A number of Unix systems (eg: Sun Solaris), as well as the xxxxBSD family and Linux, now utilize the Pluggable Authentication Modules (PAM) facility to provide all authentication, authorization and resource control services. Prior to the introduction of PAM, a decision to use an alternative to the system password database (/etc/passwd) would require the provision of alternatives for all programs that provide security services. Such a choice would involve provision of alternatives to such programs as: login, passwd, chown, etc.
PAM provides a mechanism that disconnects these security programs from the underlying authentication/authorization infrastructure. PAM is configured either through one file /etc/pam.conf (Solaris), or by editing individual files that are located in /etc/pam.d.
The following is an example /etc/pam.d/login configuration file. This example had all options been uncommented is probably not usable as it stacks many conditions before allowing successful completion of the login process. Essentially all conditions can be disabled by commenting them out except the calls to pam_pwdb.so.
#%PAM-1.0 # The PAM configuration file for the `login' service # auth required pam_securetty.so auth required pam_nologin.so # auth required pam_dialup.so # auth optional pam_mail.so auth required pam_pwdb.so shadow md5 # account requisite pam_time.so account required pam_pwdb.so session required pam_pwdb.so # session optional pam_lastlog.so # password required pam_cracklib.so retry=3 password required pam_pwdb.so shadow md5
PAM allows use of replacable modules. Those available on a sample system include:
$ /bin/ls /lib/security pam_access.so pam_ftp.so pam_limits.so pam_ncp_auth.so pam_rhosts_auth.so pam_stress.so pam_cracklib.so pam_group.so pam_listfile.so pam_nologin.so pam_rootok.so pam_tally.so pam_deny.so pam_issue.so pam_mail.so pam_permit.so pam_securetty.so pam_time.so pam_dialup.so pam_lastlog.so pam_mkhomedir.so pam_pwdb.so pam_shells.so pam_unix.so pam_env.so pam_ldap.so pam_motd.so pam_radius.so pam_smbpass.so pam_unix_acct.so pam_wheel.so pam_unix_auth.so pam_unix_passwd.so pam_userdb.so pam_warn.so pam_unix_session.so
The following example for the login program replaces the use of the pam_pwdb.so module which uses the system password database (/etc/passwd, /etc/shadow, /etc/group) with the module pam_smbpass.so which uses the Samba database which contains the Microsoft MD4 encrypted password hashes. This database is stored in either /usr/local/samba/private/smbpasswd, /etc/samba/smbpasswd, or in /etc/samba.d/smbpasswd, depending on the Samba implementation for your Unix/Linux system. The pam_smbpass.so module is provided by Samba version 2.2.1 or later. It can be compiled by specifying the --with-pam_smbpass options when running Samba's configure script. For more information on the pam_smbpass module, see the documentation in the source/pam_smbpass directory of the Samba source distribution.
#%PAM-1.0 # The PAM configuration file for the `login' service # auth required pam_smbpass.so nodelay account required pam_smbpass.so nodelay session required pam_smbpass.so nodelay password required pam_smbpass.so nodelay
The following is the PAM configuration file for a particular Linux system. The default condition uses pam_pwdb.so.
#%PAM-1.0 # The PAM configuration file for the `samba' service # auth required /lib/security/pam_pwdb.so nullok nodelay shadow audit account required /lib/security/pam_pwdb.so audit nodelay session required /lib/security/pam_pwdb.so nodelay password required /lib/security/pam_pwdb.so shadow md5
In the following example the decision has been made to use the smbpasswd database even for basic samba authentication. Such a decision could also be made for the passwd program and would thus allow the smbpasswd passwords to be changed using the passwd program.
#%PAM-1.0 # The PAM configuration file for the `samba' service # auth required /lib/security/pam_smbpass.so nodelay account required /lib/security/pam_pwdb.so audit nodelay session required /lib/security/pam_pwdb.so nodelay password required /lib/security/pam_smbpass.so nodelay smbconf=/etc/samba.d/smb.conf
Note: PAM allows stacking of authentication mechanisms. It is also possible to pass information obtained within one PAM module through to the next module in the PAM stack. Please refer to the documentation for your particular system implementation for details regarding the specific capabilities of PAM in this environment. Some Linux implmentations also provide the pam_stack.so module that allows all authentication to be configured in a single central file. The pam_stack.so method has some very devoted followers on the basis that it allows for easier administration. As with all issues in life though, every decision makes trade-offs, so you may want examine the PAM documentation for further helpful information.
The astute administrator will realize from this that the combination of pam_smbpass.so, winbindd, and rsync (see http://rsync.samba.org/) will allow the establishment of a centrally managed, distributed user/password database that can also be used by all PAM (eg: Linux) aware programs and applications. This arrangement can have particularly potent advantages compared with the use of Microsoft Active Directory Service (ADS) in so far as reduction of wide area network authentication traffic.
There is an option in smb.conf called obey pam restrictions. The following is from the on-line help for this option in SWAT;
When Samba 2.2 is configure to enable PAM support (i.e.
--with-pam
), this parameter will
control whether or not Samba should obey PAM's account
and session management directives. The default behavior
is to use PAM for clear text authentication only and to
ignore any account or session management. Note that Samba always
ignores PAM for authentication in the case of
encrypt passwords = yes.
The reason is that PAM modules cannot support the challenge/response
authentication mechanism needed in the presence of SMB
password encryption.
Default: obey pam restrictions = no