis, tomstdenis@gmail.com, http://libtom.org */ -/* stores a bignum as a ASCII string in a given radix (2..64) +/* stores a bignum as a ASCII string in a given radix (2..64) * - * Stores upto maxlen-1 chars and always a NULL byte + * Stores upto maxlen-1 chars and always a NULL byte */ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) { @@ -50,7 +50,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) /* store the flag and mark the number as positive */ *str++ = '-'; t.sign = MP_ZPOS; - + /* subtract a char */ --maxlen; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_add.c b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_add.c index f034ae62aa..e7f54f4cf1 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_add.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_add.c @@ -74,8 +74,8 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c) *tmpc++ &= MP_MASK; } - /* now copy higher words if any, that is in A+B - * if A or B has more digits add those in + /* now copy higher words if any, that is in A+B + * if A or B has more digits add those in */ if (min != max) { for (; i < max; i++) { diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_exptmod.c b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_exptmod.c index 097d894702..deb4b4ddb1 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_exptmod.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_exptmod.c @@ -54,7 +54,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) /* init M array */ /* init first cell */ if ((err = mp_init(&M[1])) != MP_OKAY) { - return err; + return err; } /* now init the second half of the array */ @@ -72,7 +72,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) if ((err = mp_init (&mu)) != MP_OKAY) { goto LBL_M; } - + if (redmode == 0) { if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { goto LBL_MU; @@ -83,22 +83,22 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) goto LBL_MU; } redux = mp_reduce_2k_l; - } + } /* create M table * - * The M table contains powers of the base, + * The M table contains powers of the base, * e.g. M[x] = G**x mod P * - * The first half of the table is not + * The first half of the table is not * computed though accept for M[0] and M[1] */ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { goto LBL_MU; } - /* compute the value at M[1<<(winsize-1)] by squaring - * M[1] (winsize-1) times + /* compute the value at M[1<<(winsize-1)] by squaring + * M[1] (winsize-1) times */ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; @@ -106,7 +106,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) for (x = 0; x < (winsize - 1); x++) { /* square it */ - if ((err = mp_sqr (&M[1 << (winsize - 1)], + if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { goto LBL_MU; } diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_mul_digs.c b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_mul_digs.c index f5bbf39ce2..c5892181f9 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_mul_digs.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_mul_digs.c @@ -16,7 +16,7 @@ */ /* multiplies |a| * |b| and only computes upto digs digits of result - * HAC pp. 595, Algorithm 14.12 Modified so you can control how + * HAC pp. 595, Algorithm 14.12 Modified so you can control how * many digits of output are created. */ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) @@ -29,7 +29,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* can we use the fast multiplier? */ if (((digs) < MP_WARRAY) && - MIN (a->used, b->used) < + MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { return fast_s_mp_mul_digs (a, b, c, digs); } @@ -51,10 +51,10 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) /* setup some aliases */ /* copy of the digit from a used within the nested loop */ tmpx = a->dp[ix]; - + /* an alias for the destination shifted ix places */ tmpt = t.dp + ix; - + /* an alias for the digits of b */ tmpy = b->dp; diff --git a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_sqr.c b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_sqr.c index d2531c2925..c1c3826db5 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_sqr.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bn_s_mp_sqr.c @@ -48,7 +48,7 @@ int s_mp_sqr (mp_int * a, mp_int * b) /* alias for where to store the results */ tmpt = t.dp + (2*ix + 1); - + for (iy = ix + 1; iy < pa; iy++) { /* first calculate the product */ r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); diff --git a/source4/heimdal/lib/hcrypto/libtommath/bncore.c b/source4/heimdal/lib/hcrypto/libtommath/bncore.c index 8fb1824c6f..919e3b33b0 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/bncore.c +++ b/source4/heimdal/lib/hcrypto/libtommath/bncore.c @@ -21,14 +21,14 @@ ------------------------------------------------------------- Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-) AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35 - + */ int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */ KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */ - + TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */ - TOOM_SQR_CUTOFF = 400; + TOOM_SQR_CUTOFF = 400; #endif /* $Source: /cvs/libtom/libtommath/bncore.c,v $ */ diff --git a/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi-config.h b/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi-config.h index 6049c25ba7..f69e36d650 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi-config.h +++ b/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi-config.h @@ -5,7 +5,7 @@ #define MPI_CONFIG_H_ /* - For boolean options, + For boolean options, 0 = no 1 = yes diff --git a/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi.c b/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi.c index 7c712dd62d..4030841e54 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi.c +++ b/source4/heimdal/lib/hcrypto/libtommath/mtest/mpi.c @@ -22,7 +22,7 @@ #define DIAG(T,V) #endif -/* +/* If MP_LOGTAB is not defined, use the math library to compute the logarithms on the fly. Otherwise, use the static table below. Pick which works best for your system. @@ -33,7 +33,7 @@ /* A table of the logs of 2 for various bases (the 0 and 1 entries of - this table are meaningless and should not be referenced). + this table are meaningless and should not be referenced). This table is used to compute output lengths for the mp_toradix() function. Since a number n in radix r takes up about log_r(n) @@ -43,7 +43,7 @@ log_r(n) = log_2(n) * log_r(2) This table, therefore, is a table of log_r(2) for 2 <= r <= 36, - which are the output bases supported. + which are the output bases supported. */ #include "logtab.h" @@ -104,7 +104,7 @@ static const char *mp_err_string[] = { /* Value to digit maps for radix conversion */ /* s_dmap_1 - standard digits and letters */ -static const char *s_dmap_1 = +static const char *s_dmap_1 = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; #if 0 @@ -117,7 +117,7 @@ static const char *s_dmap_2 = /* {{{ Static function declarations */ -/* +/* If MP_MACRO is false, these will be defined as actual functions; otherwise, suitable macro definitions will be used. This works around the fact that ANSI C89 doesn't support an 'inline' keyword @@ -258,7 +258,7 @@ mp_err mp_init_array(mp_int mp[], int count) return MP_OKAY; CLEANUP: - while(--pos >= 0) + while(--pos >= 0) mp_clear(&mp[pos]); return res; @@ -355,7 +355,7 @@ mp_err mp_copy(mp_int *from, mp_int *to) if(ALLOC(to) >= USED(from)) { s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from)); s_mp_copy(DIGITS(from), DIGITS(to), USED(from)); - + } else { if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL) return MP_MEM; @@ -445,7 +445,7 @@ void mp_clear_array(mp_int mp[], int count) { ARGCHK(mp != NULL && count > 0, MP_BADARG); - while(--count >= 0) + while(--count >= 0) mp_clear(&mp[count]); } /* end mp_clear_array() */ @@ -455,7 +455,7 @@ void mp_clear_array(mp_int mp[], int count) /* {{{ mp_zero(mp) */ /* - mp_zero(mp) + mp_zero(mp) Set mp to zero. Does not change the allocated size of the structure, and therefore cannot fail (except on a bad argument, which we ignore) @@ -506,7 +506,7 @@ mp_err mp_set_int(mp_int *mp, long z) if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY) return res; - res = s_mp_add_d(mp, + res = s_mp_add_d(mp, (mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX)); if(res != MP_OKAY) return res; @@ -841,9 +841,9 @@ mp_err mp_neg(mp_int *a, mp_int *b) if((res = mp_copy(a, b)) != MP_OKAY) return res; - if(s_mp_cmp_d(b, 0) == MP_EQ) + if(s_mp_cmp_d(b, 0) == MP_EQ) SIGN(b) = MP_ZPOS; - else + else SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG; return MP_OKAY; @@ -870,7 +870,7 @@ mp_err mp_add(mp_int *a, mp_int *b, mp_int *c) if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */ /* Commutativity of addition lets us do this in either order, - so we avoid having to use a temporary even if the result + so we avoid having to use a temporary even if the result is supposed to replace the output */ if(c == b) { @@ -880,14 +880,14 @@ mp_err mp_add(mp_int *a, mp_int *b, mp_int *c) if(c != a && (res = mp_copy(a, c)) != MP_OKAY) return res; - if((res = s_mp_add(c, b)) != MP_OKAY) + if((res = s_mp_add(c, b)) != MP_OKAY) return res; } } else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */ /* If the output is going to be clobbered, we will use a temporary - variable; otherwise, we'll do it without touching the memory + variable; otherwise, we'll do it without touching the memory allocator at all, if possible */ if(c == b) { @@ -1019,7 +1019,7 @@ mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c) mp_clear(&tmp); } else { - if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) + if(c != b && ((res = mp_copy(b, c)) != MP_OKAY)) return res; if((res = s_mp_sub(c, a)) != MP_OKAY) @@ -1066,12 +1066,12 @@ mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c) if((res = s_mp_mul(c, b)) != MP_OKAY) return res; } - + if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ) SIGN(c) = MP_ZPOS; else SIGN(c) = sgn; - + return MP_OKAY; } /* end mp_mul() */ @@ -1160,7 +1160,7 @@ mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r) return res; } - if(q) + if(q) mp_zero(q); return MP_OKAY; @@ -1206,10 +1206,10 @@ mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r) SIGN(&rtmp) = MP_ZPOS; /* Copy output, if it is needed */ - if(q) + if(q) s_mp_exch(&qtmp, q); - if(r) + if(r) s_mp_exch(&rtmp, r); CLEANUP: @@ -1286,12 +1286,12 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) /* Loop over bits of each non-maximal digit */ for(bit = 0; bit < DIGIT_BIT; bit++) { if(d & 1) { - if((res = s_mp_mul(&s, &x)) != MP_OKAY) + if((res = s_mp_mul(&s, &x)) != MP_OKAY) goto CLEANUP; } d >>= 1; - + if((res = s_mp_sqr(&x)) != MP_OKAY) goto CLEANUP; } @@ -1311,7 +1311,7 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c) if((res = s_mp_sqr(&x)) != MP_OKAY) goto CLEANUP; } - + if(mp_iseven(b)) SIGN(&s) = SIGN(a); @@ -1362,7 +1362,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c) /* If |a| > m, we need to divide to get the remainder and take the - absolute value. + absolute value. If |a| < m, we don't need to do any division, just copy and adjust the sign (if a is negative). @@ -1376,7 +1376,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c) if((mag = s_mp_cmp(a, m)) > 0) { if((res = mp_div(a, m, NULL, c)) != MP_OKAY) return res; - + if(SIGN(c) == MP_NEG) { if((res = mp_add(c, m, c)) != MP_OKAY) return res; @@ -1391,7 +1391,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c) return res; } - + } else { mp_zero(c); @@ -1464,9 +1464,9 @@ mp_err mp_sqrt(mp_int *a, mp_int *b) return MP_RANGE; /* Special cases for zero and one, trivial */ - if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) + if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ) return mp_copy(a, b); - + /* Initialize the temporaries we'll use below */ if((res = mp_init_size(&t, USED(a))) != MP_OKAY) return res; @@ -1508,7 +1508,7 @@ mp_add_d(&x, 1, &x); CLEANUP: mp_clear(&x); X: - mp_clear(&t); + mp_clear(&t); return res; @@ -1626,7 +1626,7 @@ mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c) Compute c = (a ** b) mod m. Uses a standard square-and-multiply method with modular reductions at each step. (This is basically the same code as mp_expt(), except for the addition of the reductions) - + The modular reductions are done using Barrett's algorithm (see s_mp_reduce() below for details) */ @@ -1655,7 +1655,7 @@ mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c) mp_set(&s, 1); /* mu = b^2k / m */ - s_mp_add_d(&mu, 1); + s_mp_add_d(&mu, 1); s_mp_lshd(&mu, 2 * USED(m)); if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY) goto CLEANUP; @@ -1866,7 +1866,7 @@ int mp_cmp_int(mp_int *a, long z) int out; ARGCHK(a != NULL, MP_EQ); - + mp_init(&tmp); mp_set_int(&tmp, z); out = mp_cmp(a, &tmp); mp_clear(&tmp); @@ -1953,13 +1953,13 @@ mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c) if(mp_isodd(&u)) { if((res = mp_copy(&v, &t)) != MP_OKAY) goto CLEANUP; - + /* t = -v */ if(SIGN(&v) == MP_ZPOS) SIGN(&t) = MP_NEG; else SIGN(&t) = MP_ZPOS; - + } else { if((res = mp_copy(&u, &t)) != MP_OKAY) goto CLEANUP; @@ -2152,7 +2152,7 @@ mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y) if(y) if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP; - + if(g) if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP; @@ -2255,7 +2255,7 @@ void mp_print(mp_int *mp, FILE *ofp) /* {{{ mp_read_signed_bin(mp, str, len) */ -/* +/* mp_read_signed_bin(mp, str, len) Read in a raw value (base 256) into the given mp_int @@ -2332,16 +2332,16 @@ mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len) if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY) return res; } - + return MP_OKAY; - + } /* end mp_read_unsigned_bin() */ /* }}} */ /* {{{ mp_unsigned_bin_size(mp) */ -int mp_unsigned_bin_size(mp_int *mp) +int mp_unsigned_bin_size(mp_int *mp) { mp_digit topdig; int count; @@ -2440,7 +2440,7 @@ int mp_count_bits(mp_int *mp) } return len; - + } /* end mp_count_bits() */ /* }}} */ @@ -2462,14 +2462,14 @@ mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix) mp_err res; mp_sign sig = MP_ZPOS; - ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, + ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX, MP_BADARG); mp_zero(mp); /* Skip leading non-digit characters until a digit or '-' or '+' */ - while(str[ix] && - (s_mp_tovalue(str[ix], radix) < 0) && + while(str[ix] && + (s_mp_tovalue(str[ix], radix) < 0) && str[ix] != '-' && str[ix] != '+') { ++ix; @@ -2525,7 +2525,7 @@ int mp_radix_size(mp_int *mp, int radix) /* num = number of digits qty = number of bits per digit radix = target base - + Return the number of digits in the specified radix that would be needed to express 'num' digits of 'qty' bits each. */ @@ -2594,7 +2594,7 @@ mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix) ++ix; --pos; } - + mp_clear(&tmp); } @@ -2806,11 +2806,11 @@ void s_mp_exch(mp_int *a, mp_int *b) /* {{{ s_mp_lshd(mp, p) */ -/* +/* Shift mp leftward by p digits, growing if needed, and zero-filling the in-shifted digits at the right end. This is a convenient alternative to multiplication by powers of the radix - */ + */ mp_err s_mp_lshd(mp_int *mp, mp_size p) { @@ -2829,7 +2829,7 @@ mp_err s_mp_lshd(mp_int *mp, mp_size p) dp = DIGITS(mp); /* Shift all the significant figures over as needed */ - for(ix = pos - p; ix >= 0; ix--) + for(ix = pos - p; ix >= 0; ix--) dp[ix + p] = dp[ix]; /* Fill the bottom digits with zeroes */ @@ -2844,7 +2844,7 @@ mp_err s_mp_lshd(mp_int *mp, mp_size p) /* {{{ s_mp_rshd(mp, p) */ -/* +/* Shift mp rightward by p digits. Maintains the invariant that digits above the precision are all zero. Digits shifted off the end are lost. Cannot fail. @@ -3054,7 +3054,7 @@ void s_mp_div_2d(mp_int *mp, mp_digit d) end of the division process). We multiply by the smallest power of 2 that gives us a leading digit - at least half the radix. By choosing a power of 2, we simplify the + at least half the radix. By choosing a power of 2, we simplify the multiplication and division steps to simple shifts. */ mp_digit s_mp_norm(mp_int *a, mp_int *b) @@ -3066,7 +3066,7 @@ mp_digit s_mp_norm(mp_int *a, mp_int *b) t <<= 1; ++d; } - + if(d != 0) { s_mp_mul_2d(a, d); s_mp_mul_2d(b, d); @@ -3188,14 +3188,14 @@ mp_err s_mp_mul_d(mp_int *a, mp_digit d) test guarantees we have enough storage to do this safely. */ if(k) { - dp[max] = k; + dp[max] = k; USED(a) = max + 1; } s_mp_clamp(a); return MP_OKAY; - + } /* end s_mp_mul_d() */ /* }}} */ @@ -3289,7 +3289,7 @@ mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */ } /* If we run out of 'b' digits before we're actually done, make - sure the carries get propagated upward... + sure the carries get propagated upward... */ used = USED(a); while(w && ix < used) { @@ -3351,7 +3351,7 @@ mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */ /* Clobber any leading zeroes we created */ s_mp_clamp(a); - /* + /* If there was a borrow out, then |b| > |a| in violation of our input invariant. We've already done the work, but we'll at least complain about it... @@ -3387,7 +3387,7 @@ mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu) s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1))); #else s_mp_mul_dig(&q, m, um + 1); -#endif +#endif /* x = x - q */ if((res = mp_sub(x, &q, x)) != MP_OKAY) @@ -3441,7 +3441,7 @@ mp_err s_mp_mul(mp_int *a, mp_int *b) pb = DIGITS(b); for(ix = 0; ix < ub; ++ix, ++pb) { - if(*pb == 0) + if(*pb == 0) continue; /* Inner product: Digits of a */ @@ -3480,7 +3480,7 @@ void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len) for(ix = 0; ix < len; ++ix, ++b) { if(*b == 0) continue; - + pa = a; for(jx = 0; jx < len; ++jx, ++pa) { pt = out + ix + jx; @@ -3547,7 +3547,7 @@ mp_err s_mp_sqr(mp_int *a) */ for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) { mp_word u = 0, v; - + /* Store this in a temporary to avoid indirections later */ pt = pbt + ix + jx; @@ -3568,7 +3568,7 @@ mp_err s_mp_sqr(mp_int *a) v = *pt + k; /* If we do not already have an overflow carry, check to see - if the addition will cause one, and set the carry out if so + if the addition will cause one, and set the carry out if so */ u |= ((MP_WORD_MAX - v) < w); @@ -3592,7 +3592,7 @@ mp_err s_mp_sqr(mp_int *a) /* If we are carrying out, propagate the carry to the next digit in the output. This may cascade, so we have to be somewhat circumspect -- but we will have enough precision in the output - that we won't overflow + that we won't overflow */ kx = 1; while(k) { @@ -3664,7 +3664,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b) while(ix >= 0) { /* Find a partial substring of a which is at least b */ while(s_mp_cmp(&rem, b) < 0 && ix >= 0) { - if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) + if((res = s_mp_lshd(&rem, 1)) != MP_OKAY) goto CLEANUP; if((res = s_mp_lshd(", 1)) != MP_OKAY) @@ -3676,8 +3676,8 @@ mp_err s_mp_div(mp_int *a, mp_int *b) } /* If we didn't find one, we're finished dividing */ - if(s_mp_cmp(&rem, b) < 0) - break; + if(s_mp_cmp(&rem, b) < 0) + break; /* Compute a guess for the next quotient digit */ q = DIGIT(&rem, USED(&rem) - 1); @@ -3695,7 +3695,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b) if((res = s_mp_mul_d(&t, q)) != MP_OKAY) goto CLEANUP; - /* + /* If it's too big, back it off. We should not have to do this more than once, or, in rare cases, twice. Knuth describes a method by which this could be reduced to a maximum of once, but @@ -3719,7 +3719,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b) } /* Denormalize remainder */ - if(d != 0) + if(d != 0) s_mp_div_2d(&rem, d); s_mp_clamp("); @@ -3727,7 +3727,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b) /* Copy quotient back to output */ s_mp_exch(", a); - + /* Copy remainder back to output */ s_mp_exch(&rem, b); @@ -3757,7 +3757,7 @@ mp_err s_mp_2expt(mp_int *a, mp_digit k) mp_zero(a); if((res = s_mp_pad(a, dig + 1)) != MP_OKAY) return res; - + DIGIT(a, dig) |= (1 << bit); return MP_OKAY; @@ -3815,7 +3815,7 @@ int s_mp_cmp_d(mp_int *a, mp_digit d) if(ua > 1) return MP_GT; - if(*ap < d) + if(*ap < d) return MP_LT; else if(*ap > d) return MP_GT; @@ -3857,7 +3857,7 @@ int s_mp_ispow2(mp_int *v) } return ((uv - 1) * DIGIT_BIT) + extra; - } + } return -1; @@ -3901,7 +3901,7 @@ int s_mp_ispow2d(mp_digit d) int s_mp_tovalue(char ch, int r) { int val, xch; - + if(r > 36) xch = ch; else @@ -3917,7 +3917,7 @@ int s_mp_tovalue(char ch, int r) val = 62; else if(xch == '/') val = 63; - else + else return -1; if(val < 0 || val >= r) @@ -3939,7 +3939,7 @@ int s_mp_tovalue(char ch, int r) The results may be odd if you use a radix < 2 or > 64, you are expected to know what you're doing. */ - + char s_mp_todigit(int val, int r, int low) { char ch; @@ -3960,7 +3960,7 @@ char s_mp_todigit(int val, int r, int low) /* {{{ s_mp_outlen(bits, radix) */ -/* +/* Return an estimate for how long a string is needed to hold a radix r representation of a number with 'bits' significant bits. diff --git a/source4/heimdal/lib/hcrypto/libtommath/tommath.h b/source4/heimdal/lib/hcrypto/libtommath/tommath.h index 426207a298..67d3b06af6 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/tommath.h +++ b/source4/heimdal/lib/hcrypto/libtommath/tommath.h @@ -46,7 +46,7 @@ extern "C" { /* detect 64-bit mode if possible */ -#if defined(__x86_64__) +#if defined(__x86_64__) #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) #define MP_64BIT #endif @@ -82,7 +82,7 @@ extern "C" { /* this is to make porting into LibTomCrypt easier :-) */ #ifndef CRYPT - #if defined(_MSC_VER) || defined(__BORLANDC__) + #if defined(_MSC_VER) || defined(__BORLANDC__) typedef unsigned __int64 ulong64; typedef signed __int64 long64; #else @@ -94,20 +94,20 @@ extern "C" { typedef unsigned long mp_digit; typedef ulong64 mp_word; -#ifdef MP_31BIT +#ifdef MP_31BIT /* this is an extension that uses 31-bit digits */ #define DIGIT_BIT 31 #else /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ #define DIGIT_BIT 28 #define MP_28BIT -#endif +#endif #endif /* define heap macros */ #ifndef CRYPT /* default to libc stuff */ - #ifndef XMALLOC + #ifndef XMALLOC #define XMALLOC malloc #define XFREE free #define XREALLOC realloc @@ -169,7 +169,7 @@ extern int KARATSUBA_MUL_CUTOFF, #define MP_PREC 32 /* default digits of precision */ #else #define MP_PREC 8 /* default digits of precision */ - #endif + #endif #endif /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ @@ -473,7 +473,7 @@ int mp_prime_fermat(mp_int *a, mp_int *b, int *result); int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); /* This gives [for a given bit size] the number of trials required - * such that Miller-Rabin gives a prob of failure lower than 2^-96 + * such that Miller-Rabin gives a prob of failure lower than 2^-96 */ int mp_prime_rabin_miller_trials(int size); @@ -494,7 +494,7 @@ int mp_prime_is_prime(mp_int *a, int t, int *result); int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bytes), - * call with bbs = 1 if you want it to be congruent to 3 mod 4 + * call with bbs = 1 if you want it to be congruent to 3 mod 4 * * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself @@ -507,7 +507,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style); /* makes a truly random prime of a given size (bits), * * Flags are as follows: - * + * * LTM_PRIME_BBS - make prime congruent to 3 mod 4 * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero diff --git a/source4/heimdal/lib/hcrypto/libtommath/tommath_superclass.h b/source4/heimdal/lib/hcrypto/libtommath/tommath_superclass.h index 2fdebe6838..a96c36feb8 100644 --- a/source4/heimdal/lib/hcrypto/libtommath/tommath_superclass.h +++ b/source4/heimdal/lib/hcrypto/libtommath/tommath_superclass.h @@ -60,9 +60,9 @@ #undef BN_FAST_MP_INVMOD_C /* To safely undefine these you have to make sure your RSA key won't exceed the Comba threshold - * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] + * which is roughly 255 digits [7140 bits for 32-bit machines, 15300 bits for 64-bit machines] * which means roughly speaking you can handle upto 2536-bit RSA keys with these defined without - * trouble. + * trouble. */ #undef BN_S_MP_MUL_DIGS_C #undef BN_S_MP_SQR_C |