diff options
Diffstat (limited to 'lib/ccan/list')
-rw-r--r-- | lib/ccan/list/LICENSE | 508 | ||||
-rw-r--r-- | lib/ccan/list/_info | 70 | ||||
-rw-r--r-- | lib/ccan/list/list.c | 43 | ||||
-rw-r--r-- | lib/ccan/list/list.d | 27 | ||||
-rw-r--r-- | lib/ccan/list/list.h | 469 | ||||
-rw-r--r-- | lib/ccan/list/test/compile_ok-constant.c | 49 | ||||
-rw-r--r-- | lib/ccan/list/test/helper.c | 54 | ||||
-rw-r--r-- | lib/ccan/list/test/helper.h | 7 | ||||
-rw-r--r-- | lib/ccan/list/test/run-check-corrupt.c | 89 | ||||
-rw-r--r-- | lib/ccan/list/test/run-list_del_from-assert.c | 36 | ||||
-rw-r--r-- | lib/ccan/list/test/run-single-eval.c | 168 | ||||
-rw-r--r-- | lib/ccan/list/test/run-with-debug.c | 3 | ||||
-rw-r--r-- | lib/ccan/list/test/run.c | 200 |
13 files changed, 1723 insertions, 0 deletions
diff --git a/lib/ccan/list/LICENSE b/lib/ccan/list/LICENSE new file mode 100644 index 0000000000..5522aa5f33 --- /dev/null +++ b/lib/ccan/list/LICENSE @@ -0,0 +1,508 @@ + + GNU LESSER GENERAL PUBLIC LICENSE + Version 2.1, February 1999 + + Copyright (C) 1991, 1999 Free Software Foundation, Inc. + 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + +[This is the first released version of the Lesser GPL. It also counts + as the successor of the GNU Library Public License, version 2, hence + the version number 2.1.] + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +Licenses are intended to guarantee your freedom to share and change +free software--to make sure the software is free for all its users. + + This license, the Lesser General Public License, applies to some +specially designated software packages--typically libraries--of the +Free Software Foundation and other authors who decide to use it. You +can use it too, but we suggest you first think carefully about whether +this license or the ordinary General Public License is the better +strategy to use in any particular case, based on the explanations +below. + + When we speak of free software, we are referring to freedom of use, +not price. Our General Public Licenses are designed to make sure that +you have the freedom to distribute copies of free software (and charge +for this service if you wish); that you receive source code or can get +it if you want it; that you can change the software and use pieces of +it in new free programs; and that you are informed that you can do +these things. + + To protect your rights, we need to make restrictions that forbid +distributors to deny you these rights or to ask you to surrender these +rights. These restrictions translate to certain responsibilities for +you if you distribute copies of the library or if you modify it. + + For example, if you distribute copies of the library, whether gratis +or for a fee, you must give the recipients all the rights that we gave +you. You must make sure that they, too, receive or can get the source +code. If you link other code with the library, you must provide +complete object files to the recipients, so that they can relink them +with the library after making changes to the library and recompiling +it. And you must show them these terms so they know their rights. + + We protect your rights with a two-step method: (1) we copyright the +library, and (2) we offer you this license, which gives you legal +permission to copy, distribute and/or modify the library. + + To protect each distributor, we want to make it very clear that +there is no warranty for the free library. Also, if the library is +modified by someone else and passed on, the recipients should know +that what they have is not the original version, so that the original +author's reputation will not be affected by problems that might be +introduced by others. + + Finally, software patents pose a constant threat to the existence of +any free program. We wish to make sure that a company cannot +effectively restrict the users of a free program by obtaining a +restrictive license from a patent holder. Therefore, we insist that +any patent license obtained for a version of the library must be +consistent with the full freedom of use specified in this license. + + Most GNU software, including some libraries, is covered by the +ordinary GNU General Public License. This license, the GNU Lesser +General Public License, applies to certain designated libraries, and +is quite different from the ordinary General Public License. We use +this license for certain libraries in order to permit linking those +libraries into non-free programs. + + When a program is linked with a library, whether statically or using +a shared library, the combination of the two is legally speaking a +combined work, a derivative of the original library. The ordinary +General Public License therefore permits such linking only if the +entire combination fits its criteria of freedom. The Lesser General +Public License permits more lax criteria for linking other code with +the library. + + We call this license the "Lesser" General Public License because it +does Less to protect the user's freedom than the ordinary General +Public License. It also provides other free software developers Less +of an advantage over competing non-free programs. These disadvantages +are the reason we use the ordinary General Public License for many +libraries. However, the Lesser license provides advantages in certain +special circumstances. + + For example, on rare occasions, there may be a special need to +encourage the widest possible use of a certain library, so that it +becomes a de-facto standard. To achieve this, non-free programs must +be allowed to use the library. A more frequent case is that a free +library does the same job as widely used non-free libraries. In this +case, there is little to gain by limiting the free library to free +software only, so we use the Lesser General Public License. + + In other cases, permission to use a particular library in non-free +programs enables a greater number of people to use a large body of +free software. For example, permission to use the GNU C Library in +non-free programs enables many more people to use the whole GNU +operating system, as well as its variant, the GNU/Linux operating +system. + + Although the Lesser General Public License is Less protective of the +users' freedom, it does ensure that the user of a program that is +linked with the Library has the freedom and the wherewithal to run +that program using a modified version of the Library. + + The precise terms and conditions for copying, distribution and +modification follow. Pay close attention to the difference between a +"work based on the library" and a "work that uses the library". The +former contains code derived from the library, whereas the latter must +be combined with the library in order to run. + + GNU LESSER GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License Agreement applies to any software library or other +program which contains a notice placed by the copyright holder or +other authorized party saying it may be distributed under the terms of +this Lesser General Public License (also called "this License"). +Each licensee is addressed as "you". + + A "library" means a collection of software functions and/or data +prepared so as to be conveniently linked with application programs +(which use some of those functions and data) to form executables. + + The "Library", below, refers to any such software library or work +which has been distributed under these terms. A "work based on the +Library" means either the Library or any derivative work under +copyright law: that is to say, a work containing the Library or a +portion of it, either verbatim or with modifications and/or translated +straightforwardly into another language. (Hereinafter, translation is +included without limitation in the term "modification".) + + "Source code" for a work means the preferred form of the work for +making modifications to it. For a library, complete source code means +all the source code for all modules it contains, plus any associated +interface definition files, plus the scripts used to control +compilation and installation of the library. + + Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running a program using the Library is not restricted, and output from +such a program is covered only if its contents constitute a work based +on the Library (independent of the use of the Library in a tool for +writing it). Whether that is true depends on what the Library does +and what the program that uses the Library does. + + 1. You may copy and distribute verbatim copies of the Library's +complete source code as you receive it, in any medium, provided that +you conspicuously and appropriately publish on each copy an +appropriate copyright notice and disclaimer of warranty; keep intact +all the notices that refer to this License and to the absence of any +warranty; and distribute a copy of this License along with the +Library. + + You may charge a fee for the physical act of transferring a copy, +and you may at your option offer warranty protection in exchange for a +fee. + + 2. You may modify your copy or copies of the Library or any portion +of it, thus forming a work based on the Library, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) The modified work must itself be a software library. + + b) You must cause the files modified to carry prominent notices + stating that you changed the files and the date of any change. + + c) You must cause the whole of the work to be licensed at no + charge to all third parties under the terms of this License. + + d) If a facility in the modified Library refers to a function or a + table of data to be supplied by an application program that uses + the facility, other than as an argument passed when the facility + is invoked, then you must make a good faith effort to ensure that, + in the event an application does not supply such function or + table, the facility still operates, and performs whatever part of + its purpose remains meaningful. + + (For example, a function in a library to compute square roots has + a purpose that is entirely well-defined independent of the + application. Therefore, Subsection 2d requires that any + application-supplied function or table used by this function must + be optional: if the application does not supply it, the square + root function must still compute square roots.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Library, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Library, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote +it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Library. + +In addition, mere aggregation of another work not based on the Library +with the Library (or with a work based on the Library) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may opt to apply the terms of the ordinary GNU General Public +License instead of this License to a given copy of the Library. To do +this, you must alter all the notices that refer to this License, so +that they refer to the ordinary GNU General Public License, version 2, +instead of to this License. (If a newer version than version 2 of the +ordinary GNU General Public License has appeared, then you can specify +that version instead if you wish.) Do not make any other change in +these notices. + + Once this change is made in a given copy, it is irreversible for +that copy, so the ordinary GNU General Public License applies to all +subsequent copies and derivative works made from that copy. + + This option is useful when you wish to copy part of the code of +the Library into a program that is not a library. + + 4. You may copy and distribute the Library (or a portion or +derivative of it, under Section 2) in object code or executable form +under the terms of Sections 1 and 2 above provided that you accompany +it with the complete corresponding machine-readable source code, which +must be distributed under the terms of Sections 1 and 2 above on a +medium customarily used for software interchange. + + If distribution of object code is made by offering access to copy +from a designated place, then offering equivalent access to copy the +source code from the same place satisfies the requirement to +distribute the source code, even though third parties are not +compelled to copy the source along with the object code. + + 5. A program that contains no derivative of any portion of the +Library, but is designed to work with the Library by being compiled or +linked with it, is called a "work that uses the Library". Such a +work, in isolation, is not a derivative work of the Library, and +therefore falls outside the scope of this License. + + However, linking a "work that uses the Library" with the Library +creates an executable that is a derivative of the Library (because it +contains portions of the Library), rather than a "work that uses the +library". The executable is therefore covered by this License. +Section 6 states terms for distribution of such executables. + + When a "work that uses the Library" uses material from a header file +that is part of the Library, the object code for the work may be a +derivative work of the Library even though the source code is not. +Whether this is true is especially significant if the work can be +linked without the Library, or if the work is itself a library. The +threshold for this to be true is not precisely defined by law. + + If such an object file uses only numerical parameters, data +structure layouts and accessors, and small macros and small inline +functions (ten lines or less in length), then the use of the object +file is unrestricted, regardless of whether it is legally a derivative +work. (Executables containing this object code plus portions of the +Library will still fall under Section 6.) + + Otherwise, if the work is a derivative of the Library, you may +distribute the object code for the work under the terms of Section 6. +Any executables containing that work also fall under Section 6, +whether or not they are linked directly with the Library itself. + + 6. As an exception to the Sections above, you may also combine or +link a "work that uses the Library" with the Library to produce a +work containing portions of the Library, and distribute that work +under terms of your choice, provided that the terms permit +modification of the work for the customer's own use and reverse +engineering for debugging such modifications. + + You must give prominent notice with each copy of the work that the +Library is used in it and that the Library and its use are covered by +this License. You must supply a copy of this License. If the work +during execution displays copyright notices, you must include the +copyright notice for the Library among them, as well as a reference +directing the user to the copy of this License. Also, you must do one +of these things: + + a) Accompany the work with the complete corresponding + machine-readable source code for the Library including whatever + changes were used in the work (which must be distributed under + Sections 1 and 2 above); and, if the work is an executable linked + with the Library, with the complete machine-readable "work that + uses the Library", as object code and/or source code, so that the + user can modify the Library and then relink to produce a modified + executable containing the modified Library. (It is understood + that the user who changes the contents of definitions files in the + Library will not necessarily be able to recompile the application + to use the modified definitions.) + + b) Use a suitable shared library mechanism for linking with the + Library. A suitable mechanism is one that (1) uses at run time a + copy of the library already present on the user's computer system, + rather than copying library functions into the executable, and (2) + will operate properly with a modified version of the library, if + the user installs one, as long as the modified version is + interface-compatible with the version that the work was made with. + + c) Accompany the work with a written offer, valid for at least + three years, to give the same user the materials specified in + Subsection 6a, above, for a charge no more than the cost of + performing this distribution. + + d) If distribution of the work is made by offering access to copy + from a designated place, offer equivalent access to copy the above + specified materials from the same place. + + e) Verify that the user has already received a copy of these + materials or that you have already sent this user a copy. + + For an executable, the required form of the "work that uses the +Library" must include any data and utility programs needed for +reproducing the executable from it. However, as a special exception, +the materials to be distributed need not include anything that is +normally distributed (in either source or binary form) with the major +components (compiler, kernel, and so on) of the operating system on +which the executable runs, unless that component itself accompanies +the executable. + + It may happen that this requirement contradicts the license +restrictions of other proprietary libraries that do not normally +accompany the operating system. Such a contradiction means you cannot +use both them and the Library together in an executable that you +distribute. + + 7. You may place library facilities that are a work based on the +Library side-by-side in a single library together with other library +facilities not covered by this License, and distribute such a combined +library, provided that the separate distribution of the work based on +the Library and of the other library facilities is otherwise +permitted, and provided that you do these two things: + + a) Accompany the combined library with a copy of the same work + based on the Library, uncombined with any other library + facilities. This must be distributed under the terms of the + Sections above. + + b) Give prominent notice with the combined library of the fact + that part of it is a work based on the Library, and explaining + where to find the accompanying uncombined form of the same work. + + 8. You may not copy, modify, sublicense, link with, or distribute +the Library except as expressly provided under this License. Any +attempt otherwise to copy, modify, sublicense, link with, or +distribute the Library is void, and will automatically terminate your +rights under this License. However, parties who have received copies, +or rights, from you under this License will not have their licenses +terminated so long as such parties remain in full compliance. + + 9. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Library or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Library (or any work based on the +Library), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Library or works based on it. + + 10. Each time you redistribute the Library (or any work based on the +Library), the recipient automatically receives a license from the +original licensor to copy, distribute, link with or modify the Library +subject to these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties with +this License. + + 11. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Library at all. For example, if a patent +license would not permit royalty-free redistribution of the Library by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Library. + +If any portion of this section is held invalid or unenforceable under +any particular circumstance, the balance of the section is intended to +apply, and the section as a whole is intended to apply in other +circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 12. If the distribution and/or use of the Library is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Library under this License +may add an explicit geographical distribution limitation excluding those +countries, so that distribution is permitted only in or among +countries not thus excluded. In such case, this License incorporates +the limitation as if written in the body of this License. + + 13. The Free Software Foundation may publish revised and/or new +versions of the Lesser General Public License from time to time. +Such new versions will be similar in spirit to the present version, +but may differ in detail to address new problems or concerns. + +Each version is given a distinguishing version number. If the Library +specifies a version number of this License which applies to it and +"any later version", you have the option of following the terms and +conditions either of that version or of any later version published by +the Free Software Foundation. If the Library does not specify a +license version number, you may choose any version ever published by +the Free Software Foundation. + + 14. If you wish to incorporate parts of the Library into other free +programs whose distribution conditions are incompatible with these, +write to the author to ask for permission. For software which is +copyrighted by the Free Software Foundation, write to the Free +Software Foundation; we sometimes make exceptions for this. Our +decision will be guided by the two goals of preserving the free status +of all derivatives of our free software and of promoting the sharing +and reuse of software generally. + + NO WARRANTY + + 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO +WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. +EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR +OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY +KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE +LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME +THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN +WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY +AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU +FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR +CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE +LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING +RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A +FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF +SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH +DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Libraries + + If you develop a new library, and you want it to be of the greatest +possible use to the public, we recommend making it free software that +everyone can redistribute and change. You can do so by permitting +redistribution under these terms (or, alternatively, under the terms +of the ordinary General Public License). + + To apply these terms, attach the following notices to the library. +It is safest to attach them to the start of each source file to most +effectively convey the exclusion of warranty; and each file should +have at least the "copyright" line and a pointer to where the full +notice is found. + + + <one line to give the library's name and a brief idea of what it does.> + Copyright (C) <year> <name of author> + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + +Also add information on how to contact you by electronic and paper mail. + +You should also get your employer (if you work as a programmer) or +your school, if any, to sign a "copyright disclaimer" for the library, +if necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the + library `Frob' (a library for tweaking knobs) written by James + Random Hacker. + + <signature of Ty Coon>, 1 April 1990 + Ty Coon, President of Vice + +That's all there is to it! diff --git a/lib/ccan/list/_info b/lib/ccan/list/_info new file mode 100644 index 0000000000..a30659c1cf --- /dev/null +++ b/lib/ccan/list/_info @@ -0,0 +1,70 @@ +#include <stdio.h> +#include <string.h> +#include "config.h" + +/** + * list - double linked list routines + * + * The list header contains routines for manipulating double linked lists. + * It defines two types: struct list_head used for anchoring lists, and + * struct list_node which is usually embedded in the structure which is placed + * in the list. + * + * Example: + * #include <err.h> + * #include <stdio.h> + * #include <stdlib.h> + * #include <ccan/list/list.h> + * + * struct parent { + * const char *name; + * struct list_head children; + * unsigned int num_children; + * }; + * + * struct child { + * const char *name; + * struct list_node list; + * }; + * + * int main(int argc, char *argv[]) + * { + * struct parent p; + * struct child *c; + * unsigned int i; + * + * if (argc < 2) + * errx(1, "Usage: %s parent children...", argv[0]); + * + * p.name = argv[1]; + * list_head_init(&p.children); + * p.num_children = 0; + * for (i = 2; i < argc; i++) { + * c = malloc(sizeof(*c)); + * c->name = argv[i]; + * list_add(&p.children, &c->list); + * p.num_children++; + * } + * + * printf("%s has %u children:", p.name, p.num_children); + * list_for_each(&p.children, c, list) + * printf("%s ", c->name); + * printf("\n"); + * return 0; + * } + * + * License: LGPL (v2.1 or any later version) + * Author: Rusty Russell <rusty@rustcorp.com.au> + */ +int main(int argc, char *argv[]) +{ + if (argc != 2) + return 1; + + if (strcmp(argv[1], "depends") == 0) { + printf("ccan/container_of\n"); + return 0; + } + + return 1; +} diff --git a/lib/ccan/list/list.c b/lib/ccan/list/list.c new file mode 100644 index 0000000000..29dc30ba19 --- /dev/null +++ b/lib/ccan/list/list.c @@ -0,0 +1,43 @@ +/* Licensed under LGPLv2.1+ - see LICENSE file for details */ +#include <stdio.h> +#include <stdlib.h> +#include "list.h" + +static void *corrupt(const char *abortstr, + const struct list_node *head, + const struct list_node *node, + unsigned int count) +{ + if (abortstr) { + fprintf(stderr, + "%s: prev corrupt in node %p (%u) of %p\n", + abortstr, node, count, head); + abort(); + } + return NULL; +} + +struct list_node *list_check_node(const struct list_node *node, + const char *abortstr) +{ + const struct list_node *p, *n; + int count = 0; + + for (p = node, n = node->next; n != node; p = n, n = n->next) { + count++; + if (n->prev != p) + return corrupt(abortstr, node, n, count); + } + /* Check prev on head node. */ + if (node->prev != p) + return corrupt(abortstr, node, node, 0); + + return (struct list_node *)node; +} + +struct list_head *list_check(const struct list_head *h, const char *abortstr) +{ + if (!list_check_node(&h->n, abortstr)) + return NULL; + return (struct list_head *)h; +} diff --git a/lib/ccan/list/list.d b/lib/ccan/list/list.d new file mode 100644 index 0000000000..dd249588c4 --- /dev/null +++ b/lib/ccan/list/list.d @@ -0,0 +1,27 @@ +ccan/list/list.o: ccan/list/list.c /usr/include/stdio.h \ + /usr/include/features.h /usr/include/i386-linux-gnu/bits/predefs.h \ + /usr/include/i386-linux-gnu/sys/cdefs.h \ + /usr/include/i386-linux-gnu/bits/wordsize.h \ + /usr/include/i386-linux-gnu/gnu/stubs.h \ + /usr/include/i386-linux-gnu/gnu/stubs-32.h \ + /usr/lib/gcc/i686-linux-gnu/4.5.4/include/stddef.h \ + /usr/include/i386-linux-gnu/bits/types.h \ + /usr/include/i386-linux-gnu/bits/typesizes.h /usr/include/libio.h \ + /usr/include/_G_config.h /usr/include/wchar.h \ + /usr/lib/gcc/i686-linux-gnu/4.5.4/include/stdarg.h \ + /usr/include/i386-linux-gnu/bits/stdio_lim.h \ + /usr/include/i386-linux-gnu/bits/sys_errlist.h /usr/include/stdlib.h \ + /usr/include/i386-linux-gnu/bits/waitflags.h \ + /usr/include/i386-linux-gnu/bits/waitstatus.h /usr/include/endian.h \ + /usr/include/i386-linux-gnu/bits/endian.h \ + /usr/include/i386-linux-gnu/bits/byteswap.h \ + /usr/include/i386-linux-gnu/sys/types.h /usr/include/time.h \ + /usr/include/i386-linux-gnu/sys/select.h \ + /usr/include/i386-linux-gnu/bits/select.h \ + /usr/include/i386-linux-gnu/bits/sigset.h \ + /usr/include/i386-linux-gnu/bits/time.h \ + /usr/include/i386-linux-gnu/sys/sysmacros.h \ + /usr/include/i386-linux-gnu/bits/pthreadtypes.h /usr/include/alloca.h \ + ccan/list/list.h /usr/lib/gcc/i686-linux-gnu/4.5.4/include/stdbool.h \ + /usr/include/assert.h ccan/container_of/container_of.h config.h \ + ccan/check_type/check_type.h diff --git a/lib/ccan/list/list.h b/lib/ccan/list/list.h new file mode 100644 index 0000000000..0091ea4b65 --- /dev/null +++ b/lib/ccan/list/list.h @@ -0,0 +1,469 @@ +/* Licensed under LGPLv2.1+ - see LICENSE file for details */ +#ifndef CCAN_LIST_H +#define CCAN_LIST_H +#include <stdbool.h> +#include <assert.h> +#include <ccan/container_of/container_of.h> +#include <ccan/check_type/check_type.h> + +/** + * struct list_node - an entry in a doubly-linked list + * @next: next entry (self if empty) + * @prev: previous entry (self if empty) + * + * This is used as an entry in a linked list. + * Example: + * struct child { + * const char *name; + * // Linked list of all us children. + * struct list_node list; + * }; + */ +struct list_node +{ + struct list_node *next, *prev; +}; + +/** + * struct list_head - the head of a doubly-linked list + * @h: the list_head (containing next and prev pointers) + * + * This is used as the head of a linked list. + * Example: + * struct parent { + * const char *name; + * struct list_head children; + * unsigned int num_children; + * }; + */ +struct list_head +{ + struct list_node n; +}; + +/** + * list_check - check head of a list for consistency + * @h: the list_head + * @abortstr: the location to print on aborting, or NULL. + * + * Because list_nodes have redundant information, consistency checking between + * the back and forward links can be done. This is useful as a debugging check. + * If @abortstr is non-NULL, that will be printed in a diagnostic if the list + * is inconsistent, and the function will abort. + * + * Returns the list head if the list is consistent, NULL if not (it + * can never return NULL if @abortstr is set). + * + * See also: list_check_node() + * + * Example: + * static void dump_parent(struct parent *p) + * { + * struct child *c; + * + * printf("%s (%u children):\n", p->name, p->num_children); + * list_check(&p->children, "bad child list"); + * list_for_each(&p->children, c, list) + * printf(" -> %s\n", c->name); + * } + */ +struct list_head *list_check(const struct list_head *h, const char *abortstr); + +/** + * list_check_node - check node of a list for consistency + * @n: the list_node + * @abortstr: the location to print on aborting, or NULL. + * + * Check consistency of the list node is in (it must be in one). + * + * See also: list_check() + * + * Example: + * static void dump_child(const struct child *c) + * { + * list_check_node(&c->list, "bad child list"); + * printf("%s\n", c->name); + * } + */ +struct list_node *list_check_node(const struct list_node *n, + const char *abortstr); + +#ifdef CCAN_LIST_DEBUG +#define list_debug(h) list_check((h), __func__) +#define list_debug_node(n) list_check_node((n), __func__) +#else +#define list_debug(h) (h) +#define list_debug_node(n) (n) +#endif + +/** + * LIST_HEAD_INIT - initializer for an empty list_head + * @name: the name of the list. + * + * Explicit initializer for an empty list. + * + * See also: + * LIST_HEAD, list_head_init() + * + * Example: + * static struct list_head my_list = LIST_HEAD_INIT(my_list); + */ +#define LIST_HEAD_INIT(name) { { &name.n, &name.n } } + +/** + * LIST_HEAD - define and initialize an empty list_head + * @name: the name of the list. + * + * The LIST_HEAD macro defines a list_head and initializes it to an empty + * list. It can be prepended by "static" to define a static list_head. + * + * See also: + * LIST_HEAD_INIT, list_head_init() + * + * Example: + * static LIST_HEAD(my_global_list); + */ +#define LIST_HEAD(name) \ + struct list_head name = LIST_HEAD_INIT(name) + +/** + * list_head_init - initialize a list_head + * @h: the list_head to set to the empty list + * + * Example: + * ... + * struct parent *parent = malloc(sizeof(*parent)); + * + * list_head_init(&parent->children); + * parent->num_children = 0; + */ +static inline void list_head_init(struct list_head *h) +{ + h->n.next = h->n.prev = &h->n; +} + +/** + * list_add - add an entry at the start of a linked list. + * @h: the list_head to add the node to + * @n: the list_node to add to the list. + * + * The list_node does not need to be initialized; it will be overwritten. + * Example: + * struct child *child = malloc(sizeof(*child)); + * + * child->name = "marvin"; + * list_add(&parent->children, &child->list); + * parent->num_children++; + */ +static inline void list_add(struct list_head *h, struct list_node *n) +{ + n->next = h->n.next; + n->prev = &h->n; + h->n.next->prev = n; + h->n.next = n; + (void)list_debug(h); +} + +/** + * list_add_tail - add an entry at the end of a linked list. + * @h: the list_head to add the node to + * @n: the list_node to add to the list. + * + * The list_node does not need to be initialized; it will be overwritten. + * Example: + * list_add_tail(&parent->children, &child->list); + * parent->num_children++; + */ +static inline void list_add_tail(struct list_head *h, struct list_node *n) +{ + n->next = &h->n; + n->prev = h->n.prev; + h->n.prev->next = n; + h->n.prev = n; + (void)list_debug(h); +} + +/** + * list_empty - is a list empty? + * @h: the list_head + * + * If the list is empty, returns true. + * + * Example: + * assert(list_empty(&parent->children) == (parent->num_children == 0)); + */ +static inline bool list_empty(const struct list_head *h) +{ + (void)list_debug(h); + return h->n.next == &h->n; +} + +/** + * list_del - delete an entry from an (unknown) linked list. + * @n: the list_node to delete from the list. + * + * Note that this leaves @n in an undefined state; it can be added to + * another list, but not deleted again. + * + * See also: + * list_del_from() + * + * Example: + * list_del(&child->list); + * parent->num_children--; + */ +static inline void list_del(struct list_node *n) +{ + (void)list_debug_node(n); + n->next->prev = n->prev; + n->prev->next = n->next; +#ifdef CCAN_LIST_DEBUG + /* Catch use-after-del. */ + n->next = n->prev = NULL; +#endif +} + +/** + * list_del_from - delete an entry from a known linked list. + * @h: the list_head the node is in. + * @n: the list_node to delete from the list. + * + * This explicitly indicates which list a node is expected to be in, + * which is better documentation and can catch more bugs. + * + * See also: list_del() + * + * Example: + * list_del_from(&parent->children, &child->list); + * parent->num_children--; + */ +static inline void list_del_from(struct list_head *h, struct list_node *n) +{ +#ifdef CCAN_LIST_DEBUG + { + /* Thorough check: make sure it was in list! */ + struct list_node *i; + for (i = h->n.next; i != n; i = i->next) + assert(i != &h->n); + } +#endif /* CCAN_LIST_DEBUG */ + + /* Quick test that catches a surprising number of bugs. */ + assert(!list_empty(h)); + list_del(n); +} + +/** + * list_entry - convert a list_node back into the structure containing it. + * @n: the list_node + * @type: the type of the entry + * @member: the list_node member of the type + * + * Example: + * // First list entry is children.next; convert back to child. + * child = list_entry(parent->children.n.next, struct child, list); + * + * See Also: + * list_top(), list_for_each() + */ +#define list_entry(n, type, member) container_of(n, type, member) + +/** + * list_top - get the first entry in a list + * @h: the list_head + * @type: the type of the entry + * @member: the list_node member of the type + * + * If the list is empty, returns NULL. + * + * Example: + * struct child *first; + * first = list_top(&parent->children, struct child, list); + */ +#define list_top(h, type, member) \ + ((type *)list_top_((h), list_off_(type, member))) + +static inline const void *list_top_(const struct list_head *h, size_t off) +{ + if (list_empty(h)) + return NULL; + return (const char *)h->n.next - off; +} + +/** + * list_tail - get the last entry in a list + * @h: the list_head + * @type: the type of the entry + * @member: the list_node member of the type + * + * If the list is empty, returns NULL. + * + * Example: + * struct child *last; + * last = list_tail(&parent->children, struct child, list); + */ +#define list_tail(h, type, member) \ + ((type *)list_tail_((h), list_off_(type, member))) + +static inline const void *list_tail_(const struct list_head *h, size_t off) +{ + if (list_empty(h)) + return NULL; + return (const char *)h->n.prev - off; +} + +/** + * list_for_each - iterate through a list. + * @h: the list_head (warning: evaluated multiple times!) + * @i: the structure containing the list_node + * @member: the list_node member of the structure + * + * This is a convenient wrapper to iterate @i over the entire list. It's + * a for loop, so you can break and continue as normal. + * + * Example: + * list_for_each(&parent->children, child, list) + * printf("Name: %s\n", child->name); + */ +#define list_for_each(h, i, member) \ + list_for_each_off(h, i, list_off_var_(i, member)) + +/** + * list_for_each_rev - iterate through a list backwards. + * @h: the list_head + * @i: the structure containing the list_node + * @member: the list_node member of the structure + * + * This is a convenient wrapper to iterate @i over the entire list. It's + * a for loop, so you can break and continue as normal. + * + * Example: + * list_for_each_rev(&parent->children, child, list) + * printf("Name: %s\n", child->name); + */ +#define list_for_each_rev(h, i, member) \ + for (i = container_of_var(list_debug(h)->n.prev, i, member); \ + &i->member != &(h)->n; \ + i = container_of_var(i->member.prev, i, member)) + +/** + * list_for_each_safe - iterate through a list, maybe during deletion + * @h: the list_head + * @i: the structure containing the list_node + * @nxt: the structure containing the list_node + * @member: the list_node member of the structure + * + * This is a convenient wrapper to iterate @i over the entire list. It's + * a for loop, so you can break and continue as normal. The extra variable + * @nxt is used to hold the next element, so you can delete @i from the list. + * + * Example: + * struct child *next; + * list_for_each_safe(&parent->children, child, next, list) { + * list_del(&child->list); + * parent->num_children--; + * } + */ +#define list_for_each_safe(h, i, nxt, member) \ + list_for_each_safe_off(h, i, nxt, list_off_var_(i, member)) + +/** + * list_for_each_off - iterate through a list of memory regions. + * @h: the list_head + * @i: the pointer to a memory region wich contains list node data. + * @off: offset(relative to @i) at which list node data resides. + * + * This is a low-level wrapper to iterate @i over the entire list, used to + * implement all oher, more high-level, for-each constructs. It's a for loop, + * so you can break and continue as normal. + * + * WARNING! Being the low-level macro that it is, this wrapper doesn't know + * nor care about the type of @i. The only assumtion made is that @i points + * to a chunk of memory that at some @offset, relative to @i, contains a + * properly filled `struct node_list' which in turn contains pointers to + * memory chunks and it's turtles all the way down. Whith all that in mind + * remember that given the wrong pointer/offset couple this macro will + * happilly churn all you memory untill SEGFAULT stops it, in other words + * caveat emptor. + * + * It is worth mentioning that one of legitimate use-cases for that wrapper + * is operation on opaque types with known offset for `struct list_node' + * member(preferably 0), because it allows you not to disclose the type of + * @i. + * + * Example: + * list_for_each_off(&parent->children, child, + * offsetof(struct child, list)) + * printf("Name: %s\n", child->name); + */ +#define list_for_each_off(h, i, off) \ + for (i = list_node_to_off_(list_debug(h)->n.next, (off)); \ + list_node_from_off_((void *)i, (off)) != &(h)->n; \ + i = list_node_to_off_(list_node_from_off_((void *)i, (off))->next, \ + (off))) + +/** + * list_for_each_safe_off - iterate through a list of memory regions, maybe + * during deletion + * @h: the list_head + * @i: the pointer to a memory region wich contains list node data. + * @nxt: the structure containing the list_node + * @off: offset(relative to @i) at which list node data resides. + * + * For details see `list_for_each_off' and `list_for_each_safe' + * descriptions. + * + * Example: + * list_for_each_safe_off(&parent->children, child, + * next, offsetof(struct child, list)) + * printf("Name: %s\n", child->name); + */ +#define list_for_each_safe_off(h, i, nxt, off) \ + for (i = list_node_to_off_(list_debug(h)->n.next, (off)), \ + nxt = list_node_to_off_(list_node_from_off_(i, (off))->next, \ + (off)); \ + list_node_from_off_(i, (off)) != &(h)->n; \ + i = nxt, \ + nxt = list_node_to_off_(list_node_from_off_(i, (off))->next, \ + (off))) + + +/* Other -off variants. */ +#define list_entry_off(n, type, off) \ + ((type *)list_node_from_off_((n), (off))) + +#define list_head_off(h, type, off) \ + ((type *)list_head_off((h), (off))) + +#define list_tail_off(h, type, off) \ + ((type *)list_tail_((h), (off))) + +#define list_add_off(h, n, off) \ + list_add((h), list_node_from_off_((n), (off))) + +#define list_del_off(n, off) \ + list_del(list_node_from_off_((n), (off))) + +#define list_del_from_off(h, n, off) \ + list_del_from(h, list_node_from_off_((n), (off))) + +/* Offset helper functions so we only single-evaluate. */ +static inline void *list_node_to_off_(struct list_node *node, size_t off) +{ + return (void *)((char *)node - off); +} +static inline struct list_node *list_node_from_off_(void *ptr, size_t off) +{ + return (struct list_node *)((char *)ptr + off); +} + +/* Get the offset of the member, but make sure it's a list_node. */ +#define list_off_(type, member) \ + (container_off(type, member) + \ + check_type(((type *)0)->member, struct list_node)) + +#define list_off_var_(var, member) \ + (container_off_var(var, member) + \ + check_type(var->member, struct list_node)) + +#endif /* CCAN_LIST_H */ diff --git a/lib/ccan/list/test/compile_ok-constant.c b/lib/ccan/list/test/compile_ok-constant.c new file mode 100644 index 0000000000..c57cdadc31 --- /dev/null +++ b/lib/ccan/list/test/compile_ok-constant.c @@ -0,0 +1,49 @@ +#include <ccan/list/list.h> +#include <ccan/tap/tap.h> +#include <ccan/list/list.c> +#include <stdbool.h> +#include <stdio.h> + +struct child { + const char *name; + struct list_node list; +}; + +static bool children(const struct list_head *list) +{ + return !list_empty(list); +} + +static const struct child *first_child(const struct list_head *list) +{ + return list_top(list, struct child, list); +} + +static const struct child *last_child(const struct list_head *list) +{ + return list_tail(list, struct child, list); +} + +static void check_children(const struct list_head *list) +{ + list_check(list, "bad child list"); +} + +static void print_children(const struct list_head *list) +{ + const struct child *c; + list_for_each(list, c, list) + printf("%s\n", c->name); +} + +int main(void) +{ + LIST_HEAD(h); + + children(&h); + first_child(&h); + last_child(&h); + check_children(&h); + print_children(&h); + return 0; +} diff --git a/lib/ccan/list/test/helper.c b/lib/ccan/list/test/helper.c new file mode 100644 index 0000000000..8903ac1738 --- /dev/null +++ b/lib/ccan/list/test/helper.c @@ -0,0 +1,54 @@ +#include <stdlib.h> +#include <stdbool.h> +#include <time.h> + +#include <ccan/list/list.h> +#include "helper.h" + +#define ANSWER_TO_THE_ULTIMATE_QUESTION_OF_LIFE_THE_UNIVERSE_AND_EVERYTHING \ + (42) + +struct opaque { + struct list_node list; + size_t secret_offset; + char secret_drawer[42]; +}; + +static bool not_randomized = true; + +struct opaque *create_opaque_blob(void) +{ + struct opaque *blob = calloc(1, sizeof(struct opaque)); + + if (not_randomized) { + srandom((int)time(NULL)); + not_randomized = false; + } + + blob->secret_offset = random() % (sizeof(blob->secret_drawer)); + blob->secret_drawer[blob->secret_offset] = + ANSWER_TO_THE_ULTIMATE_QUESTION_OF_LIFE_THE_UNIVERSE_AND_EVERYTHING; + + return blob; +} + +bool if_blobs_know_the_secret(struct opaque *blob) +{ + bool answer = true; + int i; + for (i = 0; i < sizeof(blob->secret_drawer) / + sizeof(blob->secret_drawer[0]); i++) + if (i != blob->secret_offset) + answer = answer && (blob->secret_drawer[i] == 0); + else + answer = answer && + (blob->secret_drawer[blob->secret_offset] == + ANSWER_TO_THE_ULTIMATE_QUESTION_OF_LIFE_THE_UNIVERSE_AND_EVERYTHING); + + return answer; +} + +void destroy_opaque_blob(struct opaque *blob) +{ + free(blob); +} diff --git a/lib/ccan/list/test/helper.h b/lib/ccan/list/test/helper.h new file mode 100644 index 0000000000..a09a3a997b --- /dev/null +++ b/lib/ccan/list/test/helper.h @@ -0,0 +1,7 @@ +/* These are in a separate C file so we can test undefined structures. */ +struct opaque; +typedef struct opaque opaque_t; + +opaque_t *create_opaque_blob(void); +bool if_blobs_know_the_secret(opaque_t *blob); +void destroy_opaque_blob(opaque_t *blob); diff --git a/lib/ccan/list/test/run-check-corrupt.c b/lib/ccan/list/test/run-check-corrupt.c new file mode 100644 index 0000000000..5dd9f9cc83 --- /dev/null +++ b/lib/ccan/list/test/run-check-corrupt.c @@ -0,0 +1,89 @@ +#include <setjmp.h> +#include <stdlib.h> +#include <stdio.h> +#include <stdarg.h> +#include <string.h> +#include <err.h> + +/* We don't actually want it to exit... */ +static jmp_buf aborted; +#define abort() longjmp(aborted, 1) + +#define fprintf my_fprintf +static char printf_buffer[1000]; + +static int my_fprintf(FILE *stream, const char *format, ...) +{ + va_list ap; + int ret; + va_start(ap, format); + ret = vsprintf(printf_buffer, format, ap); + va_end(ap); + return ret; +} + +#include <ccan/list/list.h> +#include <ccan/tap/tap.h> +#include <ccan/list/list.c> + +int main(int argc, char *argv[]) +{ + struct list_head list; + struct list_node n1; + char expect[100]; + + plan_tests(9); + /* Empty list. */ + list.n.next = &list.n; + list.n.prev = &list.n; + ok1(list_check(&list, NULL) == &list); + + /* Bad back ptr */ + list.n.prev = &n1; + /* Non-aborting version. */ + ok1(list_check(&list, NULL) == NULL); + + /* Aborting version. */ + sprintf(expect, "test message: prev corrupt in node %p (0) of %p\n", + &list, &list); + if (setjmp(aborted) == 0) { + list_check(&list, "test message"); + fail("list_check on empty with bad back ptr didn't fail!"); + } else { + ok1(strcmp(printf_buffer, expect) == 0); + } + + /* n1 in list. */ + list.n.next = &n1; + list.n.prev = &n1; + n1.prev = &list.n; + n1.next = &list.n; + ok1(list_check(&list, NULL) == &list); + ok1(list_check_node(&n1, NULL) == &n1); + + /* Bad back ptr */ + n1.prev = &n1; + ok1(list_check(&list, NULL) == NULL); + ok1(list_check_node(&n1, NULL) == NULL); + + /* Aborting version. */ + sprintf(expect, "test message: prev corrupt in node %p (1) of %p\n", + &n1, &list); + if (setjmp(aborted) == 0) { + list_check(&list, "test message"); + fail("list_check on n1 bad back ptr didn't fail!"); + } else { + ok1(strcmp(printf_buffer, expect) == 0); + } + + sprintf(expect, "test message: prev corrupt in node %p (0) of %p\n", + &n1, &n1); + if (setjmp(aborted) == 0) { + list_check_node(&n1, "test message"); + fail("list_check_node on n1 bad back ptr didn't fail!"); + } else { + ok1(strcmp(printf_buffer, expect) == 0); + } + + return exit_status(); +} diff --git a/lib/ccan/list/test/run-list_del_from-assert.c b/lib/ccan/list/test/run-list_del_from-assert.c new file mode 100644 index 0000000000..05d6cad62c --- /dev/null +++ b/lib/ccan/list/test/run-list_del_from-assert.c @@ -0,0 +1,36 @@ +#define CCAN_LIST_DEBUG 1 +#include <ccan/list/list.h> +#include <ccan/tap/tap.h> +#include <ccan/list/list.c> +#include <sys/types.h> +#include <sys/wait.h> +#include <unistd.h> +#include <signal.h> + +int main(int argc, char *argv[]) +{ + struct list_head list1, list2; + struct list_node n1, n2, n3; + pid_t child; + int status; + + plan_tests(1); + list_head_init(&list1); + list_head_init(&list2); + list_add(&list1, &n1); + list_add(&list2, &n2); + list_add_tail(&list2, &n3); + + child = fork(); + if (child) { + wait(&status); + } else { + /* This should abort. */ + list_del_from(&list1, &n3); + exit(0); + } + + ok1(WIFSIGNALED(status) && WTERMSIG(status) == SIGABRT); + list_del_from(&list2, &n3); + return exit_status(); +} diff --git a/lib/ccan/list/test/run-single-eval.c b/lib/ccan/list/test/run-single-eval.c new file mode 100644 index 0000000000..f90eed357a --- /dev/null +++ b/lib/ccan/list/test/run-single-eval.c @@ -0,0 +1,168 @@ +/* Make sure macros only evaluate their args once. */ +#include <ccan/list/list.h> +#include <ccan/tap/tap.h> +#include <ccan/list/list.c> + +struct parent { + const char *name; + struct list_head children; + unsigned int num_children; + int eval_count; +}; + +struct child { + const char *name; + struct list_node list; +}; + +static LIST_HEAD(static_list); + +#define ref(obj, counter) ((counter)++, (obj)) + +int main(int argc, char *argv[]) +{ + struct parent parent; + struct child c1, c2, c3, *c, *n; + unsigned int i; + unsigned int static_count = 0, parent_count = 0, list_count = 0, + node_count = 0; + struct list_head list = LIST_HEAD_INIT(list); + + plan_tests(74); + /* Test LIST_HEAD, LIST_HEAD_INIT, list_empty and check_list */ + ok1(list_empty(ref(&static_list, static_count))); + ok1(static_count == 1); + ok1(list_check(ref(&static_list, static_count), NULL)); + ok1(static_count == 2); + ok1(list_empty(ref(&list, list_count))); + ok1(list_count == 1); + ok1(list_check(ref(&list, list_count), NULL)); + ok1(list_count == 2); + + parent.num_children = 0; + list_head_init(ref(&parent.children, parent_count)); + ok1(parent_count == 1); + /* Test list_head_init */ + ok1(list_empty(ref(&parent.children, parent_count))); + ok1(parent_count == 2); + ok1(list_check(ref(&parent.children, parent_count), NULL)); + ok1(parent_count == 3); + + c2.name = "c2"; + list_add(ref(&parent.children, parent_count), &c2.list); + ok1(parent_count == 4); + /* Test list_add and !list_empty. */ + ok1(!list_empty(ref(&parent.children, parent_count))); + ok1(parent_count == 5); + ok1(c2.list.next == &parent.children.n); + ok1(c2.list.prev == &parent.children.n); + ok1(parent.children.n.next == &c2.list); + ok1(parent.children.n.prev == &c2.list); + /* Test list_check */ + ok1(list_check(ref(&parent.children, parent_count), NULL)); + ok1(parent_count == 6); + + c1.name = "c1"; + list_add(ref(&parent.children, parent_count), &c1.list); + ok1(parent_count == 7); + /* Test list_add and !list_empty. */ + ok1(!list_empty(ref(&parent.children, parent_count))); + ok1(parent_count == 8); + ok1(c2.list.next == &parent.children.n); + ok1(c2.list.prev == &c1.list); + ok1(parent.children.n.next == &c1.list); + ok1(parent.children.n.prev == &c2.list); + ok1(c1.list.next == &c2.list); + ok1(c1.list.prev == &parent.children.n); + /* Test list_check */ + ok1(list_check(ref(&parent.children, parent_count), NULL)); + ok1(parent_count == 9); + + c3.name = "c3"; + list_add_tail(ref(&parent.children, parent_count), &c3.list); + ok1(parent_count == 10); + /* Test list_add_tail and !list_empty. */ + ok1(!list_empty(ref(&parent.children, parent_count))); + ok1(parent_count == 11); + ok1(parent.children.n.next == &c1.list); + ok1(parent.children.n.prev == &c3.list); + ok1(c1.list.next == &c2.list); + ok1(c1.list.prev == &parent.children.n); + ok1(c2.list.next == &c3.list); + ok1(c2.list.prev == &c1.list); + ok1(c3.list.next == &parent.children.n); + ok1(c3.list.prev == &c2.list); + /* Test list_check */ + ok1(list_check(ref(&parent.children, parent_count), NULL)); + ok1(parent_count == 12); + + /* Test list_check_node */ + ok1(list_check_node(&c1.list, NULL)); + ok1(list_check_node(&c2.list, NULL)); + ok1(list_check_node(&c3.list, NULL)); + + /* Test list_top */ + ok1(list_top(ref(&parent.children, parent_count), struct child, list) == &c1); + ok1(parent_count == 13); + + /* Test list_tail */ + ok1(list_tail(ref(&parent.children, parent_count), struct child, list) == &c3); + ok1(parent_count == 14); + + /* Test list_for_each. */ + i = 0; + list_for_each(&parent.children, c, list) { + switch (i++) { + case 0: + ok1(c == &c1); + break; + case 1: + ok1(c == &c2); + break; + case 2: + ok1(c == &c3); + break; + } + if (i > 2) + break; + } + ok1(i == 3); + + /* Test list_for_each_safe, list_del and list_del_from. */ + i = 0; + list_for_each_safe(&parent.children, c, n, list) { + switch (i++) { + case 0: + ok1(c == &c1); + list_del(ref(&c->list, node_count)); + ok1(node_count == 1); + break; + case 1: + ok1(c == &c2); + list_del_from(ref(&parent.children, parent_count), + ref(&c->list, node_count)); + ok1(node_count == 2); + break; + case 2: + ok1(c == &c3); + list_del_from(ref(&parent.children, parent_count), + ref(&c->list, node_count)); + ok1(node_count == 3); + break; + } + ok1(list_check(ref(&parent.children, parent_count), NULL)); + if (i > 2) + break; + } + ok1(i == 3); + ok1(parent_count == 19); + ok1(list_empty(ref(&parent.children, parent_count))); + ok1(parent_count == 20); + + /* Test list_top/list_tail on empty list. */ + ok1(list_top(ref(&parent.children, parent_count), struct child, list) == NULL); + ok1(parent_count == 21); + ok1(list_tail(ref(&parent.children, parent_count), struct child, list) == NULL); + ok1(parent_count == 22); + return exit_status(); +} diff --git a/lib/ccan/list/test/run-with-debug.c b/lib/ccan/list/test/run-with-debug.c new file mode 100644 index 0000000000..d0902421f1 --- /dev/null +++ b/lib/ccan/list/test/run-with-debug.c @@ -0,0 +1,3 @@ +/* Just like run.c, but with all debug checks enabled. */ +#define CCAN_LIST_DEBUG 1 +#include <ccan/list/test/run.c> diff --git a/lib/ccan/list/test/run.c b/lib/ccan/list/test/run.c new file mode 100644 index 0000000000..952a0e15e6 --- /dev/null +++ b/lib/ccan/list/test/run.c @@ -0,0 +1,200 @@ +#include <ccan/list/list.h> +#include <ccan/tap/tap.h> +#include <ccan/list/list.c> +#include "helper.h" + +struct parent { + const char *name; + struct list_head children; + unsigned int num_children; +}; + +struct child { + const char *name; + struct list_node list; +}; + +static LIST_HEAD(static_list); + +int main(int argc, char *argv[]) +{ + struct parent parent; + struct child c1, c2, c3, *c, *n; + unsigned int i; + struct list_head list = LIST_HEAD_INIT(list); + opaque_t *q, *nq; + struct list_head opaque_list = LIST_HEAD_INIT(opaque_list); + + plan_tests(65); + /* Test LIST_HEAD, LIST_HEAD_INIT, list_empty and check_list */ + ok1(list_empty(&static_list)); + ok1(list_check(&static_list, NULL)); + ok1(list_empty(&list)); + ok1(list_check(&list, NULL)); + + parent.num_children = 0; + list_head_init(&parent.children); + /* Test list_head_init */ + ok1(list_empty(&parent.children)); + ok1(list_check(&parent.children, NULL)); + + c2.name = "c2"; + list_add(&parent.children, &c2.list); + /* Test list_add and !list_empty. */ + ok1(!list_empty(&parent.children)); + ok1(c2.list.next == &parent.children.n); + ok1(c2.list.prev == &parent.children.n); + ok1(parent.children.n.next == &c2.list); + ok1(parent.children.n.prev == &c2.list); + /* Test list_check */ + ok1(list_check(&parent.children, NULL)); + + c1.name = "c1"; + list_add(&parent.children, &c1.list); + /* Test list_add and !list_empty. */ + ok1(!list_empty(&parent.children)); + ok1(c2.list.next == &parent.children.n); + ok1(c2.list.prev == &c1.list); + ok1(parent.children.n.next == &c1.list); + ok1(parent.children.n.prev == &c2.list); + ok1(c1.list.next == &c2.list); + ok1(c1.list.prev == &parent.children.n); + /* Test list_check */ + ok1(list_check(&parent.children, NULL)); + + c3.name = "c3"; + list_add_tail(&parent.children, &c3.list); + /* Test list_add_tail and !list_empty. */ + ok1(!list_empty(&parent.children)); + ok1(parent.children.n.next == &c1.list); + ok1(parent.children.n.prev == &c3.list); + ok1(c1.list.next == &c2.list); + ok1(c1.list.prev == &parent.children.n); + ok1(c2.list.next == &c3.list); + ok1(c2.list.prev == &c1.list); + ok1(c3.list.next == &parent.children.n); + ok1(c3.list.prev == &c2.list); + /* Test list_check */ + ok1(list_check(&parent.children, NULL)); + + /* Test list_check_node */ + ok1(list_check_node(&c1.list, NULL)); + ok1(list_check_node(&c2.list, NULL)); + ok1(list_check_node(&c3.list, NULL)); + + /* Test list_top */ + ok1(list_top(&parent.children, struct child, list) == &c1); + + /* Test list_tail */ + ok1(list_tail(&parent.children, struct child, list) == &c3); + + /* Test list_for_each. */ + i = 0; + list_for_each(&parent.children, c, list) { + switch (i++) { + case 0: + ok1(c == &c1); + break; + case 1: + ok1(c == &c2); + break; + case 2: + ok1(c == &c3); + break; + } + if (i > 2) + break; + } + ok1(i == 3); + + /* Test list_for_each_rev. */ + i = 0; + list_for_each_rev(&parent.children, c, list) { + switch (i++) { + case 0: + ok1(c == &c3); + break; + case 1: + ok1(c == &c2); + break; + case 2: + ok1(c == &c1); + break; + } + if (i > 2) + break; + } + ok1(i == 3); + + /* Test list_for_each_safe, list_del and list_del_from. */ + i = 0; + list_for_each_safe(&parent.children, c, n, list) { + switch (i++) { + case 0: + ok1(c == &c1); + list_del(&c->list); + break; + case 1: + ok1(c == &c2); + list_del_from(&parent.children, &c->list); + break; + case 2: + ok1(c == &c3); + list_del_from(&parent.children, &c->list); + break; + } + ok1(list_check(&parent.children, NULL)); + if (i > 2) + break; + } + ok1(i == 3); + ok1(list_empty(&parent.children)); + + /* Test list_for_each_off. */ + list_add_tail(&opaque_list, + (struct list_node *)create_opaque_blob()); + list_add_tail(&opaque_list, + (struct list_node *)create_opaque_blob()); + list_add_tail(&opaque_list, + (struct list_node *)create_opaque_blob()); + + i = 0; + + list_for_each_off(&opaque_list, q, 0) { + i++; + ok1(if_blobs_know_the_secret(q)); + } + ok1(i == 3); + + /* Test list_for_each_safe_off, list_del_off and list_del_from_off. */ + i = 0; + list_for_each_safe_off(&opaque_list, q, nq, 0) { + switch (i++) { + case 0: + ok1(if_blobs_know_the_secret(q)); + list_del_off(q, 0); + destroy_opaque_blob(q); + break; + case 1: + ok1(if_blobs_know_the_secret(q)); + list_del_from_off(&opaque_list, q, 0); + destroy_opaque_blob(q); + break; + case 2: + ok1(c == &c3); + list_del_from_off(&opaque_list, q, 0); + destroy_opaque_blob(q); + break; + } + ok1(list_check(&opaque_list, NULL)); + if (i > 2) + break; + } + ok1(i == 3); + ok1(list_empty(&opaque_list)); + + /* Test list_top/list_tail on empty list. */ + ok1(list_top(&parent.children, struct child, list) == NULL); + ok1(list_tail(&parent.children, struct child, list) == NULL); + return exit_status(); +} |