diff options
author | Andrew Tridgell <tridge@samba.org> | 2003-08-13 01:53:07 +0000 |
---|---|---|
committer | Andrew Tridgell <tridge@samba.org> | 2003-08-13 01:53:07 +0000 |
commit | cc3a6ea9920f30925a678c566b4af417da6d455b (patch) | |
tree | 60015a1a5f4b47ac3d133bdbbe32b75815595d4d /source4/tests/crypttest.c | |
parent | 4d1f9d1def5bf5fea64722626028d94da49c654c (diff) | |
parent | ef2e26c91b80556af033d3335e55f5dfa6fff31d (diff) | |
download | samba-cc3a6ea9920f30925a678c566b4af417da6d455b.tar.gz samba-cc3a6ea9920f30925a678c566b4af417da6d455b.tar.bz2 samba-cc3a6ea9920f30925a678c566b4af417da6d455b.zip |
This commit was generated by cvs2svn to compensate for changes in r30,
which included commits to RCS files with non-trunk default branches.
(This used to be commit 3a69cffb062d4f1238b8cae10481c1f2ea4d3d8b)
Diffstat (limited to 'source4/tests/crypttest.c')
-rw-r--r-- | source4/tests/crypttest.c | 852 |
1 files changed, 852 insertions, 0 deletions
diff --git a/source4/tests/crypttest.c b/source4/tests/crypttest.c new file mode 100644 index 0000000000..efee2e593d --- /dev/null +++ b/source4/tests/crypttest.c @@ -0,0 +1,852 @@ +#if defined(HAVE_UNISTD_H) +#include <unistd.h> +#endif + +#include <sys/types.h> + +#ifdef HAVE_STRING_H +#include <string.h> +#endif + +#ifdef HAVE_STRINGS_H +#include <strings.h> +#endif + +#if !defined(HAVE_CRYPT) + +/* + This bit of code was derived from the UFC-crypt package which + carries the following copyright + + Modified for use by Samba by Andrew Tridgell, October 1994 + + Note that this routine is only faster on some machines. Under Linux 1.1.51 + libc 4.5.26 I actually found this routine to be slightly slower. + + Under SunOS I found a huge speedup by using these routines + (a factor of 20 or so) + + Warning: I've had a report from Steve Kennedy <steve@gbnet.org> + that this crypt routine may sometimes get the wrong answer. Only + use UFC_CRYT if you really need it. + +*/ + +/* + * UFC-crypt: ultra fast crypt(3) implementation + * + * Copyright (C) 1991-1998, Free Software Foundation, Inc. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Library General Public License for more details. + * + * You should have received a copy of the GNU Library General Public + * License along with this library; if not, write to the Free + * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * @(#)crypt_util.c 2.31 02/08/92 + * + * Support routines + * + */ + + +#ifndef long32 +#if (SIZEOF_INT == 4) +#define long32 int +#elif (SIZEOF_LONG == 4) +#define long32 long +#elif (SIZEOF_SHORT == 4) +#define long32 short +#else +/* uggh - no 32 bit type?? probably a CRAY. just hope this works ... */ +#define long32 int +#endif +#endif + +#ifndef long64 +#ifdef HAVE_LONGLONG +#define long64 long long long +#endif +#endif + +#ifndef ufc_long +#define ufc_long unsigned +#endif + +#ifndef _UFC_64_ +#define _UFC_32_ +#endif + +/* + * Permutation done once on the 56 bit + * key derived from the original 8 byte ASCII key. + */ +static int pc1[56] = { + 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, + 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, + 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, + 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 +}; + +/* + * How much to rotate each 28 bit half of the pc1 permutated + * 56 bit key before using pc2 to give the i' key + */ +static int rots[16] = { + 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 +}; + +/* + * Permutation giving the key + * of the i' DES round + */ +static int pc2[48] = { + 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, + 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, + 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, + 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 +}; + +/* + * The E expansion table which selects + * bits from the 32 bit intermediate result. + */ +static int esel[48] = { + 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, + 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, + 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, + 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 +}; +static int e_inverse[64]; + +/* + * Permutation done on the + * result of sbox lookups + */ +static int perm32[32] = { + 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, + 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 +}; + +/* + * The sboxes + */ +static int sbox[8][4][16]= { + { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, + { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, + { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, + { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } + }, + + { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, + { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, + { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, + { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } + }, + + { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, + { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, + { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, + { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } + }, + + { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, + { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, + { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, + { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } + }, + + { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, + { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, + { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, + { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } + }, + + { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, + { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, + { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, + { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } + }, + + { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, + { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, + { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, + { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } + }, + + { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, + { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, + { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, + { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } + } +}; + +/* + * This is the final + * permutation matrix + */ +static int final_perm[64] = { + 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, + 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, + 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, + 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 +}; + +/* + * The 16 DES keys in BITMASK format + */ +#ifdef _UFC_32_ +long32 _ufc_keytab[16][2]; +#endif + +#ifdef _UFC_64_ +long64 _ufc_keytab[16]; +#endif + + +#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') +#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') + +/* Macro to set a bit (0..23) */ +#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) ) + +/* + * sb arrays: + * + * Workhorses of the inner loop of the DES implementation. + * They do sbox lookup, shifting of this value, 32 bit + * permutation and E permutation for the next round. + * + * Kept in 'BITMASK' format. + */ + +#ifdef _UFC_32_ +long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192]; +static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; +#endif + +#ifdef _UFC_64_ +long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096]; +static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; +#endif + +/* + * eperm32tab: do 32 bit permutation and E selection + * + * The first index is the byte number in the 32 bit value to be permuted + * - second - is the value of this byte + * - third - selects the two 32 bit values + * + * The table is used and generated internally in init_des to speed it up + */ +static ufc_long eperm32tab[4][256][2]; + +/* + * do_pc1: permform pc1 permutation in the key schedule generation. + * + * The first index is the byte number in the 8 byte ASCII key + * - second - - the two 28 bits halfs of the result + * - third - selects the 7 bits actually used of each byte + * + * The result is kept with 28 bit per 32 bit with the 4 most significant + * bits zero. + */ +static ufc_long do_pc1[8][2][128]; + +/* + * do_pc2: permform pc2 permutation in the key schedule generation. + * + * The first index is the septet number in the two 28 bit intermediate values + * - second - - - septet values + * + * Knowledge of the structure of the pc2 permutation is used. + * + * The result is kept with 28 bit per 32 bit with the 4 most significant + * bits zero. + */ +static ufc_long do_pc2[8][128]; + +/* + * efp: undo an extra e selection and do final + * permutation giving the DES result. + * + * Invoked 6 bit a time on two 48 bit values + * giving two 32 bit longs. + */ +static ufc_long efp[16][64][2]; + +static unsigned char bytemask[8] = { + 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 +}; + +static ufc_long longmask[32] = { + 0x80000000, 0x40000000, 0x20000000, 0x10000000, + 0x08000000, 0x04000000, 0x02000000, 0x01000000, + 0x00800000, 0x00400000, 0x00200000, 0x00100000, + 0x00080000, 0x00040000, 0x00020000, 0x00010000, + 0x00008000, 0x00004000, 0x00002000, 0x00001000, + 0x00000800, 0x00000400, 0x00000200, 0x00000100, + 0x00000080, 0x00000040, 0x00000020, 0x00000010, + 0x00000008, 0x00000004, 0x00000002, 0x00000001 +}; + + +/* + * Silly rewrite of 'bzero'. I do so + * because some machines don't have + * bzero and some don't have memset. + */ + +static void clearmem(char *start, int cnt) + { while(cnt--) + *start++ = '\0'; + } + +static int initialized = 0; + +/* lookup a 6 bit value in sbox */ + +#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; + +/* + * Initialize unit - may be invoked directly + * by fcrypt users. + */ + +static void ufc_init_des(void) + { int comes_from_bit; + int bit, sg; + ufc_long j; + ufc_long mask1, mask2; + + /* + * Create the do_pc1 table used + * to affect pc1 permutation + * when generating keys + */ + for(bit = 0; bit < 56; bit++) { + comes_from_bit = pc1[bit] - 1; + mask1 = bytemask[comes_from_bit % 8 + 1]; + mask2 = longmask[bit % 28 + 4]; + for(j = 0; j < 128; j++) { + if(j & mask1) + do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; + } + } + + /* + * Create the do_pc2 table used + * to affect pc2 permutation when + * generating keys + */ + for(bit = 0; bit < 48; bit++) { + comes_from_bit = pc2[bit] - 1; + mask1 = bytemask[comes_from_bit % 7 + 1]; + mask2 = BITMASK(bit % 24); + for(j = 0; j < 128; j++) { + if(j & mask1) + do_pc2[comes_from_bit / 7][j] |= mask2; + } + } + + /* + * Now generate the table used to do combined + * 32 bit permutation and e expansion + * + * We use it because we have to permute 16384 32 bit + * longs into 48 bit in order to initialize sb. + * + * Looping 48 rounds per permutation becomes + * just too slow... + * + */ + + clearmem((char*)eperm32tab, sizeof(eperm32tab)); + + for(bit = 0; bit < 48; bit++) { + ufc_long inner_mask1,comes_from; + + comes_from = perm32[esel[bit]-1]-1; + inner_mask1 = bytemask[comes_from % 8]; + + for(j = 256; j--;) { + if(j & inner_mask1) + eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24); + } + } + + /* + * Create the sb tables: + * + * For each 12 bit segment of an 48 bit intermediate + * result, the sb table precomputes the two 4 bit + * values of the sbox lookups done with the two 6 + * bit halves, shifts them to their proper place, + * sends them through perm32 and finally E expands + * them so that they are ready for the next + * DES round. + * + */ + for(sg = 0; sg < 4; sg++) { + int j1, j2; + int s1, s2; + + for(j1 = 0; j1 < 64; j1++) { + s1 = s_lookup(2 * sg, j1); + for(j2 = 0; j2 < 64; j2++) { + ufc_long to_permute, inx; + + s2 = s_lookup(2 * sg + 1, j2); + to_permute = ((s1 << 4) | s2) << (24 - 8 * sg); + +#ifdef _UFC_32_ + inx = ((j1 << 6) | j2) << 1; + sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; + sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; + sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; + sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; + sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; + sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; + sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; + sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; +#endif +#ifdef _UFC_64_ + inx = ((j1 << 6) | j2); + sb[sg][inx] = + ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | + (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; + sb[sg][inx] |= + ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | + (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; + sb[sg][inx] |= + ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | + (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; + sb[sg][inx] |= + ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | + (long64)eperm32tab[3][(to_permute) & 0xff][1]; +#endif + } + } + } + + /* + * Create an inverse matrix for esel telling + * where to plug out bits if undoing it + */ + for(bit=48; bit--;) { + e_inverse[esel[bit] - 1 ] = bit; + e_inverse[esel[bit] - 1 + 32] = bit + 48; + } + + /* + * create efp: the matrix used to + * undo the E expansion and effect final permutation + */ + clearmem((char*)efp, sizeof efp); + for(bit = 0; bit < 64; bit++) { + int o_bit, o_long; + ufc_long word_value, inner_mask1, inner_mask2; + int comes_from_f_bit, comes_from_e_bit; + int comes_from_word, bit_within_word; + + /* See where bit i belongs in the two 32 bit long's */ + o_long = bit / 32; /* 0..1 */ + o_bit = bit % 32; /* 0..31 */ + + /* + * And find a bit in the e permutated value setting this bit. + * + * Note: the e selection may have selected the same bit several + * times. By the initialization of e_inverse, we only look + * for one specific instance. + */ + comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ + comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ + comes_from_word = comes_from_e_bit / 6; /* 0..15 */ + bit_within_word = comes_from_e_bit % 6; /* 0..5 */ + + inner_mask1 = longmask[bit_within_word + 26]; + inner_mask2 = longmask[o_bit]; + + for(word_value = 64; word_value--;) { + if(word_value & inner_mask1) + efp[comes_from_word][word_value][o_long] |= inner_mask2; + } + } + initialized++; + } + +/* + * Process the elements of the sb table permuting the + * bits swapped in the expansion by the current salt. + */ + +#ifdef _UFC_32_ +static void shuffle_sb(long32 *k, ufc_long saltbits) + { ufc_long j; + long32 x; + for(j=4096; j--;) { + x = (k[0] ^ k[1]) & (long32)saltbits; + *k++ ^= x; + *k++ ^= x; + } + } +#endif + +#ifdef _UFC_64_ +static void shuffle_sb(long64 *k, ufc_long saltbits) + { ufc_long j; + long64 x; + for(j=4096; j--;) { + x = ((*k >> 32) ^ *k) & (long64)saltbits; + *k++ ^= (x << 32) | x; + } + } +#endif + +/* + * Setup the unit for a new salt + * Hopefully we'll not see a new salt in each crypt call. + */ + +static unsigned char current_salt[3] = "&&"; /* invalid value */ +static ufc_long current_saltbits = 0; +static int direction = 0; + +static void setup_salt(const char *s1) + { ufc_long i, j, saltbits; + const unsigned char *s2 = (const unsigned char *)s1; + + if(!initialized) + ufc_init_des(); + + if(s2[0] == current_salt[0] && s2[1] == current_salt[1]) + return; + current_salt[0] = s2[0]; current_salt[1] = s2[1]; + + /* + * This is the only crypt change to DES: + * entries are swapped in the expansion table + * according to the bits set in the salt. + */ + saltbits = 0; + for(i = 0; i < 2; i++) { + long c=ascii_to_bin(s2[i]); + if(c < 0 || c > 63) + c = 0; + for(j = 0; j < 6; j++) { + if((c >> j) & 0x1) + saltbits |= BITMASK(6 * i + j); + } + } + + /* + * Permute the sb table values + * to reflect the changed e + * selection table + */ + shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); + shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits); + shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits); + shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits); + + current_saltbits = saltbits; + } + +static void ufc_mk_keytab(char *key) + { ufc_long v1, v2, *k1; + int i; +#ifdef _UFC_32_ + long32 v, *k2 = &_ufc_keytab[0][0]; +#endif +#ifdef _UFC_64_ + long64 v, *k2 = &_ufc_keytab[0]; +#endif + + v1 = v2 = 0; k1 = &do_pc1[0][0][0]; + for(i = 8; i--;) { + v1 |= k1[*key & 0x7f]; k1 += 128; + v2 |= k1[*key++ & 0x7f]; k1 += 128; + } + + for(i = 0; i < 16; i++) { + k1 = &do_pc2[0][0]; + + v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); + v = k1[(v1 >> 21) & 0x7f]; k1 += 128; + v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; + v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; + v |= k1[(v1 ) & 0x7f]; k1 += 128; + +#ifdef _UFC_32_ + *k2++ = v; + v = 0; +#endif +#ifdef _UFC_64_ + v <<= 32; +#endif + + v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); + v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; + v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; + v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; + v |= k1[(v2 ) & 0x7f]; + + *k2++ = v; + } + + direction = 0; + } + +/* + * Undo an extra E selection and do final permutations + */ + +ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2) + { ufc_long v1, v2, x; + static ufc_long ary[2]; + + x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x; + x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x; + + v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; + + v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; + v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; + v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; + v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; + + v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; + v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; + v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; + v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; + + v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; + v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; + v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; + v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; + + v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; + v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; + v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; + v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; + + ary[0] = v1; ary[1] = v2; + return ary; + } + +/* + * crypt only: convert from 64 bit to 11 bit ASCII + * prefixing with the salt + */ + +static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt) + { static char outbuf[14]; + int i, s; + + outbuf[0] = salt[0]; + outbuf[1] = salt[1] ? salt[1] : salt[0]; + + for(i = 0; i < 5; i++) + outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f); + + s = (v2 & 0xf) << 2; + v2 = (v2 >> 2) | ((v1 & 0x3) << 30); + + for(i = 5; i < 10; i++) + outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f); + + outbuf[12] = bin_to_ascii(s); + outbuf[13] = 0; + + return outbuf; + } + +/* + * UNIX crypt function + */ + +static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long); + +char *ufc_crypt(const char *key,const char *salt) + { ufc_long *s; + char ktab[9]; + + /* + * Hack DES tables according to salt + */ + setup_salt(salt); + + /* + * Setup key schedule + */ + clearmem(ktab, sizeof ktab); + strncpy(ktab, key, 8); + ufc_mk_keytab(ktab); + + /* + * Go for the 25 DES encryptions + */ + s = _ufc_doit((ufc_long)0, (ufc_long)0, + (ufc_long)0, (ufc_long)0, (ufc_long)25); + + /* + * And convert back to 6 bit ASCII + */ + return output_conversion(s[0], s[1], salt); + } + + +#ifdef _UFC_32_ + +/* + * 32 bit version + */ + +extern long32 _ufc_keytab[16][2]; +extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; + +#define SBA(sb, v) (*(long32*)((char*)(sb)+(v))) + +static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) + { int i; + long32 s, *k; + + while(itr--) { + k = &_ufc_keytab[0][0]; + for(i=8; i--; ) { + s = *k++ ^ r1; + l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); + l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4); + s = *k++ ^ r2; + l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); + l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4); + + s = *k++ ^ l1; + r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); + r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4); + s = *k++ ^ l2; + r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); + r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4); + } + s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s; + } + return _ufc_dofinalperm(l1, l2, r1, r2); + } + +#endif + +#ifdef _UFC_64_ + +/* + * 64 bit version + */ + +extern long64 _ufc_keytab[16]; +extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; + +#define SBA(sb, v) (*(long64*)((char*)(sb)+(v))) + +static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) + { int i; + long64 l, r, s, *k; + + l = (((long64)l1) << 32) | ((long64)l2); + r = (((long64)r1) << 32) | ((long64)r2); + + while(itr--) { + k = &_ufc_keytab[0]; + for(i=8; i--; ) { + s = *k++ ^ r; + l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); + l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); + l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); + l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); + + s = *k++ ^ l; + r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); + r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); + r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); + r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); + } + s=l; l=r; r=s; + } + + l1 = l >> 32; l2 = l & 0xffffffff; + r1 = r >> 32; r2 = r & 0xffffffff; + return _ufc_dofinalperm(l1, l2, r1, r2); + } + +#endif + +#define crypt ufc_crypt +#endif + +main() +{ + char passwd[9]; + char salt[9]; + char c_out1[256]; + char c_out2[256]; + + char expected_out[14]; + + strcpy(expected_out, "12yJ.Of/NQ.Pk"); + strcpy(passwd, "12345678"); + strcpy(salt, "12345678"); + + strcpy(c_out1, crypt(passwd, salt)); + salt[2] = '\0'; + strcpy(c_out2, crypt(passwd, salt)); + + /* + * If the non-trucated salt fails but the + * truncated salt succeeds then exit 1. + */ + + if((strcmp(c_out1, expected_out) != 0) && + (strcmp(c_out2, expected_out) == 0)) + exit(1); + +#ifdef HAVE_BIGCRYPT + /* + * Try the same with bigcrypt... + */ + + { + char big_passwd[17]; + char big_salt[17]; + char big_c_out1[256]; + char big_c_out2[256]; + char big_expected_out[27]; + + strcpy(big_passwd, "1234567812345678"); + strcpy(big_salt, "1234567812345678"); + strcpy(big_expected_out, "12yJ.Of/NQ.PklfyCuHi/rwM"); + + strcpy(big_c_out1, bigcrypt(big_passwd, big_salt)); + big_salt[2] = '\0'; + strcpy(big_c_out2, bigcrypt(big_passwd, big_salt)); + + /* + * If the non-trucated salt fails but the + * truncated salt succeeds then exit 1. + */ + + if((strcmp(big_c_out1, big_expected_out) != 0) && + (strcmp(big_c_out2, big_expected_out) == 0)) + exit(1); + + } +#endif + + exit(0); +} |