diff options
Diffstat (limited to 'source3/ubi_AVLtree.h')
-rw-r--r-- | source3/ubi_AVLtree.h | 340 |
1 files changed, 0 insertions, 340 deletions
diff --git a/source3/ubi_AVLtree.h b/source3/ubi_AVLtree.h deleted file mode 100644 index 27d84a2896..0000000000 --- a/source3/ubi_AVLtree.h +++ /dev/null @@ -1,340 +0,0 @@ -#ifndef ubi_AVLtree_H -#define ubi_AVLtree_H -/* ========================================================================== ** - * ubi_AVLtree.h - * - * Copyright (C) 1991-1997 by Christopher R. Hertel - * - * Email: crh@ubiqx.mn.org - * -------------------------------------------------------------------------- ** - * - * This module provides an implementation of AVL height balanced binary - * trees. (Adelson-Velskii, Landis 1962) - * - * This header file contains the basic AVL structure and pointer typedefs - * as well as the prototypes needed to access the functions in the AVL - * module ubi_AVLtree. The .c file implements the low-level height balancing - * routines that manage the AVL tree, plus all of the basic primops for - * adding, searching for, and deleting nodes. - * - * -------------------------------------------------------------------------- ** - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the Free - * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - * - * -------------------------------------------------------------------------- ** - * $Log: ubi_AVLtree.h,v $ - * Revision 1.1 1997/10/09 04:09:51 crh - * This is my library of lists and trees. My hope is to replace all of the - * hard coded linked lists that are currently used in Samba with calls to - * these modules. This should make the code simpler, smaller, and (I hope) - * faster. The tree code, in particular, should speed up processing where - * large lists are involved. - * - * Chris -)----- - * - * Revision 2.4 1997/07/26 04:36:23 crh - * Andrew Leppard, aka "Grazgur", discovered that I still had my brains tied - * on backwards with respect to node deletion. I did some more digging and - * discovered that I was not changing the balance values correctly in the - * single rotation functions. Double rotation was working correctly because - * the formula for changing the balance values is the same for insertion or - * deletion. Not so for single rotation. - * - * I have tested the fix by loading the tree with over 44 thousand names, - * deleting 2,629 of them (all those in which the second character is 'u') - * and then walking the tree recursively to verify that the balance factor of - * each node is correct. Passed. - * - * Thanks Andrew! - * - * Also: - * + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE. - * + Rewrote the ubi_tr<func> macros because they weren't doing what I'd - * hoped they would do (see the bottom of the header file). They work now. - * - * Revision 2.3 1997/06/03 05:22:07 crh - * Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing - * problems. - * - * Revision 2.2 1995/10/03 22:15:47 CRH - * Ubisized! - * - * Revision 2.1 95/03/09 23:46:44 CRH - * Added the ModuleID static string and function. These modules are now - * self-identifying. - * - * Revision 2.0 95/03/05 14:11:22 CRH - * This revision of ubi_AVLtree coincides with revision 2.0 of ubi_BinTree, - * and so includes all of the changes to that module. In addition, a bug in - * the node deletion process has been fixed. - * - * After rewriting the Locate() function in ubi_BinTree, I decided that it was - * time to overhaul this module. In the process, I discovered a bug related - * to node deletion. To fix the bug, I wrote function Debalance(). A quick - * glance will show that it is very similar to the Rebalance() function. In - * previous versions of this module, I tried to include the functionality of - * Debalance() within Rebalance(), with poor results. - * - * Revision 1.0 93/10/15 22:58:48 CRH - * With this revision, I have added a set of #define's that provide a single, - * standard API to all existing tree modules. Until now, each of the three - * existing modules had a different function and typedef prefix, as follows: - * - * Module Prefix - * ubi_BinTree ubi_bt - * ubi_AVLtree ubi_avl - * ubi_SplayTree ubi_spt - * - * To further complicate matters, only those portions of the base module - * (ubi_BinTree) that were superceeded in the new module had the new names. - * For example, if you were using ubi_AVLtree, the AVL node structure was - * named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using - * SplayTree, the locate function was called "ubi_sptLocate", but the next - * and previous functions remained "ubi_btNext" and "ubi_btPrev". - * - * This was not too terrible if you were familiar with the modules and knew - * exactly which tree model you wanted to use. If you wanted to be able to - * change modules (for speed comparisons, etc), things could get messy very - * quickly. - * - * So, I have added a set of defined names that get redefined in any of the - * descendant modules. To use this standardized interface in your code, - * simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with - * "ubi_tr". The "ubi_tr" names will resolve to the correct function or - * datatype names for the module that you are using. Just remember to - * include the header for that module in your program file. Because these - * names are handled by the preprocessor, there is no added run-time - * overhead. - * - * Note that the original names do still exist, and can be used if you wish - * to write code directly to a specific module. This should probably only be - * done if you are planning to implement a new descendant type, such as - * red/black trees. CRH - * - * V0.0 - May, 1990 - Written by Christopher R. Hertel (CRH). - * - * ========================================================================= ** - */ - -#include "ubi_BinTree.h" /* Base erg binary tree support. */ - -/* ------------------------------------------------------------------------- ** - * AVL Tree Node Structure: This structure defines the basic elements of - * the AVL tree nodes. In general you *SHOULD NOT PLAY WITH THESE - * FIELDS*! But, of course, I have to put the structure into this - * header so that you can use the structure as a building block. - * - * The fields are as follows: - * Link - An array of pointers. These pointers are manipulated by the - * BT and AVL routines, and indicate the left and right child - * nodes, plus the parent node. By keeping track of the parent - * pointer, we avoid the need for recursive routines or hand- - * tooled stacks to keep track of our path back to the root. - * The use of these pointers is subject to change without - * notice. - * gender - For tree rebalancing purposes, it is necessary that each node - * know whether it is the left or right child of its parent, or - * if it is the root. This information is stored in this field. - * balance - This field is also needed for AVL balancing purposes. It - * indicates which subtree of the current node is longer, or if - * the subtrees are, in fact, balanced with respect to each - * other. - * ------------------------------------------------------------------------- ** - */ - -typedef struct ubi_avlNodeStruct { - struct ubi_avlNodeStruct - *Link[3]; /* Normal Binary Tree Node type. */ - char gender; /* The node is either the RIGHT or LEFT child of its */ - /* parent, or is the root node. */ - char balance; /* In an AVL tree, each node is the root of a subtree */ - /* that may be balanced, or be one node longer to the */ - /* right or left. This field keeps track of the */ - /* balance value of each node. */ - } ubi_avlNode; /* Typedef'd name for an avl tree node. */ - -typedef ubi_avlNode *ubi_avlNodePtr; /* a Pointer to an AVL node */ - -/* -------------------------------------------------------------------------- ** - * Function prototypes. - * -------------------------------------------------------------------------- ** - */ - -ubi_avlNodePtr ubi_avlInitNode( ubi_avlNodePtr NodePtr ); - /* ------------------------------------------------------------------------ ** - * Initialize a tree node. - * - * Input: NodePtr - a pointer to a ubi_btNode structure to be - * initialized. - * Output: a pointer to the initialized ubi_avlNode structure (ie. the - * same as the input pointer). - * ------------------------------------------------------------------------ ** - */ - -ubi_trBool ubi_avlInsert( ubi_btRootPtr RootPtr, - ubi_avlNodePtr NewNode, - ubi_btItemPtr ItemPtr, - ubi_avlNodePtr *OldNode ); - /* ------------------------------------------------------------------------ ** - * This function uses a non-recursive algorithm to add a new element to - * the tree. - * - * Input: RootPtr - a pointer to the ubi_btRoot structure that indicates - * the root of the tree to which NewNode is to be added. - * NewNode - a pointer to an ubi_avlNode structure that is NOT - * part of any tree. - * ItemPtr - A pointer to the sort key that is stored within - * *NewNode. ItemPtr MUST point to information stored - * in *NewNode or an EXACT DUPLICATE. The key data - * indicated by ItemPtr is used to place the new node - * into the tree. - * OldNode - a pointer to an ubi_btNodePtr. When searching - * the tree, a duplicate node may be found. If - * duplicates are allowed, then the new node will - * be simply placed into the tree. If duplicates - * are not allowed, however, then one of two things - * may happen. - * 1) if overwritting *is not* allowed, this - * function will return FALSE (indicating that - * the new node could not be inserted), and - * *OldNode will point to the duplicate that is - * still in the tree. - * 2) if overwritting *is* allowed, then this - * function will swap **OldNode for *NewNode. - * In this case, *OldNode will point to the node - * that was removed (thus allowing you to free - * the node). - * ** If you are using overwrite mode, ALWAYS ** - * ** check the return value of this parameter! ** - * Note: You may pass NULL in this parameter, the - * function knows how to cope. If you do this, - * however, there will be no way to return a - * pointer to an old (ie. replaced) node (which is - * a problem if you are using overwrite mode). - * - * Output: a boolean value indicating success or failure. The function - * will return FALSE if the node could not be added to the tree. - * Such failure will only occur if duplicates are not allowed, - * nodes cannot be overwritten, AND a duplicate key was found - * within the tree. - * ------------------------------------------------------------------------ ** - */ - -ubi_avlNodePtr ubi_avlRemove( ubi_btRootPtr RootPtr, - ubi_avlNodePtr DeadNode ); - /* ------------------------------------------------------------------------ ** - * This function removes the indicated node from the tree, after which the - * tree is rebalanced. - * - * Input: RootPtr - A pointer to the header of the tree that contains - * the node to be removed. - * DeadNode - A pointer to the node that will be removed. - * - * Output: This function returns a pointer to the node that was removed - * from the tree (ie. the same as DeadNode). - * - * Note: The node MUST be in the tree indicated by RootPtr. If not, - * strange and evil things will happen to your trees. - * ------------------------------------------------------------------------ ** - */ - -int ubi_avlModuleID( int size, char *list[] ); - /* ------------------------------------------------------------------------ ** - * Returns a set of strings that identify the module. - * - * Input: size - The number of elements in the array <list>. - * list - An array of pointers of type (char *). This array - * should, initially, be empty. This function will fill - * in the array with pointers to strings. - * Output: The number of elements of <list> that were used. If this value - * is less than <size>, the values of the remaining elements are - * not guaranteed. - * - * Notes: Please keep in mind that the pointers returned indicate strings - * stored in static memory. Don't free() them, don't write over - * them, etc. Just read them. - * ------------------------------------------------------------------------ ** - */ - -/* -------------------------------------------------------------------------- ** - * Masquarade... - * - * This set of defines allows you to write programs that will use any of the - * implemented binary tree modules (currently BinTree, AVLtree, and SplayTree). - * Instead of using ubi_avl... or ubi_bt, use ubi_tr... and select the tree - * type by including the appropriate module header. - */ - -#undef ubi_trNode -#undef ubi_trNodePtr -#define ubi_trNode ubi_avlNode -#define ubi_trNodePtr ubi_avlNodePtr - -#undef ubi_trInitNode -#define ubi_trInitNode( Np ) ubi_avlInitNode( (ubi_avlNodePtr)(Np) ) - -#undef ubi_trInsert -#define ubi_trInsert( Rp, Nn, Ip, On ) \ - ubi_avlInsert( (ubi_btRootPtr)(Rp), (ubi_avlNodePtr)(Nn), \ - (ubi_btItemPtr)(Ip), (ubi_avlNodePtr *)(On) ) - -#undef ubi_trRemove -#define ubi_trRemove( Rp, Dn ) \ - ubi_avlRemove( (ubi_btRootPtr)(Rp), (ubi_avlNodePtr)(Dn) ) - -#undef ubi_trLocate -#define ubi_trLocate( Rp, Ip, Op ) \ - (ubi_avlNodePtr)ubi_btLocate( (ubi_btRootPtr)(Rp), \ - (ubi_btItemPtr)(Ip), \ - (ubi_trCompOps)(Op) ) - -#undef ubi_trFind -#define ubi_trFind( Rp, Ip ) \ - (ubi_avlNodePtr)ubi_btFind( (ubi_btRootPtr)(Rp), (ubi_btItemPtr)(Ip) ) - -#undef ubi_trNext -#define ubi_trNext( P ) (ubi_avlNodePtr)ubi_btNext( (ubi_btNodePtr)(P) ) - -#undef ubi_trPrev -#define ubi_trPrev( P ) (ubi_avlNodePtr)ubi_btPrev( (ubi_btNodePtr)(P) ) - -#undef ubi_trFirst -#define ubi_trFirst( P ) (ubi_avlNodePtr)ubi_btFirst( (ubi_btNodePtr)(P) ) - -#undef ubi_trLast -#define ubi_trLast( P ) (ubi_avlNodePtr)ubi_btLast( (ubi_btNodePtr)(P) ) - -#undef ubi_trFirstOf -#define ubi_trFirstOf( Rp, Ip, P ) \ - (ubi_avlNodePtr)ubi_btFirstOf( (ubi_btRootPtr)(Rp), \ - (ubi_btItemPtr)(Ip), \ - (ubi_btNodePtr)(P) ) - -#undef ubi_trLastOf -#define ubi_trLastOf( Rp, Ip, P ) \ - (ubi_avlNodePtr)ubi_btLastOf( (ubi_btRootPtr)(Rp), \ - (ubi_btItemPtr)(Ip), \ - (ubi_btNodePtr)(P) ) - -#undef ubi_trLeafNode -#define ubi_trLeafNode( Nd ) \ - (ubi_avlNodePtr)ubi_btLeafNode( (ubi_btNodePtr)(Nd) ) - -#undef ubi_trModuleID -#define ubi_trModuleID( s, l ) ubi_avlModuleID( s, l ) - - -/* =========================== End ubi_AVLtree.h =========================== */ -#endif /* ubi_AVLtree_H */ |