summaryrefslogtreecommitdiff
path: root/source4/ldap_server/devdocs/rfc4517.txt
diff options
context:
space:
mode:
Diffstat (limited to 'source4/ldap_server/devdocs/rfc4517.txt')
-rw-r--r--source4/ldap_server/devdocs/rfc4517.txt2971
1 files changed, 2971 insertions, 0 deletions
diff --git a/source4/ldap_server/devdocs/rfc4517.txt b/source4/ldap_server/devdocs/rfc4517.txt
new file mode 100644
index 0000000000..177e08b2ac
--- /dev/null
+++ b/source4/ldap_server/devdocs/rfc4517.txt
@@ -0,0 +1,2971 @@
+
+
+
+
+
+
+Network Working Group S. Legg, Ed.
+Request for Comments: 4517 eB2Bcom
+Obsoletes: 2252, 2256 June 2006
+Updates: 3698
+Category: Standards Track
+
+
+ Lightweight Directory Access Protocol (LDAP):
+ Syntaxes and Matching Rules
+
+
+Status of This Memo
+
+ This document specifies an Internet standards track protocol for the
+ Internet community, and requests discussion and suggestions for
+ improvements. Please refer to the current edition of the "Internet
+ Official Protocol Standards" (STD 1) for the standardization state
+ and status of this protocol. Distribution of this memo is unlimited.
+
+Copyright Notice
+
+ Copyright (C) The Internet Society (2006).
+
+Abstract
+
+ Each attribute stored in a Lightweight Directory Access Protocol
+ (LDAP) directory, whose values may be transferred in the LDAP
+ protocol, has a defined syntax that constrains the structure and
+ format of its values. The comparison semantics for values of a
+ syntax are not part of the syntax definition but are instead provided
+ through separately defined matching rules. Matching rules specify an
+ argument, an assertion value, which also has a defined syntax. This
+ document defines a base set of syntaxes and matching rules for use in
+ defining attributes for LDAP directories.
+
+Table of Contents
+
+ 1. Introduction ....................................................3
+ 2. Conventions .....................................................4
+ 3. Syntaxes ........................................................4
+ 3.1. General Considerations .....................................5
+ 3.2. Common Definitions .........................................5
+ 3.3. Syntax Definitions .........................................6
+ 3.3.1. Attribute Type Description ..........................6
+ 3.3.2. Bit String ..........................................6
+ 3.3.3. Boolean .............................................7
+ 3.3.4. Country String ......................................7
+ 3.3.5. Delivery Method .....................................8
+
+
+
+Legg Standards Track [Page 1]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ 3.3.6. Directory String ....................................8
+ 3.3.7. DIT Content Rule Description ........................9
+ 3.3.8. DIT Structure Rule Description .....................10
+ 3.3.9. DN .................................................10
+ 3.3.10. Enhanced Guide ....................................11
+ 3.3.11. Facsimile Telephone Number ........................12
+ 3.3.12. Fax ...............................................12
+ 3.3.13. Generalized Time ..................................13
+ 3.3.14. Guide .............................................14
+ 3.3.15. IA5 String ........................................15
+ 3.3.16. Integer ...........................................15
+ 3.3.17. JPEG ..............................................15
+ 3.3.18. LDAP Syntax Description ...........................16
+ 3.3.19. Matching Rule Description .........................16
+ 3.3.20. Matching Rule Use Description .....................17
+ 3.3.21. Name and Optional UID .............................17
+ 3.3.22. Name Form Description .............................18
+ 3.3.23. Numeric String ....................................18
+ 3.3.24. Object Class Description ..........................18
+ 3.3.25. Octet String ......................................19
+ 3.3.26. OID ...............................................19
+ 3.3.27. Other Mailbox .....................................20
+ 3.3.28. Postal Address ....................................20
+ 3.3.29. Printable String ..................................21
+ 3.3.30. Substring Assertion ...............................22
+ 3.3.31. Telephone Number ..................................23
+ 3.3.32. Teletex Terminal Identifier .......................23
+ 3.3.33. Telex Number ......................................24
+ 3.3.34. UTC Time ..........................................24
+ 4. Matching Rules .................................................25
+ 4.1. General Considerations ....................................25
+ 4.2. Matching Rule Definitions .................................27
+ 4.2.1. bitStringMatch .....................................27
+ 4.2.2. booleanMatch .......................................28
+ 4.2.3. caseExactIA5Match ..................................28
+ 4.2.4. caseExactMatch .....................................29
+ 4.2.5. caseExactOrderingMatch .............................29
+ 4.2.6. caseExactSubstringsMatch ...........................30
+ 4.2.7. caseIgnoreIA5Match .................................30
+ 4.2.8. caseIgnoreIA5SubstringsMatch .......................31
+ 4.2.9. caseIgnoreListMatch ................................31
+ 4.2.10. caseIgnoreListSubstringsMatch .....................32
+ 4.2.11. caseIgnoreMatch ...................................33
+ 4.2.12. caseIgnoreOrderingMatch ...........................33
+ 4.2.13. caseIgnoreSubstringsMatch .........................34
+ 4.2.14. directoryStringFirstComponentMatch ................34
+ 4.2.15. distinguishedNameMatch ............................35
+ 4.2.16. generalizedTimeMatch ..............................36
+
+
+
+Legg Standards Track [Page 2]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ 4.2.17. generalizedTimeOrderingMatch ......................36
+ 4.2.18. integerFirstComponentMatch ........................36
+ 4.2.19. integerMatch ......................................37
+ 4.2.20. integerOrderingMatch ..............................37
+ 4.2.21. keywordMatch ......................................38
+ 4.2.22. numericStringMatch ................................38
+ 4.2.23. numericStringOrderingMatch ........................39
+ 4.2.24. numericStringSubstringsMatch ......................39
+ 4.2.25. objectIdentifierFirstComponentMatch ...............40
+ 4.2.26. objectIdentifierMatch .............................40
+ 4.2.27. octetStringMatch ..................................41
+ 4.2.28. octetStringOrderingMatch ..........................41
+ 4.2.29. telephoneNumberMatch ..............................42
+ 4.2.30. telephoneNumberSubstringsMatch ....................42
+ 4.2.31. uniqueMemberMatch .................................43
+ 4.2.32. wordMatch .........................................44
+ 5. Security Considerations ........................................44
+ 6. Acknowledgements ...............................................44
+ 7. IANA Considerations ............................................45
+ 8. References .....................................................46
+ 8.1. Normative References ......................................46
+ 8.2. Informative References ....................................48
+ Appendix A. Summary of Syntax Object Identifiers ..................49
+ Appendix B. Changes from RFC 2252 .................................49
+
+1. Introduction
+
+ Each attribute stored in a Lightweight Directory Access Protocol
+ (LDAP) directory [RFC4510], whose values may be transferred in the
+ LDAP protocol [RFC4511], has a defined syntax (i.e., data type) that
+ constrains the structure and format of its values. The comparison
+ semantics for values of a syntax are not part of the syntax
+ definition but are instead provided through separately defined
+ matching rules. Matching rules specify an argument, an assertion
+ value, which also has a defined syntax. This document defines a base
+ set of syntaxes and matching rules for use in defining attributes for
+ LDAP directories.
+
+ Readers are advised to familiarize themselves with the Directory
+ Information Models [RFC4512] before reading the rest of this
+ document. Section 3 provides definitions for the base set of LDAP
+ syntaxes. Section 4 provides definitions for the base set of
+ matching rules for LDAP.
+
+ This document is an integral part of the LDAP technical specification
+ [RFC4510], which obsoletes the previously defined LDAP technical
+ specification, RFC 3377, in its entirety.
+
+
+
+
+Legg Standards Track [Page 3]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ Sections 4, 5, and 7 of RFC 2252 are obsoleted by [RFC4512]. The
+ remainder of RFC 2252 is obsoleted by this document. Sections 6 and
+ 8 of RFC 2256 are obsoleted by this document. The remainder of RFC
+ 2256 is obsoleted by [RFC4519] and [RFC4512]. All but Section 2.11
+ of RFC 3698 is obsoleted by this document.
+
+ A number of schema elements that were included in the previous
+ revision of the LDAP technical specification are not included in this
+ revision of LDAP. Public Key Infrastructure schema elements are now
+ specified in [RFC4523]. Unless reintroduced in future technical
+ specifications, the remainder are to be considered Historic.
+
+ The changes with respect to RFC 2252 are described in Appendix B of
+ this document.
+
+2. Conventions
+
+ In this document, the key words "MUST", "MUST NOT", "REQUIRED",
+ "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
+ and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
+ [RFC2119].
+
+ Syntax definitions are written according to the <SyntaxDescription>
+ ABNF [RFC4234] rule specified in [RFC4512], and matching rule
+ definitions are written according to the <MatchingRuleDescription>
+ ABNF rule specified in [RFC4512], except that the syntax and matching
+ rule definitions provided in this document are line-wrapped for
+ readability. When such definitions are transferred as attribute
+ values in the LDAP protocol (e.g., as values of the ldapSyntaxes and
+ matchingRules attributes [RFC4512], respectively), then those values
+ would not contain line breaks.
+
+3. Syntaxes
+
+ Syntax definitions constrain the structure of attribute values stored
+ in an LDAP directory, and determine the representation of attribute
+ and assertion values transferred in the LDAP protocol.
+
+ Syntaxes that are required for directory operation, or that are in
+ common use, are specified in this section. Servers SHOULD recognize
+ all the syntaxes listed in this document, but are not required to
+ otherwise support them, and MAY recognise or support other syntaxes.
+ However, the definition of additional arbitrary syntaxes is
+ discouraged since it will hinder interoperability. Client and server
+ implementations typically do not have the ability to dynamically
+ recognize new syntaxes.
+
+
+
+
+
+Legg Standards Track [Page 4]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+3.1. General Considerations
+
+ The description of each syntax specifies how attribute or assertion
+ values conforming to the syntax are to be represented when
+ transferred in the LDAP protocol [RFC4511]. This representation is
+ referred to as the LDAP-specific encoding to distinguish it from
+ other methods of encoding attribute values (e.g., the Basic Encoding
+ Rules (BER) encoding [BER] used by X.500 [X.500] directories).
+
+ The LDAP-specific encoding of a given attribute syntax always
+ produces octet-aligned values. To the greatest extent possible,
+ encoding rules for LDAP syntaxes should produce character strings
+ that can be displayed with little or no translation by clients
+ implementing LDAP. However, clients MUST NOT assume that the LDAP-
+ specific encoding of a value of an unrecognized syntax is a human-
+ readable character string. There are a few cases (e.g., the JPEG
+ syntax) when it is not reasonable to produce a human-readable
+ representation.
+
+ Each LDAP syntax is uniquely identified with an object identifier
+ [ASN.1] represented in the dotted-decimal format (short descriptive
+ names are not defined for syntaxes). These object identifiers are
+ not intended to be displayed to users. The object identifiers for
+ the syntaxes defined in this document are summarized in Appendix A.
+
+ A suggested minimum upper bound on the number of characters in an
+ attribute value with a string-based syntax, or the number of octets
+ in a value for all other syntaxes, MAY be indicated by appending the
+ bound inside of curly braces following the syntax's OBJECT IDENTIFIER
+ in an attribute type definition (see the <noidlen> rule in
+ [RFC4512]). Such a bound is not considered part of the syntax
+ identifier.
+
+ For example, "1.3.6.1.4.1.1466.115.121.1.15{64}" in an attribute
+ definition suggests that the directory server will allow a value of
+ the attribute to be up to 64 characters long, although it may allow
+ longer character strings. Note that a single character of the
+ Directory String syntax can be encoded in more than one octet, since
+ UTF-8 [RFC3629] is a variable-length encoding. Therefore, a 64-
+ character string may be more than 64 octets in length.
+
+3.2. Common Definitions
+
+ The following ABNF rules are used in a number of the syntax
+ definitions in Section 3.3.
+
+ PrintableCharacter = ALPHA / DIGIT / SQUOTE / LPAREN / RPAREN /
+ PLUS / COMMA / HYPHEN / DOT / EQUALS /
+
+
+
+Legg Standards Track [Page 5]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ SLASH / COLON / QUESTION / SPACE
+ PrintableString = 1*PrintableCharacter
+ IA5String = *(%x00-7F)
+ SLASH = %x2F ; forward slash ("/")
+ COLON = %x3A ; colon (":")
+ QUESTION = %x3F ; question mark ("?")
+
+ The <ALPHA>, <DIGIT>, <SQUOTE>, <LPAREN>, <RPAREN>, <PLUS>, <COMMA>,
+ <HYPHEN>, <DOT>, <EQUALS>, and <SPACE> rules are defined in
+ [RFC4512].
+
+3.3. Syntax Definitions
+
+3.3.1. Attribute Type Description
+
+ A value of the Attribute Type Description syntax is the definition of
+ an attribute type. The LDAP-specific encoding of a value of this
+ syntax is defined by the <AttributeTypeDescription> rule in
+ [RFC4512].
+
+ For example, the following definition of the createTimestamp
+ attribute type from [RFC4512] is also a value of the Attribute
+ Type Description syntax. (Note: Line breaks have been added for
+ readability; they are not part of the value when transferred in
+ protocol.)
+
+ ( 2.5.18.1 NAME 'createTimestamp'
+ EQUALITY generalizedTimeMatch
+ ORDERING generalizedTimeOrderingMatch
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
+ SINGLE-VALUE NO-USER-MODIFICATION
+ USAGE directoryOperation )
+
+ The LDAP definition for the Attribute Type Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.3 DESC 'Attribute Type Description' )
+
+ This syntax corresponds to the AttributeTypeDescription ASN.1 type
+ from [X.501].
+
+3.3.2. Bit String
+
+ A value of the Bit String syntax is a sequence of binary digits. The
+ LDAP-specific encoding of a value of this syntax is defined by the
+ following ABNF:
+
+ BitString = SQUOTE *binary-digit SQUOTE "B"
+ binary-digit = "0" / "1"
+
+
+
+Legg Standards Track [Page 6]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The <SQUOTE> rule is defined in [RFC4512].
+
+ Example:
+ '0101111101'B
+
+ The LDAP definition for the Bit String syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.6 DESC 'Bit String' )
+
+ This syntax corresponds to the BIT STRING ASN.1 type from [ASN.1].
+
+3.3.3. Boolean
+
+ A value of the Boolean syntax is one of the Boolean values, true or
+ false. The LDAP-specific encoding of a value of this syntax is
+ defined by the following ABNF:
+
+ Boolean = "TRUE" / "FALSE"
+
+ The LDAP definition for the Boolean syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean' )
+
+ This syntax corresponds to the BOOLEAN ASN.1 type from [ASN.1].
+
+3.3.4. Country String
+
+ A value of the Country String syntax is one of the two-character
+ codes from ISO 3166 [ISO3166] for representing a country. The LDAP-
+ specific encoding of a value of this syntax is defined by the
+ following ABNF:
+
+ CountryString = 2(PrintableCharacter)
+
+ The <PrintableCharacter> rule is defined in Section 3.2.
+
+ Examples:
+
+ US
+ AU
+
+ The LDAP definition for the Country String syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.11 DESC 'Country String' )
+
+ This syntax corresponds to the following ASN.1 type from [X.520]:
+
+ PrintableString (SIZE (2)) -- ISO 3166 codes only
+
+
+
+Legg Standards Track [Page 7]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+3.3.5. Delivery Method
+
+ A value of the Delivery Method syntax is a sequence of items that
+ indicate, in preference order, the service(s) by which an entity is
+ willing and/or capable of receiving messages. The LDAP-specific
+ encoding of a value of this syntax is defined by the following ABNF:
+
+ DeliveryMethod = pdm *( WSP DOLLAR WSP pdm )
+
+ pdm = "any" / "mhs" / "physical" / "telex" / "teletex" /
+ "g3fax" / "g4fax" / "ia5" / "videotex" / "telephone"
+
+ The <WSP> and <DOLLAR> rules are defined in [RFC4512].
+
+ Example:
+ telephone $ videotex
+
+ The LDAP definition for the Delivery Method syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.14 DESC 'Delivery Method' )
+
+ This syntax corresponds to the following ASN.1 type from [X.520]:
+
+ SEQUENCE OF INTEGER {
+ any-delivery-method (0),
+ mhs-delivery (1),
+ physical-delivery (2),
+ telex-delivery (3),
+ teletex-delivery (4),
+ g3-facsimile-delivery (5),
+ g4-facsimile-delivery (6),
+ ia5-terminal-delivery (7),
+ videotex-delivery (8),
+ telephone-delivery (9) }
+
+3.3.6. Directory String
+
+ A value of the Directory String syntax is a string of one or more
+ arbitrary characters from the Universal Character Set (UCS) [UCS]. A
+ zero-length character string is not permitted. The LDAP-specific
+ encoding of a value of this syntax is the UTF-8 encoding [RFC3629] of
+ the character string. Such encodings conform to the following ABNF:
+
+ DirectoryString = 1*UTF8
+
+ The <UTF8> rule is defined in [RFC4512].
+
+
+
+
+
+Legg Standards Track [Page 8]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ Example:
+ This is a value of Directory String containing #!%#@.
+
+ Servers and clients MUST be prepared to receive arbitrary UCS code
+ points, including code points outside the range of printable ASCII
+ and code points not presently assigned to any character.
+
+ Attribute type definitions using the Directory String syntax should
+ not restrict the format of Directory String values, e.g., by
+ requiring that the character string conforms to specific patterns
+ described by ABNF. A new syntax should be defined in such cases.
+
+ The LDAP definition for the Directory String syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String' )
+
+ This syntax corresponds to the DirectoryString parameterized ASN.1
+ type from [X.520].
+
+ The DirectoryString ASN.1 type allows a choice between the
+ TeletexString, PrintableString, or UniversalString ASN.1 types from
+ [ASN.1]. However, note that the chosen alternative is not indicated
+ in the LDAP-specific encoding of a Directory String value.
+
+ Implementations that convert Directory String values from the LDAP-
+ specific encoding to the BER encoding used by X.500 must choose an
+ alternative that permits the particular characters in the string and
+ must convert the characters from the UTF-8 encoding into the
+ character encoding of the chosen alternative. When converting
+ Directory String values from the BER encoding to the LDAP-specific
+ encoding, the characters must be converted from the character
+ encoding of the chosen alternative into the UTF-8 encoding. These
+ conversions SHOULD be done in a manner consistent with the Transcode
+ step of the string preparation algorithms [RFC4518] for LDAP.
+
+3.3.7. DIT Content Rule Description
+
+ A value of the DIT Content Rule Description syntax is the definition
+ of a DIT (Directory Information Tree) content rule. The LDAP-
+ specific encoding of a value of this syntax is defined by the
+ <DITContentRuleDescription> rule in [RFC4512].
+
+ Example:
+ ( 2.5.6.4 DESC 'content rule for organization'
+ NOT ( x121Address $ telexNumber ) )
+
+ Note: A line break has been added for readability; it is not part
+ of the value.
+
+
+
+Legg Standards Track [Page 9]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The LDAP definition for the DIT Content Rule Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.16
+ DESC 'DIT Content Rule Description' )
+
+ This syntax corresponds to the DITContentRuleDescription ASN.1 type
+ from [X.501].
+
+3.3.8. DIT Structure Rule Description
+
+ A value of the DIT Structure Rule Description syntax is the
+ definition of a DIT structure rule. The LDAP-specific encoding of a
+ value of this syntax is defined by the <DITStructureRuleDescription>
+ rule in [RFC4512].
+
+ Example:
+ ( 2 DESC 'organization structure rule' FORM 2.5.15.3 )
+
+ The LDAP definition for the DIT Structure Rule Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.17
+ DESC 'DIT Structure Rule Description' )
+
+ This syntax corresponds to the DITStructureRuleDescription ASN.1 type
+ from [X.501].
+
+3.3.9. DN
+
+ A value of the DN syntax is the (purported) distinguished name (DN)
+ of an entry [RFC4512]. The LDAP-specific encoding of a value of this
+ syntax is defined by the <distinguishedName> rule from the string
+ representation of distinguished names [RFC4514].
+
+ Examples (from [RFC4514]):
+ UID=jsmith,DC=example,DC=net
+ OU=Sales+CN=J. Smith,DC=example,DC=net
+ CN=John Smith\, III,DC=example,DC=net
+ CN=Before\0dAfter,DC=example,DC=net
+ 1.3.6.1.4.1.1466.0=#04024869,DC=example,DC=com
+ CN=Lu\C4\8Di\C4\87
+
+ The LDAP definition for the DN syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.12 DESC 'DN' )
+
+ The DN syntax corresponds to the DistinguishedName ASN.1 type from
+ [X.501]. Note that a BER encoded distinguished name (as used by
+ X.500) re-encoded into the LDAP-specific encoding is not necessarily
+
+
+
+Legg Standards Track [Page 10]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ reversible to the original BER encoding since the chosen string type
+ in any DirectoryString components of the distinguished name is not
+ indicated in the LDAP-specific encoding of the distinguished name
+ (see Section 3.3.6).
+
+3.3.10. Enhanced Guide
+
+ A value of the Enhanced Guide syntax suggests criteria, which consist
+ of combinations of attribute types and filter operators, to be used
+ in constructing filters to search for entries of particular object
+ classes. The Enhanced Guide syntax improves upon the Guide syntax by
+ allowing the recommended depth of the search to be specified.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+ EnhancedGuide = object-class SHARP WSP criteria WSP
+ SHARP WSP subset
+ object-class = WSP oid WSP
+ subset = "baseobject" / "oneLevel" / "wholeSubtree"
+
+ criteria = and-term *( BAR and-term )
+ and-term = term *( AMPERSAND term )
+ term = EXCLAIM term /
+ attributetype DOLLAR match-type /
+ LPAREN criteria RPAREN /
+ true /
+ false
+ match-type = "EQ" / "SUBSTR" / "GE" / "LE" / "APPROX"
+ true = "?true"
+ false = "?false"
+ BAR = %x7C ; vertical bar ("|")
+ AMPERSAND = %x26 ; ampersand ("&")
+ EXCLAIM = %x21 ; exclamation mark ("!")
+
+ The <SHARP>, <WSP>, <oid>, <LPAREN>, <RPAREN>, <attributetype>, and
+ <DOLLAR> rules are defined in [RFC4512].
+
+ The LDAP definition for the Enhanced Guide syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.21 DESC 'Enhanced Guide' )
+
+ Example:
+ person#(sn$EQ)#oneLevel
+
+ The Enhanced Guide syntax corresponds to the EnhancedGuide ASN.1 type
+ from [X.520]. The EnhancedGuide type references the Criteria ASN.1
+ type, also from [X.520]. The <true> rule, above, represents an empty
+
+
+
+Legg Standards Track [Page 11]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ "and" expression in a value of the Criteria type. The <false> rule,
+ above, represents an empty "or" expression in a value of the Criteria
+ type.
+
+3.3.11. Facsimile Telephone Number
+
+ A value of the Facsimile Telephone Number syntax is a subscriber
+ number of a facsimile device on the public switched telephone
+ network. The LDAP-specific encoding of a value of this syntax is
+ defined by the following ABNF:
+
+ fax-number = telephone-number *( DOLLAR fax-parameter )
+ telephone-number = PrintableString
+ fax-parameter = "twoDimensional" /
+ "fineResolution" /
+ "unlimitedLength" /
+ "b4Length" /
+ "a3Width" /
+ "b4Width" /
+ "uncompressed"
+
+ The <telephone-number> is a string of printable characters that
+ complies with the internationally agreed format for representing
+ international telephone numbers [E.123]. The <PrintableString> rule
+ is defined in Section 3.2. The <DOLLAR> rule is defined in
+ [RFC4512].
+
+ The LDAP definition for the Facsimile Telephone Number syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.22 DESC 'Facsimile Telephone Number')
+
+ The Facsimile Telephone Number syntax corresponds to the
+ FacsimileTelephoneNumber ASN.1 type from [X.520].
+
+3.3.12. Fax
+
+ A value of the Fax syntax is an image that is produced using the
+ Group 3 facsimile process [FAX] to duplicate an object, such as a
+ memo. The LDAP-specific encoding of a value of this syntax is the
+ string of octets for a Group 3 Fax image as defined in [FAX].
+
+ The LDAP definition for the Fax syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.23 DESC 'Fax' )
+
+ The ASN.1 type corresponding to the Fax syntax is defined as follows,
+ assuming EXPLICIT TAGS:
+
+
+
+
+Legg Standards Track [Page 12]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ Fax ::= CHOICE {
+ g3-facsimile [3] G3FacsimileBodyPart
+ }
+
+ The G3FacsimileBodyPart ASN.1 type is defined in [X.420].
+
+3.3.13. Generalized Time
+
+ A value of the Generalized Time syntax is a character string
+ representing a date and time. The LDAP-specific encoding of a value
+ of this syntax is a restriction of the format defined in [ISO8601],
+ and is described by the following ABNF:
+
+ GeneralizedTime = century year month day hour
+ [ minute [ second / leap-second ] ]
+ [ fraction ]
+ g-time-zone
+
+ century = 2(%x30-39) ; "00" to "99"
+ year = 2(%x30-39) ; "00" to "99"
+ month = ( %x30 %x31-39 ) ; "01" (January) to "09"
+ / ( %x31 %x30-32 ) ; "10" to "12"
+ day = ( %x30 %x31-39 ) ; "01" to "09"
+ / ( %x31-32 %x30-39 ) ; "10" to "29"
+ / ( %x33 %x30-31 ) ; "30" to "31"
+ hour = ( %x30-31 %x30-39 ) / ( %x32 %x30-33 ) ; "00" to "23"
+ minute = %x30-35 %x30-39 ; "00" to "59"
+
+ second = ( %x30-35 %x30-39 ) ; "00" to "59"
+ leap-second = ( %x36 %x30 ) ; "60"
+
+ fraction = ( DOT / COMMA ) 1*(%x30-39)
+ g-time-zone = %x5A ; "Z"
+ / g-differential
+ g-differential = ( MINUS / PLUS ) hour [ minute ]
+ MINUS = %x2D ; minus sign ("-")
+
+ The <DOT>, <COMMA>, and <PLUS> rules are defined in [RFC4512].
+
+ The above ABNF allows character strings that do not represent valid
+ dates (in the Gregorian calendar) and/or valid times (e.g., February
+ 31, 1994). Such character strings SHOULD be considered invalid for
+ this syntax.
+
+ The time value represents coordinated universal time (equivalent to
+ Greenwich Mean Time) if the "Z" form of <g-time-zone> is used;
+ otherwise, the value represents a local time in the time zone
+ indicated by <g-differential>. In the latter case, coordinated
+
+
+
+Legg Standards Track [Page 13]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ universal time can be calculated by subtracting the differential from
+ the local time. The "Z" form of <g-time-zone> SHOULD be used in
+ preference to <g-differential>.
+
+ If <minute> is omitted, then <fraction> represents a fraction of an
+ hour; otherwise, if <second> and <leap-second> are omitted, then
+ <fraction> represents a fraction of a minute; otherwise, <fraction>
+ represents a fraction of a second.
+
+ Examples:
+ 199412161032Z
+ 199412160532-0500
+
+ Both example values represent the same coordinated universal time:
+ 10:32 AM, December 16, 1994.
+
+ The LDAP definition for the Generalized Time syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized Time' )
+
+ This syntax corresponds to the GeneralizedTime ASN.1 type from
+ [ASN.1], with the constraint that local time without a differential
+ SHALL NOT be used.
+
+3.3.14. Guide
+
+ A value of the Guide syntax suggests criteria, which consist of
+ combinations of attribute types and filter operators, to be used in
+ constructing filters to search for entries of particular object
+ classes. The Guide syntax is obsolete and should not be used for
+ defining new attribute types.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+ Guide = [ object-class SHARP ] criteria
+
+ The <object-class> and <criteria> rules are defined in Section
+ 3.3.10. The <SHARP> rule is defined in [RFC4512].
+
+ The LDAP definition for the Guide syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.25 DESC 'Guide' )
+
+ The Guide syntax corresponds to the Guide ASN.1 type from [X.520].
+
+
+
+
+
+
+Legg Standards Track [Page 14]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+3.3.15. IA5 String
+
+ A value of the IA5 String syntax is a string of zero, one, or more
+ characters from International Alphabet 5 (IA5) [T.50], the
+ international version of the ASCII character set. The LDAP-specific
+ encoding of a value of this syntax is the unconverted string of
+ characters, which conforms to the <IA5String> rule in Section 3.2.
+
+ The LDAP definition for the IA5 String syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 String' )
+
+ This syntax corresponds to the IA5String ASN.1 type from [ASN.1].
+
+3.3.16. Integer
+
+ A value of the Integer syntax is a whole number of unlimited
+ magnitude. The LDAP-specific encoding of a value of this syntax is
+ the optionally signed decimal digit character string representation
+ of the number (for example, the number 1321 is represented by the
+ character string "1321"). The encoding is defined by the following
+ ABNF:
+
+ Integer = ( HYPHEN LDIGIT *DIGIT ) / number
+
+ The <HYPHEN>, <LDIGIT>, <DIGIT>, and <number> rules are defined in
+ [RFC4512].
+
+ The LDAP definition for the Integer syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.27 DESC 'INTEGER' )
+
+ This syntax corresponds to the INTEGER ASN.1 type from [ASN.1].
+
+3.3.17. JPEG
+
+ A value of the JPEG syntax is an image in the JPEG File Interchange
+ Format (JFIF), as described in [JPEG]. The LDAP-specific encoding of
+ a value of this syntax is the sequence of octets of the JFIF encoding
+ of the image.
+
+ The LDAP definition for the JPEG syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.28 DESC 'JPEG' )
+
+ The JPEG syntax corresponds to the following ASN.1 type:
+
+
+
+
+
+Legg Standards Track [Page 15]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ JPEG ::= OCTET STRING (CONSTRAINED BY
+ { -- contents octets are an image in the --
+ -- JPEG File Interchange Format -- })
+
+3.3.18. LDAP Syntax Description
+
+ A value of the LDAP Syntax Description syntax is the description of
+ an LDAP syntax. The LDAP-specific encoding of a value of this syntax
+ is defined by the <SyntaxDescription> rule in [RFC4512].
+
+ The LDAP definition for the LDAP Syntax Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.54 DESC 'LDAP Syntax Description' )
+
+ The above LDAP definition for the LDAP Syntax Description syntax is
+ itself a legal value of the LDAP Syntax Description syntax.
+
+ The ASN.1 type corresponding to the LDAP Syntax Description syntax is
+ defined as follows, assuming EXPLICIT TAGS:
+
+ LDAPSyntaxDescription ::= SEQUENCE {
+ identifier OBJECT IDENTIFIER,
+ description DirectoryString { ub-schema } OPTIONAL }
+
+ The DirectoryString parameterized ASN.1 type is defined in [X.520].
+
+ The value of ub-schema (an integer) is implementation defined. A
+ non-normative definition appears in [X.520].
+
+3.3.19. Matching Rule Description
+
+ A value of the Matching Rule Description syntax is the definition of
+ a matching rule. The LDAP-specific encoding of a value of this
+ syntax is defined by the <MatchingRuleDescription> rule in [RFC4512].
+
+ Example:
+ ( 2.5.13.2 NAME 'caseIgnoreMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+ Note: A line break has been added for readability; it is not part of
+ the syntax.
+
+ The LDAP definition for the Matching Rule Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.30 DESC 'Matching Rule Description' )
+
+ This syntax corresponds to the MatchingRuleDescription ASN.1 type
+ from [X.501].
+
+
+
+Legg Standards Track [Page 16]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+3.3.20. Matching Rule Use Description
+
+ A value of the Matching Rule Use Description syntax indicates the
+ attribute types to which a matching rule may be applied in an
+ extensibleMatch search filter [RFC4511]. The LDAP-specific encoding
+ of a value of this syntax is defined by the
+ <MatchingRuleUseDescription> rule in [RFC4512].
+
+ Example:
+ ( 2.5.13.16 APPLIES ( givenName $ surname ) )
+
+ The LDAP definition for the Matching Rule Use Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.31
+ DESC 'Matching Rule Use Description' )
+
+ This syntax corresponds to the MatchingRuleUseDescription ASN.1 type
+ from [X.501].
+
+3.3.21. Name and Optional UID
+
+ A value of the Name and Optional UID syntax is the distinguished name
+ [RFC4512] of an entity optionally accompanied by a unique identifier
+ that serves to differentiate the entity from others with an identical
+ distinguished name.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+ NameAndOptionalUID = distinguishedName [ SHARP BitString ]
+
+ The <BitString> rule is defined in Section 3.3.2. The
+ <distinguishedName> rule is defined in [RFC4514]. The <SHARP> rule
+ is defined in [RFC4512].
+
+ Note that although the '#' character may occur in the string
+ representation of a distinguished name, no additional escaping of
+ this character is performed when a <distinguishedName> is encoded in
+ a <NameAndOptionalUID>.
+
+ Example:
+ 1.3.6.1.4.1.1466.0=#04024869,O=Test,C=GB#'0101'B
+
+ The LDAP definition for the Name and Optional UID syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.34 DESC 'Name And Optional UID' )
+
+
+
+
+
+Legg Standards Track [Page 17]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ This syntax corresponds to the NameAndOptionalUID ASN.1 type from
+ [X.520].
+
+3.3.22. Name Form Description
+
+ A value of the Name Form Description syntax is the definition of a
+ name form, which regulates how entries may be named. The LDAP-
+ specific encoding of a value of this syntax is defined by the
+ <NameFormDescription> rule in [RFC4512].
+
+ Example:
+ ( 2.5.15.3 NAME 'orgNameForm' OC organization MUST o )
+
+ The LDAP definition for the Name Form Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.35 DESC 'Name Form Description' )
+
+ This syntax corresponds to the NameFormDescription ASN.1 type from
+ [X.501].
+
+3.3.23. Numeric String
+
+ A value of the Numeric String syntax is a sequence of one or more
+ numerals and spaces. The LDAP-specific encoding of a value of this
+ syntax is the unconverted string of characters, which conforms to the
+ following ABNF:
+
+ NumericString = 1*(DIGIT / SPACE)
+
+ The <DIGIT> and <SPACE> rules are defined in [RFC4512].
+
+ Example:
+ 15 079 672 281
+
+ The LDAP definition for the Numeric String syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.36 DESC 'Numeric String' )
+
+ This syntax corresponds to the NumericString ASN.1 type from [ASN.1].
+
+3.3.24. Object Class Description
+
+ A value of the Object Class Description syntax is the definition of
+ an object class. The LDAP-specific encoding of a value of this
+ syntax is defined by the <ObjectClassDescription> rule in [RFC4512].
+
+
+
+
+
+
+Legg Standards Track [Page 18]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ Example:
+ ( 2.5.6.2 NAME 'country' SUP top STRUCTURAL MUST c
+ MAY ( searchGuide $ description ) )
+
+ Note: A line break has been added for readability; it is not part of
+ the syntax.
+
+ The LDAP definition for the Object Class Description syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.37 DESC 'Object Class Description' )
+
+ This syntax corresponds to the ObjectClassDescription ASN.1 type from
+ [X.501].
+
+3.3.25. Octet String
+
+ A value of the Octet String syntax is a sequence of zero, one, or
+ more arbitrary octets. The LDAP-specific encoding of a value of this
+ syntax is the unconverted sequence of octets, which conforms to the
+ following ABNF:
+
+ OctetString = *OCTET
+
+ The <OCTET> rule is defined in [RFC4512]. Values of this syntax are
+ not generally human-readable.
+
+ The LDAP definition for the Octet String syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.40 DESC 'Octet String' )
+
+ This syntax corresponds to the OCTET STRING ASN.1 type from [ASN.1].
+
+3.3.26. OID
+
+ A value of the OID syntax is an object identifier: a sequence of two
+ or more non-negative integers that uniquely identify some object or
+ item of specification. Many of the object identifiers used in LDAP
+ also have IANA registered names [RFC4520].
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the <oid> rule in [RFC4512].
+
+ Examples:
+ 1.2.3.4
+ cn
+
+ The LDAP definition for the OID syntax is:
+
+
+
+
+Legg Standards Track [Page 19]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ ( 1.3.6.1.4.1.1466.115.121.1.38 DESC 'OID' )
+
+ This syntax corresponds to the OBJECT IDENTIFIER ASN.1 type from
+ [ASN.1].
+
+3.3.27. Other Mailbox
+
+ A value of the Other Mailbox syntax identifies an electronic mailbox,
+ in a particular named mail system. The LDAP-specific encoding of a
+ value of this syntax is defined by the following ABNF:
+
+ OtherMailbox = mailbox-type DOLLAR mailbox
+ mailbox-type = PrintableString
+ mailbox = IA5String
+
+ The <mailbox-type> rule represents the type of mail system in which
+ the mailbox resides (for example, "MCIMail"), and <mailbox> is the
+ actual mailbox in the mail system described by <mailbox-type>. The
+ <PrintableString> and <IA5String> rules are defined in Section 3.2.
+ The <DOLLAR> rule is defined in [RFC4512].
+
+ The LDAP definition for the Other Mailbox syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.39 DESC 'Other Mailbox' )
+
+ The ASN.1 type corresponding to the Other Mailbox syntax is defined
+ as follows, assuming EXPLICIT TAGS:
+
+ OtherMailbox ::= SEQUENCE {
+ mailboxType PrintableString,
+ mailbox IA5String
+ }
+
+3.3.28. Postal Address
+
+ A value of the Postal Address syntax is a sequence of strings of one
+ or more arbitrary UCS characters, which form an address in a physical
+ mail system.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+
+
+
+
+
+
+
+
+
+Legg Standards Track [Page 20]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ PostalAddress = line *( DOLLAR line )
+ line = 1*line-char
+ line-char = %x00-23
+ / (%x5C "24") ; escaped "$"
+ / %x25-5B
+ / (%x5C "5C") ; escaped "\"
+ / %x5D-7F
+ / UTFMB
+
+ Each character string (i.e., <line>) of a postal address value is
+ encoded as a UTF-8 [RFC3629] string, except that "\" and "$"
+ characters, if they occur in the string, are escaped by a "\"
+ character followed by the two hexadecimal digit code for the
+ character. The <DOLLAR> and <UTFMB> rules are defined in [RFC4512].
+
+ Many servers limit the postal address to no more than six lines of no
+ more than thirty characters each.
+
+ Example:
+ 1234 Main St.$Anytown, CA 12345$USA
+ \241,000,000 Sweepstakes$PO Box 1000000$Anytown, CA 12345$USA
+
+ The LDAP definition for the Postal Address syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.41 DESC 'Postal Address' )
+
+ This syntax corresponds to the PostalAddress ASN.1 type from [X.520];
+ that is
+
+ PostalAddress ::= SEQUENCE SIZE(1..ub-postal-line) OF
+ DirectoryString { ub-postal-string }
+
+ The values of ub-postal-line and ub-postal-string (both integers) are
+ implementation defined. Non-normative definitions appear in [X.520].
+
+3.3.29. Printable String
+
+ A value of the Printable String syntax is a string of one or more
+ latin alphabetic, numeric, and selected punctuation characters as
+ specified by the <PrintableCharacter> rule in Section 3.2.
+
+ The LDAP-specific encoding of a value of this syntax is the
+ unconverted string of characters, which conforms to the
+ <PrintableString> rule in Section 3.2.
+
+ Example:
+ This is a PrintableString.
+
+
+
+
+Legg Standards Track [Page 21]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The LDAP definition for the PrintableString syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.44 DESC 'Printable String' )
+
+ This syntax corresponds to the PrintableString ASN.1 type from
+ [ASN.1].
+
+3.3.30. Substring Assertion
+
+ A value of the Substring Assertion syntax is a sequence of zero, one,
+ or more character substrings used as an argument for substring
+ extensible matching of character string attribute values; i.e., as
+ the matchValue of a MatchingRuleAssertion [RFC4511]. Each substring
+ is a string of one or more arbitrary characters from the Universal
+ Character Set (UCS) [UCS]. A zero-length substring is not permitted.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+ SubstringAssertion = [ initial ] any [ final ]
+
+ initial = substring
+ any = ASTERISK *(substring ASTERISK)
+ final = substring
+ ASTERISK = %x2A ; asterisk ("*")
+
+ substring = 1*substring-character
+ substring-character = %x00-29
+ / (%x5C "2A") ; escaped "*"
+ / %x2B-5B
+ / (%x5C "5C") ; escaped "\"
+ / %x5D-7F
+ / UTFMB
+
+ Each <substring> of a Substring Assertion value is encoded as a UTF-8
+ [RFC3629] string, except that "\" and "*" characters, if they occur
+ in the substring, are escaped by a "\" character followed by the two
+ hexadecimal digit code for the character.
+
+ The Substring Assertion syntax is used only as the syntax of
+ assertion values in the extensible match. It is not used as an
+ attribute syntax, or in the SubstringFilter [RFC4511].
+
+ The LDAP definition for the Substring Assertion syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.58 DESC 'Substring Assertion' )
+
+
+
+
+
+Legg Standards Track [Page 22]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ This syntax corresponds to the SubstringAssertion ASN.1 type from
+ [X.520].
+
+3.3.31. Telephone Number
+
+ A value of the Telephone Number syntax is a string of printable
+ characters that complies with the internationally agreed format for
+ representing international telephone numbers [E.123].
+
+ The LDAP-specific encoding of a value of this syntax is the
+ unconverted string of characters, which conforms to the
+ <PrintableString> rule in Section 3.2.
+
+ Examples:
+ +1 512 315 0280
+ +1-512-315-0280
+ +61 3 9896 7830
+
+ The LDAP definition for the Telephone Number syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone Number' )
+
+ The Telephone Number syntax corresponds to the following ASN.1 type
+ from [X.520]:
+
+ PrintableString (SIZE(1..ub-telephone-number))
+
+ The value of ub-telephone-number (an integer) is implementation
+ defined. A non-normative definition appears in [X.520].
+
+3.3.32. Teletex Terminal Identifier
+
+ A value of this syntax specifies the identifier and (optionally)
+ parameters of a teletex terminal.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+ teletex-id = ttx-term *(DOLLAR ttx-param)
+ ttx-term = PrintableString ; terminal identifier
+ ttx-param = ttx-key COLON ttx-value ; parameter
+ ttx-key = "graphic" / "control" / "misc" / "page" / "private"
+ ttx-value = *ttx-value-octet
+
+ ttx-value-octet = %x00-23
+ / (%x5C "24") ; escaped "$"
+ / %x25-5B
+ / (%x5C "5C") ; escaped "\"
+
+
+
+Legg Standards Track [Page 23]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ / %x5D-FF
+
+ The <PrintableString> and <COLON> rules are defined in Section 3.2.
+ The <DOLLAR> rule is defined in [RFC4512].
+
+ The LDAP definition for the Teletex Terminal Identifier syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.51
+ DESC 'Teletex Terminal Identifier' )
+
+ This syntax corresponds to the TeletexTerminalIdentifier ASN.1 type
+ from [X.520].
+
+3.3.33. Telex Number
+
+ A value of the Telex Number syntax specifies the telex number,
+ country code, and answerback code of a telex terminal.
+
+ The LDAP-specific encoding of a value of this syntax is defined by
+ the following ABNF:
+
+ telex-number = actual-number DOLLAR country-code
+ DOLLAR answerback
+ actual-number = PrintableString
+ country-code = PrintableString
+ answerback = PrintableString
+
+ The <PrintableString> rule is defined in Section 3.2. The <DOLLAR>
+ rule is defined in [RFC4512].
+
+ The LDAP definition for the Telex Number syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.52 DESC 'Telex Number' )
+
+ This syntax corresponds to the TelexNumber ASN.1 type from [X.520].
+
+3.3.34. UTC Time
+
+ A value of the UTC Time syntax is a character string representing a
+ date and time to a precision of one minute or one second. The year
+ is given as a two-digit number. The LDAP-specific encoding of a
+ value of this syntax follows the format defined in [ASN.1] for the
+ UTCTime type and is described by the following ABNF:
+
+ UTCTime = year month day hour minute [ second ]
+ [ u-time-zone ]
+ u-time-zone = %x5A ; "Z"
+ / u-differential
+
+
+
+Legg Standards Track [Page 24]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ u-differential = ( MINUS / PLUS ) hour minute
+
+ The <year>, <month>, <day>, <hour>, <minute>, <second>, and <MINUS>
+ rules are defined in Section 3.3.13. The <PLUS> rule is defined in
+ [RFC4512].
+
+ The above ABNF allows character strings that do not represent valid
+ dates (in the Gregorian calendar) and/or valid times. Such character
+ strings SHOULD be considered invalid for this syntax.
+
+ The time value represents coordinated universal time if the "Z" form
+ of <u-time-zone> is used; otherwise, the value represents a local
+ time. In the latter case, if <u-differential> is provided, then
+ coordinated universal time can be calculated by subtracting the
+ differential from the local time. The <u-time-zone> SHOULD be
+ present in time values, and the "Z" form of <u-time-zone> SHOULD be
+ used in preference to <u-differential>.
+
+ The LDAP definition for the UTC Time syntax is:
+
+ ( 1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC Time' )
+
+ Note: This syntax is deprecated in favor of the Generalized Time
+ syntax.
+
+ The UTC Time syntax corresponds to the UTCTime ASN.1 type from
+ [ASN.1].
+
+4. Matching Rules
+
+ Matching rules are used by directory implementations to compare
+ attribute values against assertion values when performing Search and
+ Compare operations [RFC4511]. They are also used when comparing a
+ purported distinguished name [RFC4512] with the name of an entry.
+ When modifying entries, matching rules are used to identify values to
+ be deleted and to prevent an attribute from containing two equal
+ values.
+
+ Matching rules that are required for directory operation, or that are
+ in common use, are specified in this section.
+
+4.1. General Considerations
+
+ A matching rule is applied to attribute values through an
+ AttributeValueAssertion or MatchingRuleAssertion [RFC4511]. The
+ conditions under which an AttributeValueAssertion or
+ MatchingRuleAssertion evaluates to Undefined are specified elsewhere
+ [RFC4511]. If an assertion is not Undefined, then the result of the
+
+
+
+Legg Standards Track [Page 25]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ assertion is the result of applying the selected matching rule. A
+ matching rule evaluates to TRUE, and in some cases Undefined, as
+ specified in the description of the matching rule; otherwise, it
+ evaluates to FALSE.
+
+ Each assertion contains an assertion value. The definition of each
+ matching rule specifies the syntax for the assertion value. The
+ syntax of the assertion value is typically, but not necessarily, the
+ same as the syntax of the attribute values to which the matching rule
+ may be applied. Note that an AssertionValue in a SubstringFilter
+ [RFC4511] conforms to the assertion syntax of the equality matching
+ rule for the attribute type rather than to the assertion syntax of
+ the substrings matching rule for the attribute type. Conceptually,
+ the entire SubstringFilter is converted into an assertion value of
+ the substrings matching rule prior to applying the rule.
+
+ The definition of each matching rule indicates the attribute syntaxes
+ to which the rule may be applied, by specifying conditions the
+ corresponding ASN.1 type of a candidate attribute syntax must
+ satisfy. These conditions are also satisfied if the corresponding
+ ASN.1 type is a tagged or constrained derivative of the ASN.1 type
+ explicitly mentioned in the rule description (i.e., ASN.1 tags and
+ constraints are ignored in checking applicability), or is an
+ alternative reference notation for the explicitly mentioned type.
+ Each rule description lists, as examples of applicable attribute
+ syntaxes, the complete list of the syntaxes defined in this document
+ to which the matching rule applies. A matching rule may be
+ applicable to additional syntaxes defined in other documents if those
+ syntaxes satisfy the conditions on the corresponding ASN.1 type.
+
+ The description of each matching rule indicates whether the rule is
+ suitable for use as the equality matching rule (EQUALITY), ordering
+ matching rule (ORDERING), or substrings matching rule (SUBSTR) in an
+ attribute type definition [RFC4512].
+
+ Each matching rule is uniquely identified with an object identifier.
+ The definition of a matching rule should not subsequently be changed.
+ If a change is desirable, then a new matching rule with a different
+ object identifier should be defined instead.
+
+ Servers MAY implement the wordMatch and keywordMatch matching rules,
+ but they SHOULD implement the other matching rules in Section 4.2.
+ Servers MAY implement additional matching rules.
+
+ Servers that implement the extensibleMatch filter SHOULD allow the
+ matching rules listed in Section 4.2 to be used in the
+ extensibleMatch filter and SHOULD allow matching rules to be used
+ with all attribute types known to the server, where the assertion
+
+
+
+Legg Standards Track [Page 26]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ syntax of the matching rule is the same as the value syntax of the
+ attribute.
+
+ Servers MUST publish, in the matchingRules attribute, the definitions
+ of matching rules referenced by values of the attributeTypes and
+ matchingRuleUse attributes in the same subschema entry. Other
+ unreferenced matching rules MAY be published in the matchingRules
+ attribute.
+
+ If the server supports the extensibleMatch filter, then the server
+ MAY use the matchingRuleUse attribute to indicate the applicability
+ (in an extensibleMatch filter) of selected matching rules to
+ nominated attribute types.
+
+4.2. Matching Rule Definitions
+
+ Nominated character strings in assertion and attribute values are
+ prepared according to the string preparation algorithms [RFC4518] for
+ LDAP when evaluating the following matching rules:
+
+ numericStringMatch,
+ numericStringSubstringsMatch,
+ caseExactMatch,
+ caseExactOrderingMatch,
+ caseExactSubstringsMatch,
+ caseExactIA5Match,
+ caseIgnoreIA5Match,
+ caseIgnoreIA5SubstringsMatch,
+ caseIgnoreListMatch,
+ caseIgnoreListSubstringsMatch,
+ caseIgnoreMatch,
+ caseIgnoreOrderingMatch,
+ caseIgnoreSubstringsMatch,
+ directoryStringFirstComponentMatch,
+ telephoneNumberMatch,
+ telephoneNumberSubstringsMatch and
+ wordMatch.
+
+ The Transcode, Normalize, Prohibit, and Check bidi steps are the same
+ for each of the matching rules. However, the Map and Insignificant
+ Character Handling steps depend on the specific rule, as detailed in
+ the description of these matching rules in the sections that follow.
+
+4.2.1. bitStringMatch
+
+ The bitStringMatch rule compares an assertion value of the Bit String
+ syntax to an attribute value of a syntax (e.g., the Bit String
+ syntax) whose corresponding ASN.1 type is BIT STRING.
+
+
+
+Legg Standards Track [Page 27]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ If the corresponding ASN.1 type of the attribute syntax does not have
+ a named bit list [ASN.1] (which is the case for the Bit String
+ syntax), then the rule evaluates to TRUE if and only if the attribute
+ value has the same number of bits as the assertion value and the bits
+ match on a bitwise basis.
+
+ If the corresponding ASN.1 type does have a named bit list, then
+ bitStringMatch operates as above, except that trailing zero bits in
+ the attribute and assertion values are treated as absent.
+
+ The LDAP definition for the bitStringMatch rule is:
+
+ ( 2.5.13.16 NAME 'bitStringMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.6 )
+
+ The bitStringMatch rule is an equality matching rule.
+
+4.2.2. booleanMatch
+
+ The booleanMatch rule compares an assertion value of the Boolean
+ syntax to an attribute value of a syntax (e.g., the Boolean syntax)
+ whose corresponding ASN.1 type is BOOLEAN.
+
+ The rule evaluates to TRUE if and only if the attribute value and the
+ assertion value are both TRUE or both FALSE.
+
+ The LDAP definition for the booleanMatch rule is:
+
+ ( 2.5.13.13 NAME 'booleanMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.7 )
+
+ The booleanMatch rule is an equality matching rule.
+
+4.2.3. caseExactIA5Match
+
+ The caseExactIA5Match rule compares an assertion value of the IA5
+ String syntax to an attribute value of a syntax (e.g., the IA5 String
+ syntax) whose corresponding ASN.1 type is IA5String.
+
+ The rule evaluates to TRUE if and only if the prepared attribute
+ value character string and the prepared assertion value character
+ string have the same number of characters and corresponding
+ characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are not case folded in the Map preparation step, and only
+ Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+
+
+Legg Standards Track [Page 28]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The LDAP definition for the caseExactIA5Match rule is:
+
+ ( 1.3.6.1.4.1.1466.109.114.1 NAME 'caseExactIA5Match'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )
+
+ The caseExactIA5Match rule is an equality matching rule.
+
+4.2.4. caseExactMatch
+
+ The caseExactMatch rule compares an assertion value of the Directory
+ String syntax to an attribute value of a syntax (e.g., the Directory
+ String, Printable String, Country String, or Telephone Number syntax)
+ whose corresponding ASN.1 type is DirectoryString or one of the
+ alternative string types of DirectoryString, such as PrintableString
+ (the other alternatives do not correspond to any syntax defined in
+ this document).
+
+ The rule evaluates to TRUE if and only if the prepared attribute
+ value character string and the prepared assertion value character
+ string have the same number of characters and corresponding
+ characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are not case folded in the Map preparation step, and only
+ Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ The LDAP definition for the caseExactMatch rule is:
+
+ ( 2.5.13.5 NAME 'caseExactMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+ The caseExactMatch rule is an equality matching rule.
+
+4.2.5. caseExactOrderingMatch
+
+ The caseExactOrderingMatch rule compares an assertion value of the
+ Directory String syntax to an attribute value of a syntax (e.g., the
+ Directory String, Printable String, Country String, or Telephone
+ Number syntax) whose corresponding ASN.1 type is DirectoryString or
+ one of its alternative string types.
+
+ The rule evaluates to TRUE if and only if, in the code point
+ collation order, the prepared attribute value character string
+ appears earlier than the prepared assertion value character string;
+ i.e., the attribute value is "less than" the assertion value.
+
+
+
+
+
+Legg Standards Track [Page 29]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are not case folded in the Map preparation step, and only
+ Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ The LDAP definition for the caseExactOrderingMatch rule is:
+
+ ( 2.5.13.6 NAME 'caseExactOrderingMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+ The caseExactOrderingMatch rule is an ordering matching rule.
+
+4.2.6. caseExactSubstringsMatch
+
+ The caseExactSubstringsMatch rule compares an assertion value of the
+ Substring Assertion syntax to an attribute value of a syntax (e.g.,
+ the Directory String, Printable String, Country String, or Telephone
+ Number syntax) whose corresponding ASN.1 type is DirectoryString or
+ one of its alternative string types.
+
+ The rule evaluates to TRUE if and only if (1) the prepared substrings
+ of the assertion value match disjoint portions of the prepared
+ attribute value character string in the order of the substrings in
+ the assertion value, (2) an <initial> substring, if present, matches
+ the beginning of the prepared attribute value character string, and
+ (3) a <final> substring, if present, matches the end of the prepared
+ attribute value character string. A prepared substring matches a
+ portion of the prepared attribute value character string if
+ corresponding characters have the same code point.
+
+ In preparing the attribute value and assertion value substrings for
+ comparison, characters are not case folded in the Map preparation
+ step, and only Insignificant Space Handling is applied in the
+ Insignificant Character Handling step.
+
+ The LDAP definition for the caseExactSubstringsMatch rule is:
+
+ ( 2.5.13.7 NAME 'caseExactSubstringsMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )
+
+ The caseExactSubstringsMatch rule is a substrings matching rule.
+
+4.2.7. caseIgnoreIA5Match
+
+ The caseIgnoreIA5Match rule compares an assertion value of the IA5
+ String syntax to an attribute value of a syntax (e.g., the IA5 String
+ syntax) whose corresponding ASN.1 type is IA5String.
+
+
+
+
+Legg Standards Track [Page 30]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The rule evaluates to TRUE if and only if the prepared attribute
+ value character string and the prepared assertion value character
+ string have the same number of characters and corresponding
+ characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are case folded in the Map preparation step, and only
+ Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ The LDAP definition for the caseIgnoreIA5Match rule is:
+
+ ( 1.3.6.1.4.1.1466.109.114.2 NAME 'caseIgnoreIA5Match'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 )
+
+ The caseIgnoreIA5Match rule is an equality matching rule.
+
+4.2.8. caseIgnoreIA5SubstringsMatch
+
+ The caseIgnoreIA5SubstringsMatch rule compares an assertion value of
+ the Substring Assertion syntax to an attribute value of a syntax
+ (e.g., the IA5 String syntax) whose corresponding ASN.1 type is
+ IA5String.
+
+ The rule evaluates to TRUE if and only if (1) the prepared substrings
+ of the assertion value match disjoint portions of the prepared
+ attribute value character string in the order of the substrings in
+ the assertion value, (2) an <initial> substring, if present, matches
+ the beginning of the prepared attribute value character string, and
+ (3) a <final> substring, if present, matches the end of the prepared
+ attribute value character string. A prepared substring matches a
+ portion of the prepared attribute value character string if
+ corresponding characters have the same code point.
+
+ In preparing the attribute value and assertion value substrings for
+ comparison, characters are case folded in the Map preparation step,
+ and only Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ ( 1.3.6.1.4.1.1466.109.114.3 NAME 'caseIgnoreIA5SubstringsMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )
+
+ The caseIgnoreIA5SubstringsMatch rule is a substrings matching rule.
+
+4.2.9. caseIgnoreListMatch
+
+ The caseIgnoreListMatch rule compares an assertion value that is a
+ sequence of strings to an attribute value of a syntax (e.g., the
+
+
+
+Legg Standards Track [Page 31]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ Postal Address syntax) whose corresponding ASN.1 type is a SEQUENCE
+ OF the DirectoryString ASN.1 type.
+
+ The rule evaluates to TRUE if and only if the attribute value and the
+ assertion value have the same number of strings and corresponding
+ strings (by position) match according to the caseIgnoreMatch matching
+ rule.
+
+ In [X.520], the assertion syntax for this matching rule is defined to
+ be:
+
+ SEQUENCE OF DirectoryString {ub-match}
+
+ That is, it is different from the corresponding type for the Postal
+ Address syntax. The choice of the Postal Address syntax for the
+ assertion syntax of the caseIgnoreListMatch in LDAP should not be
+ seen as limiting the matching rule to apply only to attributes with
+ the Postal Address syntax.
+
+ The LDAP definition for the caseIgnoreListMatch rule is:
+
+ ( 2.5.13.11 NAME 'caseIgnoreListMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.41 )
+
+ The caseIgnoreListMatch rule is an equality matching rule.
+
+4.2.10. caseIgnoreListSubstringsMatch
+
+ The caseIgnoreListSubstringsMatch rule compares an assertion value of
+ the Substring Assertion syntax to an attribute value of a syntax
+ (e.g., the Postal Address syntax) whose corresponding ASN.1 type is a
+ SEQUENCE OF the DirectoryString ASN.1 type.
+
+ The rule evaluates to TRUE if and only if the assertion value
+ matches, per the caseIgnoreSubstringsMatch rule, the character string
+ formed by concatenating the strings of the attribute value, except
+ that none of the <initial>, <any>, or <final> substrings of the
+ assertion value are considered to match a substring of the
+ concatenated string which spans more than one of the original strings
+ of the attribute value.
+
+ Note that, in terms of the LDAP-specific encoding of the Postal
+ Address syntax, the concatenated string omits the <DOLLAR> line
+ separator and the escaping of "\" and "$" characters.
+
+ The LDAP definition for the caseIgnoreListSubstringsMatch rule is:
+
+ ( 2.5.13.12 NAME 'caseIgnoreListSubstringsMatch'
+
+
+
+Legg Standards Track [Page 32]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )
+
+ The caseIgnoreListSubstringsMatch rule is a substrings matching rule.
+
+4.2.11. caseIgnoreMatch
+
+ The caseIgnoreMatch rule compares an assertion value of the Directory
+ String syntax to an attribute value of a syntax (e.g., the Directory
+ String, Printable String, Country String, or Telephone Number syntax)
+ whose corresponding ASN.1 type is DirectoryString or one of its
+ alternative string types.
+
+ The rule evaluates to TRUE if and only if the prepared attribute
+ value character string and the prepared assertion value character
+ string have the same number of characters and corresponding
+ characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are case folded in the Map preparation step, and only
+ Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ The LDAP definition for the caseIgnoreMatch rule is:
+
+ ( 2.5.13.2 NAME 'caseIgnoreMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+ The caseIgnoreMatch rule is an equality matching rule.
+
+4.2.12. caseIgnoreOrderingMatch
+
+ The caseIgnoreOrderingMatch rule compares an assertion value of the
+ Directory String syntax to an attribute value of a syntax (e.g., the
+ Directory String, Printable String, Country String, or Telephone
+ Number syntax) whose corresponding ASN.1 type is DirectoryString or
+ one of its alternative string types.
+
+ The rule evaluates to TRUE if and only if, in the code point
+ collation order, the prepared attribute value character string
+ appears earlier than the prepared assertion value character string;
+ i.e., the attribute value is "less than" the assertion value.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are case folded in the Map preparation step, and only
+ Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ The LDAP definition for the caseIgnoreOrderingMatch rule is:
+
+
+
+Legg Standards Track [Page 33]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ ( 2.5.13.3 NAME 'caseIgnoreOrderingMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+ The caseIgnoreOrderingMatch rule is an ordering matching rule.
+
+4.2.13. caseIgnoreSubstringsMatch
+
+ The caseIgnoreSubstringsMatch rule compares an assertion value of the
+ Substring Assertion syntax to an attribute value of a syntax (e.g.,
+ the Directory String, Printable String, Country String, or Telephone
+ Number syntax) whose corresponding ASN.1 type is DirectoryString or
+ one of its alternative string types.
+
+ The rule evaluates to TRUE if and only if (1) the prepared substrings
+ of the assertion value match disjoint portions of the prepared
+ attribute value character string in the order of the substrings in
+ the assertion value, (2) an <initial> substring, if present, matches
+ the beginning of the prepared attribute value character string, and
+ (3) a <final> substring, if present, matches the end of the prepared
+ attribute value character string. A prepared substring matches a
+ portion of the prepared attribute value character string if
+ corresponding characters have the same code point.
+
+ In preparing the attribute value and assertion value substrings for
+ comparison, characters are case folded in the Map preparation step,
+ and only Insignificant Space Handling is applied in the Insignificant
+ Character Handling step.
+
+ The LDAP definition for the caseIgnoreSubstringsMatch rule is:
+
+ ( 2.5.13.4 NAME 'caseIgnoreSubstringsMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )
+
+ The caseIgnoreSubstringsMatch rule is a substrings matching rule.
+
+4.2.14. directoryStringFirstComponentMatch
+
+ The directoryStringFirstComponentMatch rule compares an assertion
+ value of the Directory String syntax to an attribute value of a
+ syntax whose corresponding ASN.1 type is a SEQUENCE with a mandatory
+ first component of the DirectoryString ASN.1 type.
+
+ Note that the assertion syntax of this matching rule differs from the
+ attribute syntax of attributes for which this is the equality
+ matching rule.
+
+
+
+
+
+
+Legg Standards Track [Page 34]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The rule evaluates to TRUE if and only if the assertion value matches
+ the first component of the attribute value using the rules of
+ caseIgnoreMatch.
+
+ The LDAP definition for the directoryStringFirstComponentMatch
+ matching rule is:
+
+ ( 2.5.13.31 NAME 'directoryStringFirstComponentMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+ The directoryStringFirstComponentMatch rule is an equality matching
+ rule. When using directoryStringFirstComponentMatch to compare two
+ attribute values (of an applicable syntax), an assertion value must
+ first be derived from one of the attribute values. An assertion
+ value can be derived from an attribute value by taking the first
+ component of that attribute value.
+
+4.2.15. distinguishedNameMatch
+
+ The distinguishedNameMatch rule compares an assertion value of the DN
+ syntax to an attribute value of a syntax (e.g., the DN syntax) whose
+ corresponding ASN.1 type is DistinguishedName.
+
+ The rule evaluates to TRUE if and only if the attribute value and the
+ assertion value have the same number of relative distinguished names
+ and corresponding relative distinguished names (by position) are the
+ same. A relative distinguished name (RDN) of the assertion value is
+ the same as an RDN of the attribute value if and only if they have
+ the same number of attribute value assertions and each attribute
+ value assertion (AVA) of the first RDN is the same as the AVA of the
+ second RDN with the same attribute type. The order of the AVAs is
+ not significant. Also note that a particular attribute type may
+ appear in at most one AVA in an RDN. Two AVAs with the same
+ attribute type are the same if their values are equal according to
+ the equality matching rule of the attribute type. If one or more of
+ the AVA comparisons evaluate to Undefined and the remaining AVA
+ comparisons return TRUE then the distinguishedNameMatch rule
+ evaluates to Undefined.
+
+ The LDAP definition for the distinguishedNameMatch rule is:
+
+ ( 2.5.13.1 NAME 'distinguishedNameMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 )
+
+ The distinguishedNameMatch rule is an equality matching rule.
+
+
+
+
+
+
+Legg Standards Track [Page 35]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+4.2.16. generalizedTimeMatch
+
+ The generalizedTimeMatch rule compares an assertion value of the
+ Generalized Time syntax to an attribute value of a syntax (e.g., the
+ Generalized Time syntax) whose corresponding ASN.1 type is
+ GeneralizedTime.
+
+ The rule evaluates to TRUE if and only if the attribute value
+ represents the same universal coordinated time as the assertion
+ value. If a time is specified with the minutes or seconds absent,
+ then the number of minutes or seconds (respectively) is assumed to be
+ zero.
+
+ The LDAP definition for the generalizedTimeMatch rule is:
+
+ ( 2.5.13.27 NAME 'generalizedTimeMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 )
+
+ The generalizedTimeMatch rule is an equality matching rule.
+
+4.2.17. generalizedTimeOrderingMatch
+
+ The generalizedTimeOrderingMatch rule compares the time ordering of
+ an assertion value of the Generalized Time syntax to an attribute
+ value of a syntax (e.g., the Generalized Time syntax) whose
+ corresponding ASN.1 type is GeneralizedTime.
+
+ The rule evaluates to TRUE if and only if the attribute value
+ represents a universal coordinated time that is earlier than the
+ universal coordinated time represented by the assertion value.
+
+ The LDAP definition for the generalizedTimeOrderingMatch rule is:
+
+ ( 2.5.13.28 NAME 'generalizedTimeOrderingMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 )
+
+ The generalizedTimeOrderingMatch rule is an ordering matching rule.
+
+4.2.18. integerFirstComponentMatch
+
+ The integerFirstComponentMatch rule compares an assertion value of
+ the Integer syntax to an attribute value of a syntax (e.g., the DIT
+ Structure Rule Description syntax) whose corresponding ASN.1 type is
+ a SEQUENCE with a mandatory first component of the INTEGER ASN.1
+ type.
+
+
+
+
+
+
+Legg Standards Track [Page 36]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ Note that the assertion syntax of this matching rule differs from the
+ attribute syntax of attributes for which this is the equality
+ matching rule.
+
+ The rule evaluates to TRUE if and only if the assertion value and the
+ first component of the attribute value are the same integer value.
+
+ The LDAP definition for the integerFirstComponentMatch matching rule
+ is:
+
+ ( 2.5.13.29 NAME 'integerFirstComponentMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )
+
+ The integerFirstComponentMatch rule is an equality matching rule.
+ When using integerFirstComponentMatch to compare two attribute values
+ (of an applicable syntax), an assertion value must first be derived
+ from one of the attribute values. An assertion value can be derived
+ from an attribute value by taking the first component of that
+ attribute value.
+
+4.2.19. integerMatch
+
+ The integerMatch rule compares an assertion value of the Integer
+ syntax to an attribute value of a syntax (e.g., the Integer syntax)
+ whose corresponding ASN.1 type is INTEGER.
+
+ The rule evaluates to TRUE if and only if the attribute value and the
+ assertion value are the same integer value.
+
+ The LDAP definition for the integerMatch matching rule is:
+
+ ( 2.5.13.14 NAME 'integerMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )
+
+ The integerMatch rule is an equality matching rule.
+
+4.2.20. integerOrderingMatch
+
+ The integerOrderingMatch rule compares an assertion value of the
+ Integer syntax to an attribute value of a syntax (e.g., the Integer
+ syntax) whose corresponding ASN.1 type is INTEGER.
+
+ The rule evaluates to TRUE if and only if the integer value of the
+ attribute value is less than the integer value of the assertion
+ value.
+
+ The LDAP definition for the integerOrderingMatch matching rule is:
+
+
+
+
+Legg Standards Track [Page 37]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ ( 2.5.13.15 NAME 'integerOrderingMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 )
+
+ The integerOrderingMatch rule is an ordering matching rule.
+
+4.2.21. keywordMatch
+
+ The keywordMatch rule compares an assertion value of the Directory
+ String syntax to an attribute value of a syntax (e.g., the Directory
+ String syntax) whose corresponding ASN.1 type is DirectoryString.
+
+ The rule evaluates to TRUE if and only if the assertion value
+ character string matches any keyword in the attribute value. The
+ identification of keywords in the attribute value and the exactness
+ of the match are both implementation specific.
+
+ The LDAP definition for the keywordMatch rule is:
+
+ ( 2.5.13.33 NAME 'keywordMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+4.2.22. numericStringMatch
+
+ The numericStringMatch rule compares an assertion value of the
+ Numeric String syntax to an attribute value of a syntax (e.g., the
+ Numeric String syntax) whose corresponding ASN.1 type is
+ NumericString.
+
+ The rule evaluates to TRUE if and only if the prepared attribute
+ value character string and the prepared assertion value character
+ string have the same number of characters and corresponding
+ characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are not case folded in the Map preparation step, and only
+ numericString Insignificant Character Handling is applied in the
+ Insignificant Character Handling step.
+
+ The LDAP definition for the numericStringMatch matching rule is:
+
+ ( 2.5.13.8 NAME 'numericStringMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.36 )
+
+ The numericStringMatch rule is an equality matching rule.
+
+
+
+
+
+
+
+Legg Standards Track [Page 38]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+4.2.23. numericStringOrderingMatch
+
+ The numericStringOrderingMatch rule compares an assertion value of
+ the Numeric String syntax to an attribute value of a syntax (e.g.,
+ the Numeric String syntax) whose corresponding ASN.1 type is
+ NumericString.
+
+ The rule evaluates to TRUE if and only if, in the code point
+ collation order, the prepared attribute value character string
+ appears earlier than the prepared assertion value character string;
+ i.e., the attribute value is "less than" the assertion value.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are not case folded in the Map preparation step, and only
+ numericString Insignificant Character Handling is applied in the
+ Insignificant Character Handling step.
+
+ The rule is identical to the caseIgnoreOrderingMatch rule except that
+ all space characters are skipped during comparison (case is
+ irrelevant as the characters are numeric).
+
+ The LDAP definition for the numericStringOrderingMatch matching rule
+ is:
+
+ ( 2.5.13.9 NAME 'numericStringOrderingMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.36 )
+
+ The numericStringOrderingMatch rule is an ordering matching rule.
+
+4.2.24. numericStringSubstringsMatch
+
+ The numericStringSubstringsMatch rule compares an assertion value of
+ the Substring Assertion syntax to an attribute value of a syntax
+ (e.g., the Numeric String syntax) whose corresponding ASN.1 type is
+ NumericString.
+
+ The rule evaluates to TRUE if and only if (1) the prepared substrings
+ of the assertion value match disjoint portions of the prepared
+ attribute value character string in the order of the substrings in
+ the assertion value, (2) an <initial> substring, if present, matches
+ the beginning of the prepared attribute value character string, and
+ (3) a <final> substring, if present, matches the end of the prepared
+ attribute value character string. A prepared substring matches a
+ portion of the prepared attribute value character string if
+ corresponding characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are not case folded in the Map preparation step, and only
+
+
+
+Legg Standards Track [Page 39]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ numericString Insignificant Character Handling is applied in the
+ Insignificant Character Handling step.
+
+ The LDAP definition for the numericStringSubstringsMatch matching
+ rule is:
+
+ ( 2.5.13.10 NAME 'numericStringSubstringsMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )
+
+ The numericStringSubstringsMatch rule is a substrings matching rule.
+
+4.2.25. objectIdentifierFirstComponentMatch
+
+ The objectIdentifierFirstComponentMatch rule compares an assertion
+ value of the OID syntax to an attribute value of a syntax (e.g., the
+ Attribute Type Description, DIT Content Rule Description, LDAP Syntax
+ Description, Matching Rule Description, Matching Rule Use
+ Description, Name Form Description, or Object Class Description
+ syntax) whose corresponding ASN.1 type is a SEQUENCE with a mandatory
+ first component of the OBJECT IDENTIFIER ASN.1 type.
+
+ Note that the assertion syntax of this matching rule differs from the
+ attribute syntax of attributes for which this is the equality
+ matching rule.
+
+ The rule evaluates to TRUE if and only if the assertion value matches
+ the first component of the attribute value using the rules of
+ objectIdentifierMatch.
+
+ The LDAP definition for the objectIdentifierFirstComponentMatch
+ matching rule is:
+
+ ( 2.5.13.30 NAME 'objectIdentifierFirstComponentMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.38 )
+
+ The objectIdentifierFirstComponentMatch rule is an equality matching
+ rule. When using objectIdentifierFirstComponentMatch to compare two
+ attribute values (of an applicable syntax), an assertion value must
+ first be derived from one of the attribute values. An assertion
+ value can be derived from an attribute value by taking the first
+ component of that attribute value.
+
+4.2.26. objectIdentifierMatch
+
+ The objectIdentifierMatch rule compares an assertion value of the OID
+ syntax to an attribute value of a syntax (e.g., the OID syntax) whose
+ corresponding ASN.1 type is OBJECT IDENTIFIER.
+
+
+
+
+Legg Standards Track [Page 40]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ The rule evaluates to TRUE if and only if the assertion value and the
+ attribute value represent the same object identifier; that is, the
+ same sequence of integers, whether represented explicitly in the
+ <numericoid> form of <oid> or implicitly in the <descr> form (see
+ [RFC4512]).
+
+ If an LDAP client supplies an assertion value in the <descr> form and
+ the chosen descriptor is not recognized by the server, then the
+ objectIdentifierMatch rule evaluates to Undefined.
+
+ The LDAP definition for the objectIdentifierMatch matching rule is:
+
+ ( 2.5.13.0 NAME 'objectIdentifierMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.38 )
+
+ The objectIdentifierMatch rule is an equality matching rule.
+
+4.2.27. octetStringMatch
+
+ The octetStringMatch rule compares an assertion value of the Octet
+ String syntax to an attribute value of a syntax (e.g., the Octet
+ String or JPEG syntax) whose corresponding ASN.1 type is the OCTET
+ STRING ASN.1 type.
+
+ The rule evaluates to TRUE if and only if the attribute value and the
+ assertion value are the same length and corresponding octets (by
+ position) are the same.
+
+ The LDAP definition for the octetStringMatch matching rule is:
+
+ ( 2.5.13.17 NAME 'octetStringMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 )
+
+ The octetStringMatch rule is an equality matching rule.
+
+4.2.28. octetStringOrderingMatch
+
+ The octetStringOrderingMatch rule compares an assertion value of the
+ Octet String syntax to an attribute value of a syntax (e.g., the
+ Octet String or JPEG syntax) whose corresponding ASN.1 type is the
+ OCTET STRING ASN.1 type.
+
+ The rule evaluates to TRUE if and only if the attribute value appears
+ earlier in the collation order than the assertion value. The rule
+ compares octet strings from the first octet to the last octet, and
+ from the most significant bit to the least significant bit within the
+ octet. The first occurrence of a different bit determines the
+ ordering of the strings. A zero bit precedes a one bit. If the
+
+
+
+Legg Standards Track [Page 41]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ strings contain different numbers of octets but the longer string is
+ identical to the shorter string up to the length of the shorter
+ string, then the shorter string precedes the longer string.
+
+ The LDAP definition for the octetStringOrderingMatch matching rule
+ is:
+
+ ( 2.5.13.18 NAME 'octetStringOrderingMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.40 )
+
+ The octetStringOrderingMatch rule is an ordering matching rule.
+
+4.2.29. telephoneNumberMatch
+
+ The telephoneNumberMatch rule compares an assertion value of the
+ Telephone Number syntax to an attribute value of a syntax (e.g., the
+ Telephone Number syntax) whose corresponding ASN.1 type is a
+ PrintableString representing a telephone number.
+
+ The rule evaluates to TRUE if and only if the prepared attribute
+ value character string and the prepared assertion value character
+ string have the same number of characters and corresponding
+ characters have the same code point.
+
+ In preparing the attribute value and assertion value for comparison,
+ characters are case folded in the Map preparation step, and only
+ telephoneNumber Insignificant Character Handling is applied in the
+ Insignificant Character Handling step.
+
+ The LDAP definition for the telephoneNumberMatch matching rule is:
+
+ ( 2.5.13.20 NAME 'telephoneNumberMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.50 )
+
+ The telephoneNumberMatch rule is an equality matching rule.
+
+4.2.30. telephoneNumberSubstringsMatch
+
+ The telephoneNumberSubstringsMatch rule compares an assertion value
+ of the Substring Assertion syntax to an attribute value of a syntax
+ (e.g., the Telephone Number syntax) whose corresponding ASN.1 type is
+ a PrintableString representing a telephone number.
+
+ The rule evaluates to TRUE if and only if (1) the prepared substrings
+ of the assertion value match disjoint portions of the prepared
+ attribute value character string in the order of the substrings in
+ the assertion value, (2) an <initial> substring, if present, matches
+ the beginning of the prepared attribute value character string, and
+
+
+
+Legg Standards Track [Page 42]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ (3) a <final> substring, if present, matches the end of the prepared
+ attribute value character string. A prepared substring matches a
+ portion of the prepared attribute value character string if
+ corresponding characters have the same code point.
+
+ In preparing the attribute value and assertion value substrings for
+ comparison, characters are case folded in the Map preparation step,
+ and only telephoneNumber Insignificant Character Handling is applied
+ in the Insignificant Character Handling step.
+
+ The LDAP definition for the telephoneNumberSubstringsMatch matching
+ rule is:
+
+ ( 2.5.13.21 NAME 'telephoneNumberSubstringsMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.58 )
+
+ The telephoneNumberSubstringsMatch rule is a substrings matching
+ rule.
+
+4.2.31. uniqueMemberMatch
+
+ The uniqueMemberMatch rule compares an assertion value of the Name
+ And Optional UID syntax to an attribute value of a syntax (e.g., the
+ Name And Optional UID syntax) whose corresponding ASN.1 type is
+ NameAndOptionalUID.
+
+ The rule evaluates to TRUE if and only if the <distinguishedName>
+ components of the assertion value and attribute value match according
+ to the distinguishedNameMatch rule and either, (1) the <BitString>
+ component is absent from both the attribute value and assertion
+ value, or (2) the <BitString> component is present in both the
+ attribute value and the assertion value and the <BitString> component
+ of the assertion value matches the <BitString> component of the
+ attribute value according to the bitStringMatch rule.
+
+ Note that this matching rule has been altered from its description in
+ X.520 [X.520] in order to make the matching rule commutative. Server
+ implementors should consider using the original X.520 semantics
+ (where the matching was less exact) for approximate matching of
+ attributes with uniqueMemberMatch as the equality matching rule.
+
+ The LDAP definition for the uniqueMemberMatch matching rule is:
+
+ ( 2.5.13.23 NAME 'uniqueMemberMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.34 )
+
+ The uniqueMemberMatch rule is an equality matching rule.
+
+
+
+
+Legg Standards Track [Page 43]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+4.2.32. wordMatch
+
+ The wordMatch rule compares an assertion value of the Directory
+ String syntax to an attribute value of a syntax (e.g., the Directory
+ String syntax) whose corresponding ASN.1 type is DirectoryString.
+
+ The rule evaluates to TRUE if and only if the assertion value word
+ matches, according to the semantics of caseIgnoreMatch, any word in
+ the attribute value. The precise definition of a word is
+ implementation specific.
+
+ The LDAP definition for the wordMatch rule is:
+
+ ( 2.5.13.32 NAME 'wordMatch'
+ SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 )
+
+5. Security Considerations
+
+ In general, the LDAP-specific encodings for syntaxes defined in this
+ document do not define canonical encodings. That is, a
+ transformation from an LDAP-specific encoding into some other
+ encoding (e.g., BER) and back into the LDAP-specific encoding will
+ not necessarily reproduce exactly the original octets of the LDAP-
+ specific encoding. Therefore, an LDAP-specific encoding should not
+ be used where a canonical encoding is required.
+
+ Furthermore, the LDAP-specific encodings do not necessarily enable an
+ alternative encoding of values of the Directory String and DN
+ syntaxes to be reconstructed; e.g., a transformation from a
+ Distinguished Encoding Rules (DER) [BER] encoding to an LDAP-specific
+ encoding and back to a DER encoding may not reproduce the original
+ DER encoding. Therefore, LDAP-specific encodings should not be used
+ where reversibility to DER is needed; e.g., for the verification of
+ digital signatures. Instead, DER or a DER-reversible encoding should
+ be used.
+
+ When interpreting security-sensitive fields (in particular, fields
+ used to grant or deny access), implementations MUST ensure that any
+ matching rule comparisons are done on the underlying abstract value,
+ regardless of the particular encoding used.
+
+6. Acknowledgements
+
+ This document is primarily a revision of RFC 2252 by M. Wahl, A.
+ Coulbeck, T. Howes, and S. Kille. RFC 2252 was a product of the IETF
+ ASID Working Group.
+
+
+
+
+
+Legg Standards Track [Page 44]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ This document is based on input from the IETF LDAPBIS working group.
+ The author would like to thank Kathy Dally for editing the early
+ drafts of this document, and Jim Sermersheim and Kurt Zeilenga for
+ their significant contributions to this revision.
+
+7. IANA Considerations
+
+ The Internet Assigned Numbers Authority (IANA) has updated the LDAP
+ descriptors registry [BCP64] as indicated by the following templates:
+
+ Subject: Request for LDAP Descriptor Registration Update
+ Descriptor (short name): see comment
+ Object Identifier: see comment
+ Person & email address to contact for further information:
+ Steven Legg <steven.legg@eb2bcom.com>
+ Usage: see comment
+ Specification: RFC 4517
+ Author/Change Controller: IESG
+
+ NAME Type OID
+ ------------------------------------------------------------------
+ bitStringMatch M 2.5.13.16
+ booleanMatch M 2.5.13.13
+ caseExactIA5Match M 1.3.6.1.4.1.1466.109.114.1
+ caseExactMatch M 2.5.13.5
+ caseExactOrderingMatch M 2.5.13.6
+ caseExactSubstringsMatch M 2.5.13.7
+ caseIgnoreIA5Match M 1.3.6.1.4.1.1466.109.114.2
+ caseIgnoreListMatch M 2.5.13.11
+ caseIgnoreListSubstringsMatch M 2.5.13.12
+ caseIgnoreMatch M 2.5.13.2
+ caseIgnoreOrderingMatch M 2.5.13.3
+ caseIgnoreSubstringsMatch M 2.5.13.4
+ directoryStringFirstComponentMatch M 2.5.13.31
+ distinguishedNameMatch M 2.5.13.1
+ generalizedTimeMatch M 2.5.13.27
+ generalizedTimeOrderingMatch M 2.5.13.28
+ integerFirstComponentMatch M 2.5.13.29
+ integerMatch M 2.5.13.14
+ integerOrderingMatch M 2.5.13.15
+ keywordMatch M 2.5.13.33
+ numericStringMatch M 2.5.13.8
+ numericStringOrderingMatch M 2.5.13.9
+ numericStringSubstringsMatch M 2.5.13.10
+ objectIdentifierFirstComponentMatch M 2.5.13.30
+ octetStringMatch M 2.5.13.17
+ octetStringOrderingMatch M 2.5.13.18
+ telephoneNumberMatch M 2.5.13.20
+
+
+
+Legg Standards Track [Page 45]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ telephoneNumberSubstringsMatch M 2.5.13.21
+ uniqueMemberMatch M 2.5.13.23
+ wordMatch M 2.5.13.32
+
+ The descriptor for the object identifier 2.5.13.0 was incorrectly
+ registered as objectIdentifiersMatch (extraneous \`s') in BCP 64.
+ It has been changed to the following, with a reference to
+ RFC 4517.
+
+ NAME Type OID
+ ------------------------------------------------------------------
+ objectIdentifierMatch M 2.5.13.0
+
+ Subject: Request for LDAP Descriptor Registration
+ Descriptor (short name): caseIgnoreIA5SubstringsMatch
+ Object Identifier: 1.3.6.1.4.1.1466.109.114.3
+ Person & email address to contact for further information:
+ Steven Legg <steven.legg@eb2bcom.com>
+ Usage: other (M)
+ Specification: RFC 4517
+ Author/Change Controller: IESG
+
+8. References
+
+8.1. Normative References
+
+ [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
+ Requirement Levels", BCP 14, RFC 2119, March 1997.
+
+ [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
+ 10646", STD 63, RFC 3629, November 2003.
+
+ [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
+ Specifications: ABNF", RFC 4234, October 2005.
+
+ [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
+ (LDAP): Technical Specification Road Map", RFC 4510, June
+ 2006.
+
+ [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access
+ Protocol (LDAP): The Protocol", RFC 4511, June 2006.
+
+ [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol
+ (LDAP): Directory Information Models", RFC 4512, June
+ 2006.
+
+
+
+
+
+
+Legg Standards Track [Page 46]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ [RFC4514] Zeilenga, K., Ed., "Lightweight Directory Access Protocol
+ (LDAP): String Representation of Distinguished Names", RFC
+ 4514, June 2006.
+
+ [RFC4518] Zeilenga, K., "Lightweight Directory Access Protocol
+ (LDAP): Internationalized String Preparation", RFC 4518,
+ June 2006.
+
+ [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA)
+ Considerations for the Lightweight Directory Access
+ Protocol (LDAP)", BCP 64, RFC 4520, June 2006.
+
+ [E.123] Notation for national and international telephone numbers,
+ ITU-T Recommendation E.123, 1988.
+
+ [FAX] Standardization of Group 3 facsimile apparatus for
+ document transmission - Terminal Equipment and Protocols
+ for Telematic Services, ITU-T Recommendation T.4, 1993
+
+ [T.50] International Reference Alphabet (IRA) (Formerly
+ International Alphabet No. 5 or IA5) Information
+ Technology - 7-Bit Coded Character Set for Information
+ Interchange, ITU-T Recommendation T.50, 1992
+
+ [X.420] ITU-T Recommendation X.420 (1996) | ISO/IEC 10021-7:1997,
+ Information Technology - Message Handling Systems (MHS):
+ Interpersonal messaging system
+
+ [X.501] ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1994,
+ Information Technology - Open Systems Interconnection -
+ The Directory: Models
+
+ [X.520] ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1994,
+ Information Technology - Open Systems Interconnection -
+ The Directory: Selected attribute types
+
+ [ASN.1] ITU-T Recommendation X.680 (07/02) | ISO/IEC 8824-1:2002,
+ Information technology - Abstract Syntax Notation One
+ (ASN.1): Specification of basic notation
+
+ [ISO3166] ISO 3166, "Codes for the representation of names of
+ countries".
+
+ [ISO8601] ISO 8601:2004, "Data elements and interchange formats --
+ Information interchange -- Representation of dates and
+ times".
+
+
+
+
+
+Legg Standards Track [Page 47]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ [UCS] Universal Multiple-Octet Coded Character Set (UCS) -
+ Architecture and Basic Multilingual Plane, ISO/IEC 10646-
+ 1: 1993 (with amendments).
+
+ [JPEG] JPEG File Interchange Format (Version 1.02). Eric
+ Hamilton, C-Cube Microsystems, Milpitas, CA, September 1,
+ 1992.
+
+8.2. Informative References
+
+ [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
+ (LDAP): Schema for User Applications", RFC 4519, June
+ 2006.
+
+ [RFC4523] Zeilenga, K., "Lightweight Directory Access Protocol
+ (LDAP) Schema Definitions for X.509 Certificates", RFC
+ 4523, June 2006.
+
+ [X.500] ITU-T Recommendation X.500 (1993) | ISO/IEC 9594-1:1994,
+ Information Technology - Open Systems Interconnection -
+ The Directory: Overview of concepts, models and services
+
+ [BER] ITU-T Recommendation X.690 (07/02) | ISO/IEC 8825-1:2002,
+ Information technology - ASN.1 encoding rules:
+ Specification of Basic Encoding Rules (BER), Canonical
+ Encoding Rules (CER) and Distinguished Encoding Rules
+ (DER)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Legg Standards Track [Page 48]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+Appendix A. Summary of Syntax Object Identifiers
+
+ The following list summarizes the object identifiers assigned to the
+ syntaxes defined in this document.
+
+ Syntax OBJECT IDENTIFIER
+ ==============================================================
+ Attribute Type Description 1.3.6.1.4.1.1466.115.121.1.3
+ Bit String 1.3.6.1.4.1.1466.115.121.1.6
+ Boolean 1.3.6.1.4.1.1466.115.121.1.7
+ Country String 1.3.6.1.4.1.1466.115.121.1.11
+ Delivery Method 1.3.6.1.4.1.1466.115.121.1.14
+ Directory String 1.3.6.1.4.1.1466.115.121.1.15
+ DIT Content Rule Description 1.3.6.1.4.1.1466.115.121.1.16
+ DIT Structure Rule Description 1.3.6.1.4.1.1466.115.121.1.17
+ DN 1.3.6.1.4.1.1466.115.121.1.12
+ Enhanced Guide 1.3.6.1.4.1.1466.115.121.1.21
+ Facsimile Telephone Number 1.3.6.1.4.1.1466.115.121.1.22
+ Fax 1.3.6.1.4.1.1466.115.121.1.23
+ Generalized Time 1.3.6.1.4.1.1466.115.121.1.24
+ Guide 1.3.6.1.4.1.1466.115.121.1.25
+ IA5 String 1.3.6.1.4.1.1466.115.121.1.26
+ Integer 1.3.6.1.4.1.1466.115.121.1.27
+ JPEG 1.3.6.1.4.1.1466.115.121.1.28
+ LDAP Syntax Description 1.3.6.1.4.1.1466.115.121.1.54
+ Matching Rule Description 1.3.6.1.4.1.1466.115.121.1.30
+ Matching Rule Use Description 1.3.6.1.4.1.1466.115.121.1.31
+ Name And Optional UID 1.3.6.1.4.1.1466.115.121.1.34
+ Name Form Description 1.3.6.1.4.1.1466.115.121.1.35
+ Numeric String 1.3.6.1.4.1.1466.115.121.1.36
+ Object Class Description 1.3.6.1.4.1.1466.115.121.1.37
+ Octet String 1.3.6.1.4.1.1466.115.121.1.40
+ OID 1.3.6.1.4.1.1466.115.121.1.38
+ Other Mailbox 1.3.6.1.4.1.1466.115.121.1.39
+ Postal Address 1.3.6.1.4.1.1466.115.121.1.41
+ Printable String 1.3.6.1.4.1.1466.115.121.1.44
+ Substring Assertion 1.3.6.1.4.1.1466.115.121.1.58
+ Telephone Number 1.3.6.1.4.1.1466.115.121.1.50
+ Teletex Terminal Identifier 1.3.6.1.4.1.1466.115.121.1.51
+ Telex Number 1.3.6.1.4.1.1466.115.121.1.52
+ UTC Time 1.3.6.1.4.1.1466.115.121.1.53
+
+Appendix B. Changes from RFC 2252
+
+ This annex lists the significant differences between this
+ specification and RFC 2252.
+
+
+
+
+
+Legg Standards Track [Page 49]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ This annex is provided for informational purposes only. It is not a
+ normative part of this specification.
+
+ 1. The IESG Note has been removed.
+
+ 2. The major part of Sections 4, 5 and 7 has been moved to [RFC4512]
+ and revised. Changes to the parts of these sections moved to
+ [RFC4512] are detailed in [RFC4512].
+
+ 3. BNF descriptions of syntax formats have been replaced by ABNF
+ [RFC4234] specifications.
+
+ 4. The ambiguous statement in RFC 2252, Section 4.3 regarding the
+ use of a backslash quoting mechanism to escape separator symbols
+ has been removed. The escaping mechanism is now explicitly
+ represented in the ABNF for the syntaxes where this provision
+ applies.
+
+ 5. The description of each of the LDAP syntaxes has been expanded so
+ that they are less dependent on knowledge of X.500 for
+ interpretation.
+
+ 6. The relationship of LDAP syntaxes to corresponding ASN.1 type
+ definitions has been made explicit.
+
+ 7. The set of characters allowed in a <PrintableString> (formerly
+ <printablestring>) has been corrected to align with the
+ PrintableString ASN.1 type in [ASN.1]. Specifically, the double
+ quote character has been removed and the single quote character
+ and equals sign have been added.
+
+ 8. Values of the Directory String, Printable String and Telephone
+ Number syntaxes are now required to have at least one character.
+
+ 9. The <DITContentRuleDescription>, <NameFormDescription> and
+ <DITStructureRuleDescription> rules have been moved to [RFC4512].
+
+ 10. The corresponding ASN.1 type for the Other Mailbox syntax has
+ been incorporated from RFC 1274.
+
+ 11. A corresponding ASN.1 type for the LDAP Syntax Description syntax
+ has been invented.
+
+ 12. The Binary syntax has been removed because it was not adequately
+ specified, implementations with different incompatible
+ interpretations exist, and it was confused with the ;binary
+ transfer encoding.
+
+
+
+
+Legg Standards Track [Page 50]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ 13. All discussion of transfer options, including the ";binary"
+ option, has been removed. All imperatives regarding binary
+ transfer of values have been removed.
+
+ 14. The Delivery Method, Enhanced Guide, Guide, Octet String, Teletex
+ Terminal Identifier and Telex Number syntaxes from RFC 2256 have
+ been incorporated.
+
+ 15. The <criteria> rule for the Enhanced Guide and Guide syntaxes has
+ been extended to accommodate empty "and" and "or" expressions.
+
+ 16. An encoding for the <ttx-value> rule in the Teletex Terminal
+ Identifier syntax has been defined.
+
+ 17. The PKI-related syntaxes (Certificate, Certificate List and
+ Certificate Pair) have been removed. They are reintroduced in
+ [RFC4523] (as is the Supported Algorithm syntax from RFC 2256).
+
+ 18. The MHS OR Address syntax has been removed since its
+ specification (in RFC 2156) is not at draft standard maturity.
+
+ 19. The DL Submit Permission syntax has been removed as it depends on
+ the MHS OR Address syntax.
+
+ 20. The Presentation Address syntax has been removed since its
+ specification (in RFC 1278) is not at draft standard maturity.
+
+ 21. The ACI Item, Access Point, Audio, Data Quality, DSA Quality, DSE
+ Type, LDAP Schema Description, Master And Shadow Access Points,
+ Modify Rights, Protocol Information, Subtree Specification,
+ Supplier Information, Supplier Or Consumer and Supplier And
+ Consumer syntaxes have been removed. These syntaxes are
+ referenced in RFC 2252, but not defined.
+
+ 22. The LDAP Schema Definition syntax (defined in RFC 2927) and the
+ Mail Preference syntax have been removed on the grounds that they
+ are out of scope for the core specification.
+
+ 23. The description of each of the matching rules has been expanded
+ so that they are less dependent on knowledge of X.500 for
+ interpretation.
+
+ 24. The caseIgnoreIA5SubstringsMatch matching rule from RFC 2798 has
+ been added.
+
+ 25. The caseIgnoreListSubstringsMatch, caseIgnoreOrderingMatch and
+ caseIgnoreSubstringsMatch matching rules have been added to the
+ list of matching rules for which the provisions for handling
+
+
+
+Legg Standards Track [Page 51]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+ leading, trailing and multiple adjoining whitespace characters
+ apply (now through string preparation). This is consistent with
+ the definitions of these matching rules in X.500. The
+ caseIgnoreIA5SubstringsMatch rule has also been added to the
+ list.
+
+ 26. The specification of the octetStringMatch matching rule from
+ RFC 2256 has been added to this document.
+
+ 27. The presentationAddressMatch matching rule has been removed as it
+ depends on an assertion syntax (Presentation Address) that is not
+ at draft standard maturity.
+
+ 28. The protocolInformationMatch matching rule has been removed as it
+ depends on an undefined assertion syntax (Protocol Information).
+
+ 29. The definitive reference for ASN.1 has been changed from X.208 to
+ X.680 since X.680 is the version of ASN.1 referred to by X.500.
+
+ 30. The specification of the caseIgnoreListSubstringsMatch matching
+ rule from RFC 2798 & X.520 has been added.
+
+ 31. String preparation algorithms have been applied to the character
+ string matching rules.
+
+ 32. The specifications of the booleanMatch, caseExactMatch,
+ caseExactOrderingMatch, caseExactSubstringsMatch,
+ directoryStringFirstComponentMatch, integerOrderingMatch,
+ keywordMatch, numericStringOrderingMatch,
+ octetStringOrderingMatch and wordMatch matching rules from
+ RFC 3698 & X.520 have been added.
+
+Author's Address
+
+ Steven Legg
+ eB2Bcom
+ Suite3, Woodhouse Corporate Centre
+ 935 Station Street
+ Box Hill North, Victoria 3129
+ AUSTRALIA
+
+ Phone: +61 3 9896 7830
+ Fax: +61 3 9896 7801
+ EMail: steven.legg@eb2bcom.com
+
+
+
+
+
+
+
+Legg Standards Track [Page 52]
+
+RFC 4517 LDAP: Syntaxes and Matching Rules June 2006
+
+
+Full Copyright Statement
+
+ Copyright (C) The Internet Society (2006).
+
+ This document is subject to the rights, licenses and restrictions
+ contained in BCP 78, and except as set forth therein, the authors
+ retain all their rights.
+
+ This document and the information contained herein are provided on an
+ "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
+ OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
+ ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
+ INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
+ INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
+ WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
+
+Intellectual Property
+
+ The IETF takes no position regarding the validity or scope of any
+ Intellectual Property Rights or other rights that might be claimed to
+ pertain to the implementation or use of the technology described in
+ this document or the extent to which any license under such rights
+ might or might not be available; nor does it represent that it has
+ made any independent effort to identify any such rights. Information
+ on the procedures with respect to rights in RFC documents can be
+ found in BCP 78 and BCP 79.
+
+ Copies of IPR disclosures made to the IETF Secretariat and any
+ assurances of licenses to be made available, or the result of an
+ attempt made to obtain a general license or permission for the use of
+ such proprietary rights by implementers or users of this
+ specification can be obtained from the IETF on-line IPR repository at
+ http://www.ietf.org/ipr.
+
+ The IETF invites any interested party to bring to its attention any
+ copyrights, patents or patent applications, or other proprietary
+ rights that may cover technology that may be required to implement
+ this standard. Please address the information to the IETF at
+ ietf-ipr@ietf.org.
+
+Acknowledgement
+
+ Funding for the RFC Editor function is provided by the IETF
+ Administrative Support Activity (IASA).
+
+
+
+
+
+
+
+Legg Standards Track [Page 53]
+