diff options
Diffstat (limited to 'source4/tests/crypttest.c')
-rw-r--r-- | source4/tests/crypttest.c | 852 |
1 files changed, 0 insertions, 852 deletions
diff --git a/source4/tests/crypttest.c b/source4/tests/crypttest.c deleted file mode 100644 index efee2e593d..0000000000 --- a/source4/tests/crypttest.c +++ /dev/null @@ -1,852 +0,0 @@ -#if defined(HAVE_UNISTD_H) -#include <unistd.h> -#endif - -#include <sys/types.h> - -#ifdef HAVE_STRING_H -#include <string.h> -#endif - -#ifdef HAVE_STRINGS_H -#include <strings.h> -#endif - -#if !defined(HAVE_CRYPT) - -/* - This bit of code was derived from the UFC-crypt package which - carries the following copyright - - Modified for use by Samba by Andrew Tridgell, October 1994 - - Note that this routine is only faster on some machines. Under Linux 1.1.51 - libc 4.5.26 I actually found this routine to be slightly slower. - - Under SunOS I found a huge speedup by using these routines - (a factor of 20 or so) - - Warning: I've had a report from Steve Kennedy <steve@gbnet.org> - that this crypt routine may sometimes get the wrong answer. Only - use UFC_CRYT if you really need it. - -*/ - -/* - * UFC-crypt: ultra fast crypt(3) implementation - * - * Copyright (C) 1991-1998, Free Software Foundation, Inc. - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Library General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Library General Public License for more details. - * - * You should have received a copy of the GNU Library General Public - * License along with this library; if not, write to the Free - * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - * - * @(#)crypt_util.c 2.31 02/08/92 - * - * Support routines - * - */ - - -#ifndef long32 -#if (SIZEOF_INT == 4) -#define long32 int -#elif (SIZEOF_LONG == 4) -#define long32 long -#elif (SIZEOF_SHORT == 4) -#define long32 short -#else -/* uggh - no 32 bit type?? probably a CRAY. just hope this works ... */ -#define long32 int -#endif -#endif - -#ifndef long64 -#ifdef HAVE_LONGLONG -#define long64 long long long -#endif -#endif - -#ifndef ufc_long -#define ufc_long unsigned -#endif - -#ifndef _UFC_64_ -#define _UFC_32_ -#endif - -/* - * Permutation done once on the 56 bit - * key derived from the original 8 byte ASCII key. - */ -static int pc1[56] = { - 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, - 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, - 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, - 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 -}; - -/* - * How much to rotate each 28 bit half of the pc1 permutated - * 56 bit key before using pc2 to give the i' key - */ -static int rots[16] = { - 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 -}; - -/* - * Permutation giving the key - * of the i' DES round - */ -static int pc2[48] = { - 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, - 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, - 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, - 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 -}; - -/* - * The E expansion table which selects - * bits from the 32 bit intermediate result. - */ -static int esel[48] = { - 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, - 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, - 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, - 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 -}; -static int e_inverse[64]; - -/* - * Permutation done on the - * result of sbox lookups - */ -static int perm32[32] = { - 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, - 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 -}; - -/* - * The sboxes - */ -static int sbox[8][4][16]= { - { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 }, - { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 }, - { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 }, - { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } - }, - - { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 }, - { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 }, - { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 }, - { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } - }, - - { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 }, - { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 }, - { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 }, - { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } - }, - - { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 }, - { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 }, - { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 }, - { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } - }, - - { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 }, - { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 }, - { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 }, - { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } - }, - - { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 }, - { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 }, - { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 }, - { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } - }, - - { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 }, - { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 }, - { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 }, - { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } - }, - - { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 }, - { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 }, - { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 }, - { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } - } -}; - -/* - * This is the final - * permutation matrix - */ -static int final_perm[64] = { - 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, - 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, - 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, - 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 -}; - -/* - * The 16 DES keys in BITMASK format - */ -#ifdef _UFC_32_ -long32 _ufc_keytab[16][2]; -#endif - -#ifdef _UFC_64_ -long64 _ufc_keytab[16]; -#endif - - -#define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.') -#define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.') - -/* Macro to set a bit (0..23) */ -#define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) ) - -/* - * sb arrays: - * - * Workhorses of the inner loop of the DES implementation. - * They do sbox lookup, shifting of this value, 32 bit - * permutation and E permutation for the next round. - * - * Kept in 'BITMASK' format. - */ - -#ifdef _UFC_32_ -long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192]; -static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; -#endif - -#ifdef _UFC_64_ -long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096]; -static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3}; -#endif - -/* - * eperm32tab: do 32 bit permutation and E selection - * - * The first index is the byte number in the 32 bit value to be permuted - * - second - is the value of this byte - * - third - selects the two 32 bit values - * - * The table is used and generated internally in init_des to speed it up - */ -static ufc_long eperm32tab[4][256][2]; - -/* - * do_pc1: permform pc1 permutation in the key schedule generation. - * - * The first index is the byte number in the 8 byte ASCII key - * - second - - the two 28 bits halfs of the result - * - third - selects the 7 bits actually used of each byte - * - * The result is kept with 28 bit per 32 bit with the 4 most significant - * bits zero. - */ -static ufc_long do_pc1[8][2][128]; - -/* - * do_pc2: permform pc2 permutation in the key schedule generation. - * - * The first index is the septet number in the two 28 bit intermediate values - * - second - - - septet values - * - * Knowledge of the structure of the pc2 permutation is used. - * - * The result is kept with 28 bit per 32 bit with the 4 most significant - * bits zero. - */ -static ufc_long do_pc2[8][128]; - -/* - * efp: undo an extra e selection and do final - * permutation giving the DES result. - * - * Invoked 6 bit a time on two 48 bit values - * giving two 32 bit longs. - */ -static ufc_long efp[16][64][2]; - -static unsigned char bytemask[8] = { - 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 -}; - -static ufc_long longmask[32] = { - 0x80000000, 0x40000000, 0x20000000, 0x10000000, - 0x08000000, 0x04000000, 0x02000000, 0x01000000, - 0x00800000, 0x00400000, 0x00200000, 0x00100000, - 0x00080000, 0x00040000, 0x00020000, 0x00010000, - 0x00008000, 0x00004000, 0x00002000, 0x00001000, - 0x00000800, 0x00000400, 0x00000200, 0x00000100, - 0x00000080, 0x00000040, 0x00000020, 0x00000010, - 0x00000008, 0x00000004, 0x00000002, 0x00000001 -}; - - -/* - * Silly rewrite of 'bzero'. I do so - * because some machines don't have - * bzero and some don't have memset. - */ - -static void clearmem(char *start, int cnt) - { while(cnt--) - *start++ = '\0'; - } - -static int initialized = 0; - -/* lookup a 6 bit value in sbox */ - -#define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf]; - -/* - * Initialize unit - may be invoked directly - * by fcrypt users. - */ - -static void ufc_init_des(void) - { int comes_from_bit; - int bit, sg; - ufc_long j; - ufc_long mask1, mask2; - - /* - * Create the do_pc1 table used - * to affect pc1 permutation - * when generating keys - */ - for(bit = 0; bit < 56; bit++) { - comes_from_bit = pc1[bit] - 1; - mask1 = bytemask[comes_from_bit % 8 + 1]; - mask2 = longmask[bit % 28 + 4]; - for(j = 0; j < 128; j++) { - if(j & mask1) - do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2; - } - } - - /* - * Create the do_pc2 table used - * to affect pc2 permutation when - * generating keys - */ - for(bit = 0; bit < 48; bit++) { - comes_from_bit = pc2[bit] - 1; - mask1 = bytemask[comes_from_bit % 7 + 1]; - mask2 = BITMASK(bit % 24); - for(j = 0; j < 128; j++) { - if(j & mask1) - do_pc2[comes_from_bit / 7][j] |= mask2; - } - } - - /* - * Now generate the table used to do combined - * 32 bit permutation and e expansion - * - * We use it because we have to permute 16384 32 bit - * longs into 48 bit in order to initialize sb. - * - * Looping 48 rounds per permutation becomes - * just too slow... - * - */ - - clearmem((char*)eperm32tab, sizeof(eperm32tab)); - - for(bit = 0; bit < 48; bit++) { - ufc_long inner_mask1,comes_from; - - comes_from = perm32[esel[bit]-1]-1; - inner_mask1 = bytemask[comes_from % 8]; - - for(j = 256; j--;) { - if(j & inner_mask1) - eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24); - } - } - - /* - * Create the sb tables: - * - * For each 12 bit segment of an 48 bit intermediate - * result, the sb table precomputes the two 4 bit - * values of the sbox lookups done with the two 6 - * bit halves, shifts them to their proper place, - * sends them through perm32 and finally E expands - * them so that they are ready for the next - * DES round. - * - */ - for(sg = 0; sg < 4; sg++) { - int j1, j2; - int s1, s2; - - for(j1 = 0; j1 < 64; j1++) { - s1 = s_lookup(2 * sg, j1); - for(j2 = 0; j2 < 64; j2++) { - ufc_long to_permute, inx; - - s2 = s_lookup(2 * sg + 1, j2); - to_permute = ((s1 << 4) | s2) << (24 - 8 * sg); - -#ifdef _UFC_32_ - inx = ((j1 << 6) | j2) << 1; - sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0]; - sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1]; - sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0]; - sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1]; - sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0]; - sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1]; - sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0]; - sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1]; -#endif -#ifdef _UFC_64_ - inx = ((j1 << 6) | j2); - sb[sg][inx] = - ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) | - (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1]; - sb[sg][inx] |= - ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) | - (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1]; - sb[sg][inx] |= - ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) | - (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1]; - sb[sg][inx] |= - ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) | - (long64)eperm32tab[3][(to_permute) & 0xff][1]; -#endif - } - } - } - - /* - * Create an inverse matrix for esel telling - * where to plug out bits if undoing it - */ - for(bit=48; bit--;) { - e_inverse[esel[bit] - 1 ] = bit; - e_inverse[esel[bit] - 1 + 32] = bit + 48; - } - - /* - * create efp: the matrix used to - * undo the E expansion and effect final permutation - */ - clearmem((char*)efp, sizeof efp); - for(bit = 0; bit < 64; bit++) { - int o_bit, o_long; - ufc_long word_value, inner_mask1, inner_mask2; - int comes_from_f_bit, comes_from_e_bit; - int comes_from_word, bit_within_word; - - /* See where bit i belongs in the two 32 bit long's */ - o_long = bit / 32; /* 0..1 */ - o_bit = bit % 32; /* 0..31 */ - - /* - * And find a bit in the e permutated value setting this bit. - * - * Note: the e selection may have selected the same bit several - * times. By the initialization of e_inverse, we only look - * for one specific instance. - */ - comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */ - comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */ - comes_from_word = comes_from_e_bit / 6; /* 0..15 */ - bit_within_word = comes_from_e_bit % 6; /* 0..5 */ - - inner_mask1 = longmask[bit_within_word + 26]; - inner_mask2 = longmask[o_bit]; - - for(word_value = 64; word_value--;) { - if(word_value & inner_mask1) - efp[comes_from_word][word_value][o_long] |= inner_mask2; - } - } - initialized++; - } - -/* - * Process the elements of the sb table permuting the - * bits swapped in the expansion by the current salt. - */ - -#ifdef _UFC_32_ -static void shuffle_sb(long32 *k, ufc_long saltbits) - { ufc_long j; - long32 x; - for(j=4096; j--;) { - x = (k[0] ^ k[1]) & (long32)saltbits; - *k++ ^= x; - *k++ ^= x; - } - } -#endif - -#ifdef _UFC_64_ -static void shuffle_sb(long64 *k, ufc_long saltbits) - { ufc_long j; - long64 x; - for(j=4096; j--;) { - x = ((*k >> 32) ^ *k) & (long64)saltbits; - *k++ ^= (x << 32) | x; - } - } -#endif - -/* - * Setup the unit for a new salt - * Hopefully we'll not see a new salt in each crypt call. - */ - -static unsigned char current_salt[3] = "&&"; /* invalid value */ -static ufc_long current_saltbits = 0; -static int direction = 0; - -static void setup_salt(const char *s1) - { ufc_long i, j, saltbits; - const unsigned char *s2 = (const unsigned char *)s1; - - if(!initialized) - ufc_init_des(); - - if(s2[0] == current_salt[0] && s2[1] == current_salt[1]) - return; - current_salt[0] = s2[0]; current_salt[1] = s2[1]; - - /* - * This is the only crypt change to DES: - * entries are swapped in the expansion table - * according to the bits set in the salt. - */ - saltbits = 0; - for(i = 0; i < 2; i++) { - long c=ascii_to_bin(s2[i]); - if(c < 0 || c > 63) - c = 0; - for(j = 0; j < 6; j++) { - if((c >> j) & 0x1) - saltbits |= BITMASK(6 * i + j); - } - } - - /* - * Permute the sb table values - * to reflect the changed e - * selection table - */ - shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits); - shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits); - shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits); - shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits); - - current_saltbits = saltbits; - } - -static void ufc_mk_keytab(char *key) - { ufc_long v1, v2, *k1; - int i; -#ifdef _UFC_32_ - long32 v, *k2 = &_ufc_keytab[0][0]; -#endif -#ifdef _UFC_64_ - long64 v, *k2 = &_ufc_keytab[0]; -#endif - - v1 = v2 = 0; k1 = &do_pc1[0][0][0]; - for(i = 8; i--;) { - v1 |= k1[*key & 0x7f]; k1 += 128; - v2 |= k1[*key++ & 0x7f]; k1 += 128; - } - - for(i = 0; i < 16; i++) { - k1 = &do_pc2[0][0]; - - v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i])); - v = k1[(v1 >> 21) & 0x7f]; k1 += 128; - v |= k1[(v1 >> 14) & 0x7f]; k1 += 128; - v |= k1[(v1 >> 7) & 0x7f]; k1 += 128; - v |= k1[(v1 ) & 0x7f]; k1 += 128; - -#ifdef _UFC_32_ - *k2++ = v; - v = 0; -#endif -#ifdef _UFC_64_ - v <<= 32; -#endif - - v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i])); - v |= k1[(v2 >> 21) & 0x7f]; k1 += 128; - v |= k1[(v2 >> 14) & 0x7f]; k1 += 128; - v |= k1[(v2 >> 7) & 0x7f]; k1 += 128; - v |= k1[(v2 ) & 0x7f]; - - *k2++ = v; - } - - direction = 0; - } - -/* - * Undo an extra E selection and do final permutations - */ - -ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2) - { ufc_long v1, v2, x; - static ufc_long ary[2]; - - x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x; - x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x; - - v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3; - - v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1]; - v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1]; - v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1]; - v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1]; - - v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1]; - v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1]; - v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1]; - v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1]; - - v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1]; - v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1]; - v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1]; - v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1]; - - v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1]; - v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1]; - v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1]; - v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1]; - - ary[0] = v1; ary[1] = v2; - return ary; - } - -/* - * crypt only: convert from 64 bit to 11 bit ASCII - * prefixing with the salt - */ - -static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt) - { static char outbuf[14]; - int i, s; - - outbuf[0] = salt[0]; - outbuf[1] = salt[1] ? salt[1] : salt[0]; - - for(i = 0; i < 5; i++) - outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f); - - s = (v2 & 0xf) << 2; - v2 = (v2 >> 2) | ((v1 & 0x3) << 30); - - for(i = 5; i < 10; i++) - outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f); - - outbuf[12] = bin_to_ascii(s); - outbuf[13] = 0; - - return outbuf; - } - -/* - * UNIX crypt function - */ - -static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long); - -char *ufc_crypt(const char *key,const char *salt) - { ufc_long *s; - char ktab[9]; - - /* - * Hack DES tables according to salt - */ - setup_salt(salt); - - /* - * Setup key schedule - */ - clearmem(ktab, sizeof ktab); - strncpy(ktab, key, 8); - ufc_mk_keytab(ktab); - - /* - * Go for the 25 DES encryptions - */ - s = _ufc_doit((ufc_long)0, (ufc_long)0, - (ufc_long)0, (ufc_long)0, (ufc_long)25); - - /* - * And convert back to 6 bit ASCII - */ - return output_conversion(s[0], s[1], salt); - } - - -#ifdef _UFC_32_ - -/* - * 32 bit version - */ - -extern long32 _ufc_keytab[16][2]; -extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; - -#define SBA(sb, v) (*(long32*)((char*)(sb)+(v))) - -static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) - { int i; - long32 s, *k; - - while(itr--) { - k = &_ufc_keytab[0][0]; - for(i=8; i--; ) { - s = *k++ ^ r1; - l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); - l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4); - s = *k++ ^ r2; - l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); - l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4); - - s = *k++ ^ l1; - r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4); - r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4); - s = *k++ ^ l2; - r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4); - r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4); - } - s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s; - } - return _ufc_dofinalperm(l1, l2, r1, r2); - } - -#endif - -#ifdef _UFC_64_ - -/* - * 64 bit version - */ - -extern long64 _ufc_keytab[16]; -extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[]; - -#define SBA(sb, v) (*(long64*)((char*)(sb)+(v))) - -static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr) - { int i; - long64 l, r, s, *k; - - l = (((long64)l1) << 32) | ((long64)l2); - r = (((long64)r1) << 32) | ((long64)r2); - - while(itr--) { - k = &_ufc_keytab[0]; - for(i=8; i--; ) { - s = *k++ ^ r; - l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); - l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); - l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); - l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); - - s = *k++ ^ l; - r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff); - r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff); - r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff); - r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff); - } - s=l; l=r; r=s; - } - - l1 = l >> 32; l2 = l & 0xffffffff; - r1 = r >> 32; r2 = r & 0xffffffff; - return _ufc_dofinalperm(l1, l2, r1, r2); - } - -#endif - -#define crypt ufc_crypt -#endif - -main() -{ - char passwd[9]; - char salt[9]; - char c_out1[256]; - char c_out2[256]; - - char expected_out[14]; - - strcpy(expected_out, "12yJ.Of/NQ.Pk"); - strcpy(passwd, "12345678"); - strcpy(salt, "12345678"); - - strcpy(c_out1, crypt(passwd, salt)); - salt[2] = '\0'; - strcpy(c_out2, crypt(passwd, salt)); - - /* - * If the non-trucated salt fails but the - * truncated salt succeeds then exit 1. - */ - - if((strcmp(c_out1, expected_out) != 0) && - (strcmp(c_out2, expected_out) == 0)) - exit(1); - -#ifdef HAVE_BIGCRYPT - /* - * Try the same with bigcrypt... - */ - - { - char big_passwd[17]; - char big_salt[17]; - char big_c_out1[256]; - char big_c_out2[256]; - char big_expected_out[27]; - - strcpy(big_passwd, "1234567812345678"); - strcpy(big_salt, "1234567812345678"); - strcpy(big_expected_out, "12yJ.Of/NQ.PklfyCuHi/rwM"); - - strcpy(big_c_out1, bigcrypt(big_passwd, big_salt)); - big_salt[2] = '\0'; - strcpy(big_c_out2, bigcrypt(big_passwd, big_salt)); - - /* - * If the non-trucated salt fails but the - * truncated salt succeeds then exit 1. - */ - - if((strcmp(big_c_out1, big_expected_out) != 0) && - (strcmp(big_c_out2, big_expected_out) == 0)) - exit(1); - - } -#endif - - exit(0); -} |