summaryrefslogtreecommitdiff
path: root/lib/ccan/tally/tally.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/ccan/tally/tally.c')
-rw-r--r--lib/ccan/tally/tally.c490
1 files changed, 490 insertions, 0 deletions
diff --git a/lib/ccan/tally/tally.c b/lib/ccan/tally/tally.c
new file mode 100644
index 0000000000..b1839befe3
--- /dev/null
+++ b/lib/ccan/tally/tally.c
@@ -0,0 +1,490 @@
+#include <ccan/tally/tally.h>
+#include <ccan/build_assert/build_assert.h>
+#include <ccan/likely/likely.h>
+#include <stdint.h>
+#include <limits.h>
+#include <string.h>
+#include <stdio.h>
+#include <assert.h>
+#include <stdlib.h>
+
+#define SIZET_BITS (sizeof(size_t)*CHAR_BIT)
+
+/* We use power of 2 steps. I tried being tricky, but it got buggy. */
+struct tally {
+ ssize_t min, max;
+ size_t total[2];
+ /* This allows limited frequency analysis. */
+ unsigned buckets, step_bits;
+ size_t counts[1 /* Actually: [buckets] */ ];
+};
+
+struct tally *tally_new(unsigned buckets)
+{
+ struct tally *tally;
+
+ /* There is always 1 bucket. */
+ if (buckets == 0)
+ buckets = 1;
+
+ /* Check for overflow. */
+ if (buckets && SIZE_MAX / buckets < sizeof(tally->counts[0]))
+ return NULL;
+ tally = malloc(sizeof(*tally) + sizeof(tally->counts[0])*(buckets-1));
+ if (tally) {
+ tally->max = ((size_t)1 << (SIZET_BITS - 1));
+ tally->min = ~tally->max;
+ tally->total[0] = tally->total[1] = 0;
+ tally->buckets = buckets;
+ tally->step_bits = 0;
+ memset(tally->counts, 0, sizeof(tally->counts[0])*buckets);
+ }
+ return tally;
+}
+
+static unsigned bucket_of(ssize_t min, unsigned step_bits, ssize_t val)
+{
+ /* Don't over-shift. */
+ if (step_bits == SIZET_BITS)
+ return 0;
+ assert(step_bits < SIZET_BITS);
+ return (size_t)(val - min) >> step_bits;
+}
+
+/* Return the min value in bucket b. */
+static ssize_t bucket_min(ssize_t min, unsigned step_bits, unsigned b)
+{
+ /* Don't over-shift. */
+ if (step_bits == SIZET_BITS)
+ return min;
+ assert(step_bits < SIZET_BITS);
+ return min + ((ssize_t)b << step_bits);
+}
+
+/* Does shifting by this many bits truncate the number? */
+static bool shift_overflows(size_t num, unsigned bits)
+{
+ if (bits == 0)
+ return false;
+
+ return ((num << bits) >> 1) != (num << (bits - 1));
+}
+
+/* When min or max change, we may need to shuffle the frequency counts. */
+static void renormalize(struct tally *tally,
+ ssize_t new_min, ssize_t new_max)
+{
+ size_t range, spill;
+ unsigned int i, old_min;
+
+ /* Uninitialized? Don't do anything... */
+ if (tally->max < tally->min)
+ goto update;
+
+ /* If we don't have sufficient range, increase step bits until
+ * buckets cover entire range of ssize_t anyway. */
+ range = (new_max - new_min) + 1;
+ while (!shift_overflows(tally->buckets, tally->step_bits)
+ && range > ((size_t)tally->buckets << tally->step_bits)) {
+ /* Collapse down. */
+ for (i = 1; i < tally->buckets; i++) {
+ tally->counts[i/2] += tally->counts[i];
+ tally->counts[i] = 0;
+ }
+ tally->step_bits++;
+ }
+
+ /* Now if minimum has dropped, move buckets up. */
+ old_min = bucket_of(new_min, tally->step_bits, tally->min);
+ memmove(tally->counts + old_min,
+ tally->counts,
+ sizeof(tally->counts[0]) * (tally->buckets - old_min));
+ memset(tally->counts, 0, sizeof(tally->counts[0]) * old_min);
+
+ /* If we moved boundaries, adjust buckets to that ratio. */
+ spill = (tally->min - new_min) % (1 << tally->step_bits);
+ for (i = 0; i < tally->buckets-1; i++) {
+ size_t adjust = (tally->counts[i] >> tally->step_bits) * spill;
+ tally->counts[i] -= adjust;
+ tally->counts[i+1] += adjust;
+ }
+
+update:
+ tally->min = new_min;
+ tally->max = new_max;
+}
+
+void tally_add(struct tally *tally, ssize_t val)
+{
+ ssize_t new_min = tally->min, new_max = tally->max;
+ bool need_renormalize = false;
+
+ if (val < tally->min) {
+ new_min = val;
+ need_renormalize = true;
+ }
+ if (val > tally->max) {
+ new_max = val;
+ need_renormalize = true;
+ }
+ if (need_renormalize)
+ renormalize(tally, new_min, new_max);
+
+ /* 128-bit arithmetic! If we didn't want exact mean, we could just
+ * pull it out of counts. */
+ if (val > 0 && tally->total[0] + val < tally->total[0])
+ tally->total[1]++;
+ else if (val < 0 && tally->total[0] + val > tally->total[0])
+ tally->total[1]--;
+ tally->total[0] += val;
+ tally->counts[bucket_of(tally->min, tally->step_bits, val)]++;
+}
+
+size_t tally_num(const struct tally *tally)
+{
+ size_t i, num = 0;
+ for (i = 0; i < tally->buckets; i++)
+ num += tally->counts[i];
+ return num;
+}
+
+ssize_t tally_min(const struct tally *tally)
+{
+ return tally->min;
+}
+
+ssize_t tally_max(const struct tally *tally)
+{
+ return tally->max;
+}
+
+/* FIXME: Own ccan module please! */
+static unsigned fls64(uint64_t val)
+{
+#if HAVE_BUILTIN_CLZL
+ if (val <= ULONG_MAX) {
+ /* This is significantly faster! */
+ return val ? sizeof(long) * CHAR_BIT - __builtin_clzl(val) : 0;
+ } else {
+#endif
+ uint64_t r = 64;
+
+ if (!val)
+ return 0;
+ if (!(val & 0xffffffff00000000ull)) {
+ val <<= 32;
+ r -= 32;
+ }
+ if (!(val & 0xffff000000000000ull)) {
+ val <<= 16;
+ r -= 16;
+ }
+ if (!(val & 0xff00000000000000ull)) {
+ val <<= 8;
+ r -= 8;
+ }
+ if (!(val & 0xf000000000000000ull)) {
+ val <<= 4;
+ r -= 4;
+ }
+ if (!(val & 0xc000000000000000ull)) {
+ val <<= 2;
+ r -= 2;
+ }
+ if (!(val & 0x8000000000000000ull)) {
+ val <<= 1;
+ r -= 1;
+ }
+ return r;
+#if HAVE_BUILTIN_CLZL
+ }
+#endif
+}
+
+/* This is stolen straight from Hacker's Delight. */
+static uint64_t divlu64(uint64_t u1, uint64_t u0, uint64_t v)
+{
+ const uint64_t b = 4294967296ULL; // Number base (32 bits).
+ uint32_t un[4], // Dividend and divisor
+ vn[2]; // normalized and broken
+ // up into halfwords.
+ uint32_t q[2]; // Quotient as halfwords.
+ uint64_t un1, un0, // Dividend and divisor
+ vn0; // as fullwords.
+ uint64_t qhat; // Estimated quotient digit.
+ uint64_t rhat; // A remainder.
+ uint64_t p; // Product of two digits.
+ int64_t s, i, j, t, k;
+
+ if (u1 >= v) // If overflow, return the largest
+ return (uint64_t)-1; // possible quotient.
+
+ s = 64 - fls64(v); // 0 <= s <= 63.
+ vn0 = v << s; // Normalize divisor.
+ vn[1] = vn0 >> 32; // Break divisor up into
+ vn[0] = vn0 & 0xFFFFFFFF; // two 32-bit halves.
+
+ // Shift dividend left.
+ un1 = ((u1 << s) | (u0 >> (64 - s))) & (-s >> 63);
+ un0 = u0 << s;
+ un[3] = un1 >> 32; // Break dividend up into
+ un[2] = un1; // four 32-bit halfwords
+ un[1] = un0 >> 32; // Note: storing into
+ un[0] = un0; // halfwords truncates.
+
+ for (j = 1; j >= 0; j--) {
+ // Compute estimate qhat of q[j].
+ qhat = (un[j+2]*b + un[j+1])/vn[1];
+ rhat = (un[j+2]*b + un[j+1]) - qhat*vn[1];
+ again:
+ if (qhat >= b || qhat*vn[0] > b*rhat + un[j]) {
+ qhat = qhat - 1;
+ rhat = rhat + vn[1];
+ if (rhat < b) goto again;
+ }
+
+ // Multiply and subtract.
+ k = 0;
+ for (i = 0; i < 2; i++) {
+ p = qhat*vn[i];
+ t = un[i+j] - k - (p & 0xFFFFFFFF);
+ un[i+j] = t;
+ k = (p >> 32) - (t >> 32);
+ }
+ t = un[j+2] - k;
+ un[j+2] = t;
+
+ q[j] = qhat; // Store quotient digit.
+ if (t < 0) { // If we subtracted too
+ q[j] = q[j] - 1; // much, add back.
+ k = 0;
+ for (i = 0; i < 2; i++) {
+ t = un[i+j] + vn[i] + k;
+ un[i+j] = t;
+ k = t >> 32;
+ }
+ un[j+2] = un[j+2] + k;
+ }
+ } // End j.
+
+ return q[1]*b + q[0];
+}
+
+static int64_t divls64(int64_t u1, uint64_t u0, int64_t v)
+{
+ int64_t q, uneg, vneg, diff, borrow;
+
+ uneg = u1 >> 63; // -1 if u < 0.
+ if (uneg) { // Compute the absolute
+ u0 = -u0; // value of the dividend u.
+ borrow = (u0 != 0);
+ u1 = -u1 - borrow;
+ }
+
+ vneg = v >> 63; // -1 if v < 0.
+ v = (v ^ vneg) - vneg; // Absolute value of v.
+
+ if ((uint64_t)u1 >= (uint64_t)v)
+ goto overflow;
+
+ q = divlu64(u1, u0, v);
+
+ diff = uneg ^ vneg; // Negate q if signs of
+ q = (q ^ diff) - diff; // u and v differed.
+
+ if ((diff ^ q) < 0 && q != 0) { // If overflow, return the largest
+ overflow: // possible neg. quotient.
+ q = 0x8000000000000000ULL;
+ }
+ return q;
+}
+
+ssize_t tally_mean(const struct tally *tally)
+{
+ size_t count = tally_num(tally);
+ if (!count)
+ return 0;
+
+ if (sizeof(tally->total[0]) == sizeof(uint32_t)) {
+ /* Use standard 64-bit arithmetic. */
+ int64_t total = tally->total[0]
+ | (((uint64_t)tally->total[1]) << 32);
+ return total / count;
+ }
+ return divls64(tally->total[1], tally->total[0], count);
+}
+
+ssize_t tally_total(const struct tally *tally, ssize_t *overflow)
+{
+ if (overflow) {
+ *overflow = tally->total[1];
+ return tally->total[0];
+ }
+
+ /* If result is negative, make sure we can represent it. */
+ if (tally->total[1] & ((size_t)1 << (SIZET_BITS-1))) {
+ /* Must have only underflowed once, and must be able to
+ * represent result at ssize_t. */
+ if ((~tally->total[1])+1 != 0
+ || (ssize_t)tally->total[0] >= 0) {
+ /* Underflow, return minimum. */
+ return (ssize_t)((size_t)1 << (SIZET_BITS - 1));
+ }
+ } else {
+ /* Result is positive, must not have overflowed, and must be
+ * able to represent as ssize_t. */
+ if (tally->total[1] || (ssize_t)tally->total[0] < 0) {
+ /* Overflow. Return maximum. */
+ return (ssize_t)~((size_t)1 << (SIZET_BITS - 1));
+ }
+ }
+ return tally->total[0];
+}
+
+static ssize_t bucket_range(const struct tally *tally, unsigned b, size_t *err)
+{
+ ssize_t min, max;
+
+ min = bucket_min(tally->min, tally->step_bits, b);
+ if (b == tally->buckets - 1)
+ max = tally->max;
+ else
+ max = bucket_min(tally->min, tally->step_bits, b+1) - 1;
+
+ /* FIXME: Think harder about cumulative error; is this enough?. */
+ *err = (max - min + 1) / 2;
+ /* Avoid overflow. */
+ return min + (max - min) / 2;
+}
+
+ssize_t tally_approx_median(const struct tally *tally, size_t *err)
+{
+ size_t count = tally_num(tally), total = 0;
+ unsigned int i;
+
+ for (i = 0; i < tally->buckets; i++) {
+ total += tally->counts[i];
+ if (total * 2 >= count)
+ break;
+ }
+ return bucket_range(tally, i, err);
+}
+
+ssize_t tally_approx_mode(const struct tally *tally, size_t *err)
+{
+ unsigned int i, min_best = 0, max_best = 0;
+
+ for (i = 0; i < tally->buckets; i++) {
+ if (tally->counts[i] > tally->counts[min_best]) {
+ min_best = max_best = i;
+ } else if (tally->counts[i] == tally->counts[min_best]) {
+ max_best = i;
+ }
+ }
+
+ /* We can have more than one best, making our error huge. */
+ if (min_best != max_best) {
+ ssize_t min, max;
+ min = bucket_range(tally, min_best, err);
+ max = bucket_range(tally, max_best, err);
+ max += *err;
+ *err += (size_t)(max - min);
+ return min + (max - min) / 2;
+ }
+
+ return bucket_range(tally, min_best, err);
+}
+
+static unsigned get_max_bucket(const struct tally *tally)
+{
+ unsigned int i;
+
+ for (i = tally->buckets; i > 0; i--)
+ if (tally->counts[i-1])
+ break;
+ return i;
+}
+
+char *tally_histogram(const struct tally *tally,
+ unsigned width, unsigned height)
+{
+ unsigned int i, count, max_bucket, largest_bucket;
+ struct tally *tmp;
+ char *graph, *p;
+
+ assert(width >= TALLY_MIN_HISTO_WIDTH);
+ assert(height >= TALLY_MIN_HISTO_HEIGHT);
+
+ /* Ignore unused buckets. */
+ max_bucket = get_max_bucket(tally);
+
+ /* FIXME: It'd be nice to smooth here... */
+ if (height >= max_bucket) {
+ height = max_bucket;
+ tmp = NULL;
+ } else {
+ /* We create a temporary then renormalize so < height. */
+ /* FIXME: Antialias properly! */
+ tmp = tally_new(tally->buckets);
+ if (!tmp)
+ return NULL;
+ tmp->min = tally->min;
+ tmp->max = tally->max;
+ tmp->step_bits = tally->step_bits;
+ memcpy(tmp->counts, tally->counts,
+ sizeof(tally->counts[0]) * tmp->buckets);
+ while ((max_bucket = get_max_bucket(tmp)) >= height)
+ renormalize(tmp, tmp->min, tmp->max * 2);
+ /* Restore max */
+ tmp->max = tally->max;
+ tally = tmp;
+ height = max_bucket;
+ }
+
+ /* Figure out longest line, for scale. */
+ largest_bucket = 0;
+ for (i = 0; i < tally->buckets; i++) {
+ if (tally->counts[i] > largest_bucket)
+ largest_bucket = tally->counts[i];
+ }
+
+ p = graph = malloc(height * (width + 1) + 1);
+ if (!graph) {
+ free(tmp);
+ return NULL;
+ }
+
+ for (i = 0; i < height; i++) {
+ unsigned covered = 1, row;
+
+ /* People expect minimum at the bottom. */
+ row = height - i - 1;
+ count = (double)tally->counts[row] / largest_bucket * (width-1)+1;
+
+ if (row == 0)
+ covered = snprintf(p, width, "%zi", tally->min);
+ else if (row == height - 1)
+ covered = snprintf(p, width, "%zi", tally->max);
+ else if (row == bucket_of(tally->min, tally->step_bits, 0))
+ *p = '+';
+ else
+ *p = '|';
+
+ if (covered > width)
+ covered = width;
+ p += covered;
+
+ if (count > covered)
+ count -= covered;
+ else
+ count = 0;
+
+ memset(p, '*', count);
+ p += count;
+ *p = '\n';
+ p++;
+ }
+ *p = '\0';
+ free(tmp);
+ return graph;
+}