mailto(samba@samba.org)
manpage(smb.conf htmlcommand((5)))(5)(23 Oct 1998)(Samba)(SAMBA)
label(NAME)
manpagename(smb.conf)(The configuration file for the Samba suite)
label(SYNOPSIS)
manpagesynopsis()
bf(smb.conf) The bf(smb.conf) file is a configuration file for the
Samba suite. bf(smb.conf) contains runtime configuration information
for the Samba programs. The bf(smb.conf) file is designed to be
configured and administered by the url(bf(swat (8)))(swat.8.html)
program. The complete description of the file format and possible
parameters held within are here for reference purposes.
label(FILEFORMAT)
manpagesection(FILE FORMAT)
The file consists of sections and parameters. A section begins with
the name of the section in square brackets and continues until the
next section begins. Sections contain parameters of the form
tt('name = value')
The file is line-based - that is, each newline-terminated line
represents either a comment, a section name or a parameter.
Section and parameter names are not case sensitive.
Only the first equals sign in a parameter is significant. Whitespace
before or after the first equals sign is discarded. Leading, trailing
and internal whitespace in section and parameter names is
irrelevant. Leading and trailing whitespace in a parameter value is
discarded. Internal whitespace within a parameter value is retained
verbatim.
Any line beginning with a semicolon (';') or a hash ('#') character is
ignored, as are lines containing only whitespace.
Any line ending in a tt('\') is "continued" on the next line in the
customary UNIX fashion.
The values following the equals sign in parameters are all either a
string (no quotes needed) or a boolean, which may be given as yes/no,
0/1 or true/false. Case is not significant in boolean values, but is
preserved in string values. Some items such as create modes are
numeric.
label(SECTIONDESCRIPTIONS)
manpagesection(SECTION DESCRIPTIONS)
Each section in the configuration file (except for the
link(bf([global]))(global) section) describes a shared resource (known
as a em("share")). The section name is the name of the shared resource
and the parameters within the section define the shares attributes.
There are three special sections, link(bf([global]))(global),
link(bf([homes]))(homes) and link(bf([printers]))(printers), which are
described under link(bf('special sections'))(SPECIALSECTIONS). The
following notes apply to ordinary section descriptions.
A share consists of a directory to which access is being given plus
a description of the access rights which are granted to the user of
the service. Some housekeeping options are also specifiable.
Sections are either filespace services (used by the client as an
extension of their native file systems) or printable services (used by
the client to access print services on the host running the server).
Sections may be designated link(bf(guest))(guestok) services, in which
case no password is required to access them. A specified UNIX
link(bf(guest account))(guestaccount) is used to define access
privileges in this case.
Sections other than guest services will require a password to access
them. The client provides the username. As older clients only provide
passwords and not usernames, you may specify a list of usernames to
check against the password using the link(bf("user="))(user) option in
the share definition. For modern clients such as Windows 95/98 and
Windows NT, this should not be necessary.
Note that the access rights granted by the server are masked by the
access rights granted to the specified or guest UNIX user by the host
system. The server does not grant more access than the host system
grants.
The following sample section defines a file space share. The user has
write access to the path tt(/home/bar). The share is accessed via
the share name "foo":
verb(
[foo]
path = /home/bar
writeable = true
)
The following sample section defines a printable share. The share
is readonly, but printable. That is, the only write access permitted
is via calls to open, write to and close a spool file. The
link(bf('guest ok'))(guestok) parameter means access will be permitted
as the default guest user (specified elsewhere):
verb(
[aprinter]
path = /usr/spool/public
writeable = false
printable = true
guest ok = true
)
label(SPECIALSECTIONS)
manpagesection(SPECIAL SECTIONS)
startdit()
label(global)
dit(bf(The [global] section))
Parameters in this section apply to the server as a whole, or are
defaults for sections which do not specifically define certain
items. See the notes under link(bf('PARAMETERS'))(PARAMETERS) for more
information.
label(homes)
dit(bf(The [homes] section))
If a section called tt('homes') is included in the configuration file,
services connecting clients to their home directories can be created
on the fly by the server.
When the connection request is made, the existing sections are
scanned. If a match is found, it is used. If no match is found, the
requested section name is treated as a user name and looked up in the
local password file. If the name exists and the correct password has
been given, a share is created by cloning the [homes] section.
Some modifications are then made to the newly created share:
startit()
it() The share name is changed from tt('homes') to the located
username
it() If no path was given, the path is set to the user's home
directory.
endit()
If you decide to use a link(bf(path=))(path) line in your [homes]
section then you may find it useful to use the link(bf(%S))(percentS)
macro. For example :
tt(path=/data/pchome/%S)
would be useful if you have different home directories for your PCs
than for UNIX access.
This is a fast and simple way to give a large number of clients access
to their home directories with a minimum of fuss.
A similar process occurs if the requested section name is tt("homes"),
except that the share name is not changed to that of the requesting
user. This method of using the [homes] section works well if different
users share a client PC.
The [homes] section can specify all the parameters a normal service
section can specify, though some make more sense than others. The
following is a typical and suitable [homes] section:
verb(
[homes]
writeable = yes
)
An important point is that if guest access is specified in the [homes]
section, all home directories will be visible to all clients
bf(without a password). In the very unlikely event that this is
actually desirable, it would be wise to also specify link(bf(read only
access))(readonly).
Note that the link(bf(browseable))(browseable) flag for auto home
directories will be inherited from the global browseable flag, not the
[homes] browseable flag. This is useful as it means setting
browseable=no in the [homes] section will hide the [homes] share but
make any auto home directories visible.
label(printers)
dit(bf(The [printers] section))
This section works like link(bf([homes]))(homes), but for printers.
If a bf([printers]) section occurs in the configuration file, users are
able to connect to any printer specified in the local host's printcap
file.
When a connection request is made, the existing sections are
scanned. If a match is found, it is used. If no match is found, but a
link(bf([homes]))(homes) section exists, it is used as described
above. Otherwise, the requested section name is treated as a printer
name and the appropriate printcap file is scanned to see if the
requested section name is a valid printer share name. If a match is
found, a new printer share is created by cloning the bf([printers])
section.
A few modifications are then made to the newly created share:
startit()
it() The share name is set to the located printer name
it() If no printer name was given, the printer name is set to the
located printer name
it() If the share does not permit guest access and no username was
given, the username is set to the located printer name.
endit()
Note that the bf([printers]) service MUST be printable - if you specify
otherwise, the server will refuse to load the configuration file.
Typically the path specified would be that of a world-writeable spool
directory with the sticky bit set on it. A typical bf([printers]) entry
would look like this:
verb(
[printers]
path = /usr/spool/public
guest ok = yes
printable = yes
)
All aliases given for a printer in the printcap file are legitimate
printer names as far as the server is concerned. If your printing
subsystem doesn't work like that, you will have to set up a
pseudo-printcap. This is a file consisting of one or more lines like
this:
verb( alias|alias|alias|alias... )
Each alias should be an acceptable printer name for your printing
subsystem. In the link(bf([global]))(global) section, specify the new
file as your printcap. The server will then only recognize names
found in your pseudo-printcap, which of course can contain whatever
aliases you like. The same technique could be used simply to limit
access to a subset of your local printers.
An alias, by the way, is defined as any component of the first entry
of a printcap record. Records are separated by newlines, components
(if there are more than one) are separated by vertical bar symbols
("|").
NOTE: On SYSV systems which use lpstat to determine what printers are
defined on the system you may be able to use link(bf("printcap name =
lpstat"))(printcapname) to automatically obtain a list of
printers. See the link(bf("printcap name"))(printcapname) option for
more details.
enddit()
label(PARAMETERS)
manpagesection(PARAMETERS)
Parameters define the specific attributes of sections.
Some parameters are specific to the link(bf([global]))(global) section
(e.g., link(bf(security))(security)). Some parameters are usable in
all sections (e.g., link(bf(create mode))(createmode)). All others are
permissible only in normal sections. For the purposes of the following
descriptions the link(bf([homes]))(homes) and
link(bf([printers]))(printers) sections will be considered normal.
The letter tt('G') in parentheses indicates that a parameter is
specific to the link(bf([global]))(global) section. The letter tt('S')
indicates that a parameter can be specified in a service specific
section. Note that all tt('S') parameters can also be specified in the
link(bf([global]))(global) section - in which case they will define
the default behavior for all services.
Parameters are arranged here in alphabetical order - this may not
create best bedfellows, but at least you can find them! Where there
are synonyms, the preferred synonym is described, others refer to the
preferred synonym.
label(VARIABLESUBSTITUTIONS)
manpagesection(VARIABLE SUBSTITUTIONS)
Many of the strings that are settable in the config file can take
substitutions. For example the option link(bf(tt("path =
/tmp/%u")))(path) would be interpreted as tt("path = /tmp/john") if
the user connected with the username john.
These substitutions are mostly noted in the descriptions below, but
there are some general substitutions which apply whenever they might
be relevant. These are:
startit()
label(percentS)
it() bf(%S) = the name of the current service, if any.
label(percentP)
it() bf(%P) = the root directory of the current service, if any.
label(percentu)
it() bf(%u) = user name of the current service, if any.
label(percentg)
it() bf(%g) = primary group name of link(bf(%u))(percentu).
label(percentU)
it() bf(%U) = session user name (the user name that
the client wanted, not necessarily the same as the one they got).
label(percentG)
it() bf(%G) = primary group name of link(bf(%U))(percentU).
label(percentH)
it() bf(%H) = the home directory of the user given by link(bf(%u))(percentu).
label(percentv)
it() bf(%v) = the Samba version.
label(percenth)
it() bf(%h) = the internet hostname that Samba is running on.
label(percentm)
it() bf(%m) = the NetBIOS name of the client machine (very useful).
label(percentL)
it() bf(%L) = the NetBIOS name of the server. This allows you to change your
config based on what the client calls you. Your server can have a "dual
personality".
label(percentM)
it() bf(%M) = the internet name of the client machine.
label(percentN)
it() bf(%N) = the name of your NIS home directory server. This is
obtained from your NIS auto.map entry. If you have not compiled Samba
with the bf(--with-automount) option then this value will be the same
as link(bf(%L))(percentL).
label(percentp)
it() bf(%p) = the path of the service's home directory, obtained from your NIS
auto.map entry. The NIS auto.map entry is split up as "%N:%p".
label(percentR)
it() bf(%R) = the selected protocol level after protocol
negotiation. It can be one of CORE, COREPLUS, LANMAN1, LANMAN2 or NT1.
label(percentd)
it() bf(%d) = The process id of the current server process.
label(percenta)
it() bf(%a) = the architecture of the remote
machine. Only some are recognized, and those may not be 100%
reliable. It currently recognizes Samba, WfWg, WinNT and
Win95. Anything else will be known as "UNKNOWN". If it gets it wrong
then sending a level 3 log to email(samba@samba.org)
should allow it to be fixed.
label(percentI)
it() bf(%I) = The IP address of the client machine.
label(percentT)
it() bf(%T) = the current date and time.
label(percentDollar)
it() bf(%$(envvar)) = The value of the environment variable bf(envar).
endit()
There are some quite creative things that can be done with these
substitutions and other smb.conf options.
label(NAMEMANGLING)
manpagesection(NAME MANGLING)
Samba supports em("name mangling") so that DOS and Windows clients can
use files that don't conform to the 8.3 format. It can also be set to
adjust the case of 8.3 format filenames.
There are several options that control the way mangling is performed,
and they are grouped here rather than listed separately. For the
defaults look at the output of the testparm program.
All of these options can be set separately for each service (or
globally, of course).
The options are:
label(manglecaseoption)
bf("mangle case = yes/no") controls if names that have characters that
aren't of the "default" case are mangled. For example, if this is yes
then a name like tt("Mail") would be mangled. Default em(no).
label(casesensitiveoption)
bf("case sensitive = yes/no") controls whether filenames are case
sensitive. If they aren't then Samba must do a filename search and
match on passed names. Default em(no).
label(defaultcaseoption)
bf("default case = upper/lower") controls what the default case is for new
filenames. Default em(lower).
label(preservecaseoption)
bf("preserve case = yes/no") controls if new files are created with the
case that the client passes, or if they are forced to be the tt("default")
case. Default em(Yes).
label(shortpreservecaseoption)
bf("short preserve case = yes/no") controls if new files which conform
to 8.3 syntax, that is all in upper case and of suitable length, are
created upper case, or if they are forced to be the tt("default")
case. This option can be use with link(bf("preserve case =
yes"))(preservecaseoption) to permit long filenames to retain their
case, while short names are lowered. Default em(Yes).
By default, Samba 2.0 has the same semantics as a Windows NT
server, in that it is case insensitive but case preserving.
label(NOTEABOUTUSERNAMEPASSWORDVALIDATION)
manpagesection(NOTE ABOUT USERNAME/PASSWORD VALIDATION)
There are a number of ways in which a user can connect to a
service. The server follows the following steps in determining if it
will allow a connection to a specified service. If all the steps fail
then the connection request is rejected. If one of the steps pass then
the following steps are not checked.
If the service is marked link(bf("guest only = yes"))(guestonly) then
steps 1 to 5 are skipped.
starteit()
eit() Step 1: If the client has passed a username/password pair and
that username/password pair is validated by the UNIX system's password
programs then the connection is made as that username. Note that this
includes the tt(\\server\service%username) method of passing a
username.
eit() Step 2: If the client has previously registered a username with
the system and now supplies a correct password for that username then
the connection is allowed.
eit() Step 3: The client's netbios name and any previously used user
names are checked against the supplied password, if they match then
the connection is allowed as the corresponding user.
eit() Step 4: If the client has previously validated a
username/password pair with the server and the client has passed the
validation token then that username is used.
eit() Step 5: If a link(bf("user = "))(user) field is given in the
smb.conf file for the service and the client has supplied a password,
and that password matches (according to the UNIX system's password
checking) with one of the usernames from the link(bf(user=))(user)
field then the connection is made as the username in the
link(bf("user="))(user) line. If one of the username in the
link(bf(user=))(user) list begins with a tt('@') then that name
expands to a list of names in the group of the same name.
eit() Step 6: If the service is a guest service then a connection is
made as the username given in the link(bf("guest account
="))(guestaccount) for the service, irrespective of the supplied
password.
endeit()
label(COMPLETELISTOFGLOBALPARAMETERS)
manpagesection(COMPLETE LIST OF GLOBAL PARAMETERS)
Here is a list of all global parameters. See the section of each
parameter for details. Note that some are synonyms.
startit()
it() link(bf(add user script))(adduserscript)
it() link(bf(allow trusted domains))(allowtrusteddomains)
it() link(bf(announce as))(announceas)
it() link(bf(announce version))(announceversion)
it() link(bf(auto services))(autoservices)
it() link(bf(bind interfaces only))(bindinterfacesonly)
it() link(bf(browse list))(browselist)
it() link(bf(change notify timeout))(changenotifytimeout)
it() link(bf(character set))(characterset)
it() link(bf(client code page))(clientcodepage)
it() link(bf(coding system))(codingsystem)
it() link(bf(config file))(configfile)
it() link(bf(deadtime))(deadtime)
it() link(bf(debug hires timestamp))(debughirestimestamp)
it() link(bf(debug pid))(debugpid)
it() link(bf(debug timestamp))(debugtimestamp)
it() link(bf(debug uid))(debuguid)
it() link(bf(debug level))(debuglevel)
it() link(bf(default))(default)
it() link(bf(default service))(defaultservice)
it() link(bf(delete user script))(deleteuserscript)
it() link(bf(dfree command))(dfreecommand)
it() link(bf(dns proxy))(dnsproxy)
it() link(bf(domain admin group))(domainadmingroup)
it() link(bf(domain admin users))(domainadminusers)
it() link(bf(domain groups))(domaingroups)
it() link(bf(domain guest group))(domainguestgroup)
it() link(bf(domain guest users))(domainguestusers)
it() link(bf(domain logons))(domainlogons)
it() link(bf(domain master))(domainmaster)
it() link(bf(encrypt passwords))(encryptpasswords)
it() link(bf(getwd cache))(getwdcache)
it() link(bf(hide local users))(hidelocalusers)
it() link(bf(homedir map))(homedirmap)
it() link(bf(hosts equiv))(hostsequiv)
it() link(bf(interfaces))(interfaces)
it() link(bf(keepalive))(keepalive)
it() link(bf(kernel oplocks))(kerneloplocks)
it() link(bf(ldap filter))(ldapfilter)
it() link(bf(ldap port))(ldapport)
it() link(bf(ldap root))(ldaproot)
it() link(bf(ldap root passwd))(ldaprootpasswd)
it() link(bf(ldap server))(ldapserver)
it() link(bf(ldap suffix))(ldapsuffix)
it() link(bf(lm announce))(lmannounce)
it() link(bf(lm interval))(lminterval)
it() link(bf(load printers))(loadprinters)
it() link(bf(local master))(localmaster)
it() link(bf(lock dir))(lockdir)
it() link(bf(lock directory))(lockdirectory)
it() link(bf(log file))(logfile)
it() link(bf(log level))(loglevel)
it() link(bf(logon drive))(logondrive)
it() link(bf(logon home))(logonhome)
it() link(bf(logon path))(logonpath)
it() link(bf(logon script))(logonscript)
it() link(bf(lpq cache time))(lpqcachetime)
it() link(bf(machine password timeout))(machinepasswordtimeout)
it() link(bf(mangled stack))(mangledstack)
it() link(bf(map to guest))(maptoguest)
it() link(bf(max disk size))(maxdisksize)
it() link(bf(max log size))(maxlogsize)
it() link(bf(max mux))(maxmux)
it() link(bf(max open files))(maxopenfiles)
it() link(bf(max packet))(maxpacket)
it() link(bf(max ttl))(maxttl)
it() link(bf(max wins ttl))(maxwinsttl)
it() link(bf(max xmit))(maxxmit)
it() link(bf(message command))(messagecommand)
it() link(bf(min passwd length))(minpasswdlength)
it() link(bf(min password length))(minpasswordlength)
it() link(bf(min wins ttl))(minwinsttl)
it() link(bf(name resolve order))(nameresolveorder)
it() link(bf(netbios aliases))(netbiosaliases)
it() link(bf(netbios name))(netbiosname)
it() link(bf(netbios scope))(netbiosscope)
it() link(bf(nis homedir))(nishomedir)
it() link(bf(nt acl support))(ntaclsupport)
it() link(bf(nt pipe support))(ntpipesupport)
it() link(bf(nt smb support))(ntsmbsupport)
it() link(bf(null passwords))(nullpasswords)
it() link(bf(ole locking compatibility))(olelockingcompatibility)
it() link(bf(oplock break wait time))(oplockbreakwaittime)
it() link(bf(os level))(oslevel)
it() link(bf(packet size))(packetsize)
it() link(bf(panic action))(panicaction)
it() link(bf(passwd chat))(passwdchat)
it() link(bf(passwd chat debug))(passwdchatdebug)
it() link(bf(passwd program))(passwdprogram)
it() link(bf(password level))(passwordlevel)
it() link(bf(password server))(passwordserver)
it() link(bf(prefered master))(preferedmaster)
it() link(bf(preferred master))(preferredmaster)
it() link(bf(preload))(preload)
it() link(bf(printcap))(printcap)
it() link(bf(printcap name))(printcapname)
it() link(bf(printer driver file))(printerdriverfile)
it() link(bf(private dir))(privatedir)
it() link(bf(protocol))(protocol)
it() link(bf(read bmpx))(readbmpx)
it() link(bf(read prediction))(readprediction)
it() link(bf(read raw))(readraw)
it() link(bf(read size))(readsize)
it() link(bf(remote announce))(remoteannounce)
it() link(bf(remote browse sync))(remotebrowsesync)
it() link(bf(restrict anonymous))(restrictanonymous)
it() link(bf(root))(root)
it() link(bf(root dir))(rootdir)
it() link(bf(root directory))(rootdirectory)
it() link(bf(security))(security)
it() link(bf(server string))(serverstring)
it() link(bf(shared mem size))(sharedmemsize)
it() link(bf(smb passwd file))(smbpasswdfile)
it() link(bf(smbrun))(smbrun)
it() link(bf(socket address))(socketaddress)
it() link(bf(socket options))(socketoptions)
it() link(bf(source environment))(sourceenvironment)
it() link(bf(ssl))(ssl)
it() link(bf(ssl CA certDir))(sslCAcertDir)
it() link(bf(ssl CA certFile))(sslCAcertFile)
it() link(bf(ssl ciphers))(sslciphers)
it() link(bf(ssl client cert))(sslclientcert)
it() link(bf(ssl client key))(sslclientkey)
it() link(bf(ssl compatibility))(sslcompatibility)
it() link(bf(ssl hosts))(sslhosts)
it() link(bf(ssl hosts resign))(sslhostsresign)
it() link(bf(ssl require clientcert))(sslrequireclientcert)
it() link(bf(ssl require servercert))(sslrequireservercert)
it() link(bf(ssl server cert))(sslservercert)
it() link(bf(ssl server key))(sslserverkey)
it() link(bf(ssl version))(sslversion)
it() link(bf(stat cache))(statcache)
it() link(bf(stat cache size))(statcachesize)
it() link(bf(strip dot))(stripdot)
it() link(bf(syslog))(syslog)
it() link(bf(syslog only))(syslogonly)
it() link(bf(template homedir))(templatehomedir)
it() link(bf(template shell))(templateshell)
it() link(bf(time offset))(timeoffset)
it() link(bf(time server))(timeserver)
it() link(bf(timestamp logs))(timestamplogs)
it() link(bf(unix password sync))(unixpasswordsync)
it() link(bf(unix realname))(unixrealname)
it() link(bf(update encrypted))(updateencrypted)
it() link(bf(use rhosts))(userhosts)
it() link(bf(username level))(usernamelevel)
it() link(bf(username map))(usernamemap)
it() link(bf(utmp directory))(utmpdirectory)
it() link(bf(valid chars))(validchars)
it() link(bf(winbind cache time))(winbindcachetime)
it() link(bf(winbind gid))(winbindgid)
it() link(bf(winbind uid))(winbinduid)
it() link(bf(wins hook))(winshook)
it() link(bf(wins proxy))(winsproxy)
it() link(bf(wins server))(winsserver)
it() link(bf(wins support))(winssupport)
it() link(bf(workgroup))(workgroup)
it() link(bf(write raw))(writeraw)
endit()
label(COMPLETELISTOFSERVICEPARAMETERS)
manpagesection(COMPLETE LIST OF SERVICE PARAMETERS)
Here is a list of all service parameters. See the section of each
parameter for details. Note that some are synonyms.
startit()
it() link(bf(admin users))(adminusers)
it() link(bf(allow hosts))(allowhosts)
it() link(bf(alternate permissions))(alternatepermissions)
it() link(bf(available))(available)
it() link(bf(blocking locks))(blockinglocks)
it() link(bf(browsable))(browsable)
it() link(bf(browseable))(browseable)
it() link(bf(case sensitive))(casesensitive)
it() link(bf(casesignames))(casesignames)
it() link(bf(comment))(comment)
it() link(bf(copy))(copy)
it() link(bf(create mask))(createmask)
it() link(bf(create mode))(createmode)
it() link(bf(default case))(defaultcase)
it() link(bf(delete readonly))(deletereadonly)
it() link(bf(delete veto files))(deletevetofiles)
it() link(bf(deny hosts))(denyhosts)
it() link(bf(directory))(directory)
it() link(bf(directory mask))(directorymask)
it() link(bf(directory mode))(directorymode)
it() link(bf(directory security mask))(directorysecuritymask)
it() link(bf(dont descend))(dontdescend)
it() link(bf(dos filetime resolution))(dosfiletimeresolution)
it() link(bf(dos filetimes))(dosfiletimes)
it() link(bf(exec))(exec)
it() link(bf(fake directory create times))(fakedirectorycreatetimes)
it() link(bf(fake oplocks))(fakeoplocks)
it() link(bf(follow symlinks))(followsymlinks)
it() link(bf(force create mode))(forcecreatemode)
it() link(bf(force directory mode))(forcedirectorymode)
it() link(bf(force directory security mode))(forcedirectorysecuritymode)
it() link(bf(force group))(forcegroup)
it() link(bf(force security mode))(forcesecuritymode)
it() link(bf(force user))(forceuser)
it() link(bf(fstype))(fstype)
it() link(bf(group))(group)
it() link(bf(guest account))(guestaccount)
it() link(bf(guest ok))(guestok)
it() link(bf(guest only))(guestonly)
it() link(bf(hide dot files))(hidedotfiles)
it() link(bf(hide files))(hidefiles)
it() link(bf(hosts allow))(hostsallow)
it() link(bf(hosts deny))(hostsdeny)
it() link(bf(include))(include)
it() link(bf(inherit permissions))(inheritpermissions)
it() link(bf(invalid users))(invalidusers)
it() link(bf(level2 oplocks))(level2oplocks)
it() link(bf(locking))(locking)
it() link(bf(lppause command))(lppausecommand)
it() link(bf(lpq command))(lpqcommand)
it() link(bf(lpresume command))(lpresumecommand)
it() link(bf(lprm command))(lprmcommand)
it() link(bf(magic output))(magicoutput)
it() link(bf(magic script))(magicscript)
it() link(bf(mangle case))(manglecase)
it() link(bf(mangle locks))(manglelocks)
it() link(bf(mangled map))(mangledmap)
it() link(bf(mangled names))(manglednames)
it() link(bf(mangling char))(manglingchar)
it() link(bf(map archive))(maparchive)
it() link(bf(map hidden))(maphidden)
it() link(bf(map system))(mapsystem)
it() link(bf(max connections))(maxconnections)
it() link(bf(min print space))(minprintspace)
it() link(bf(only guest))(onlyguest)
it() link(bf(only user))(onlyuser)
it() link(bf(oplock contention limit))(oplockcontentionlimit)
it() link(bf(oplocks))(oplocks)
it() link(bf(path))(path)
it() link(bf(postexec))(postexec)
it() link(bf(postscript))(postscript)
it() link(bf(preexec))(preexec)
it() link(bf(preexec close))(preexecclose)
it() link(bf(preserve case))(preservecase)
it() link(bf(print command))(printcommand)
it() link(bf(print ok))(printok)
it() link(bf(printable))(printable)
it() link(bf(printer))(printer)
it() link(bf(printer admin))(printer admin)
it() link(bf(printer driver))(printerdriver)
it() link(bf(printer driver location))(printerdriverlocation)
it() link(bf(printer name))(printername)
it() link(bf(printing))(printing)
it() link(bf(public))(public)
it() link(bf(queuepause command))(queuepausecommand)
it() link(bf(queueresume command))(queueresumecommand)
it() link(bf(read list))(readlist)
it() link(bf(read only))(readonly)
it() link(bf(root postexec))(rootpostexec)
it() link(bf(root preexec))(rootpreexec)
it() link(bf(root preexec close))(rootpreexecclose)
it() link(bf(security mask))(securitymask)
it() link(bf(set directory))(setdirectory)
it() link(bf(share modes))(sharemodes)
it() link(bf(short preserve case))(shortpreservecase)
it() link(bf(status))(status)
it() link(bf(strict locking))(strictlocking)
it() link(bf(strict sync))(strictsync)
it() link(bf(sync always))(syncalways)
it() link(bf(user))(user)
it() link(bf(username))(username)
it() link(bf(users))(users)
it() link(bf(utmp))(utmp)
it() link(bf(valid users))(validusers)
it() link(bf(veto files))(vetofiles)
it() link(bf(veto oplock files))(vetooplockfiles)
it() link(bf(volume))(volume)
it() link(bf(wide links))(widelinks)
it() link(bf(writable))(writable)
it() link(bf(write cache size))(writecachesize)
it() link(bf(write list))(writelist)
it() link(bf(write ok))(writeok)
it() link(bf(writeable))(writeable)
endit()
label(EXPLANATIONOFEACHPARAMETER)
manpagesection(EXPLANATION OF EACH PARAMETER)
startdit()
label(adduserscript)
dit(bf(add user script (G)))
This is the full pathname to a script that will be run em(AS ROOT) by
url(bf(smbd (8)))(smbd.8.html) under special circumstances decribed
below.
Normally, a Samba server requires that UNIX users are created for all
users accessing files on this server. For sites that use Windows NT
account databases as their primary user database creating these users
and keeping the user list in sync with the Windows NT PDC is an
onerous task. This option allows url(bf(smbd))(smbd.8.html) to create
the required UNIX users em(ON DEMAND) when a user accesses the Samba
server.
In order to use this option, url(bf(smbd))(smbd.8.html) must be set to
link(bf(security=server))(securityequalserver) or
link(bf(security=domain))(securityequaldomain) and bf("add user script")
must be set to a full pathname for a script that will create a UNIX user
given one argument of bf(%u), which expands into the UNIX user name to
create.
When the Windows user attempts to access the Samba server, at
em("login")(session setup in the SMB protocol) time,
url(bf(smbd))(smbd.8.html) contacts the link(bf(password
server))(passwordserver) and attempts to authenticate the given user
with the given password. If the authentication succeeds then
url(bf(smbd))(smbd.8.html) attempts to find a UNIX user in the UNIX
password database to map the Windows user into. If this lookup fails,
and bf("add user script") is set then url(bf(smbd))(smbd.8.html) will
call the specified script em(AS ROOT), expanding any bf(%u) argument
to be the user name to create.
If this script successfully creates the user then
url(bf(smbd))(smbd.8.html) will continue on as though the UNIX user
already existed. In this way, UNIX users are dynamically created to
match existing Windows NT accounts.
See also link(bf(security=server))(securityequalserver),
link(bf(security=domain))(securityequaldomain), link(bf(password
server))(passwordserver), link(bf(delete user
script))(deleteuserscript).
bf(Default:)
tt( add user script = )
bf(Example:)
tt( add user script = /usr/local/samba/bin/add_user %u)
label(adminusers)
dit(bf(admin users (S)))
This is a list of users who will be granted administrative privileges
on the share. This means that they will do all file operations as the
super-user (root).
You should use this option very carefully, as any user in this list
will be able to do anything they like on the share, irrespective of
file permissions.
bf(Default:) nl()
tt( no admin users)
bf(Example:) nl()
tt( admin users = jason)
label(allow hosts)
dit(bf(allow hosts (S)))
Synonym for link(bf(hosts allow))(hostsallow).
label(allowtrusteddomains)
dit(bf(allow trusted domains (G)))
This option only takes effect when the link(bf(security))(security)
option is set to bf(server) or bf(domain). If it is set to no,
then attempts to connect to a resource from a domain or workgroup other than
the one which smbd is running in will fail, even if that domain
is trusted by the remote server doing the authentication.
This is useful if you only want your Samba server to serve resources
to users in the domain it is a member of. As an example, suppose that there are
two domains DOMA and DOMB. DOMB is trusted by DOMA, which contains
the Samba server. Under normal circumstances, a user with an account
in DOMB can then access the resources of a UNIX account with the same
account name on the Samba server even if they do not have an account
in DOMA. This can make implementing a security boundary difficult.
bf(Default:)
tt( allow trusted domains = Yes)
bf(Example:)
tt( allow trusted domains = No)
label(alternatepermissions)
dit(bf(alternate permissions (S)))
This is a deprecated parameter. It no longer has any effect in Samba2.0.
In previous versions of Samba it affected the way the DOS "read only"
attribute was mapped for a file. In Samba2.0 a file is marked "read only"
if the UNIX file does not have the 'w' bit set for the owner of the file,
regardless if the owner of the file is the currently logged on user or not.
label(announceas)
dit(bf(announce as (G)))
This specifies what type of server url(bf(nmbd))(nmbd.8.html) will
announce itself as, to a network neighborhood browse list. By default
this is set to Windows NT. The valid options are : "NT", which is a
synonym for "NT Server", "NT Server", "NT Workstation", "Win95" or
"WfW" meaning Windows NT Server, Windows NT Workstation, Windows 95
and Windows for Workgroups respectively. Do not change this parameter
unless you have a specific need to stop Samba appearing as an NT server
as this may prevent Samba servers from participating as browser servers correctly.
bf(Default:)
tt( announce as = NT Server)
bf(Example)
tt( announce as = Win95)
label(announceversion)
dit(bf(announce version (G)))
This specifies the major and minor version numbers that nmbd will use
when announcing itself as a server. The default is 4.2. Do not change
this parameter unless you have a specific need to set a Samba server
to be a downlevel server.
bf(Default:)
tt( announce version = 4.2)
bf(Example:)
tt( announce version = 2.0)
label(autoservices)
dit(bf(auto services (G)))
This is a list of services that you want to be automatically added to
the browse lists. This is most useful for homes and printers services
that would otherwise not be visible.
Note that if you just want all printers in your printcap file loaded
then the link(bf("load printers"))(loadprinters) option is easier.
bf(Default:)
tt( no auto services)
bf(Example:)
tt( auto services = fred lp colorlp)
label(available)
dit(bf(available (S)))
This parameter lets you em('turn off') a service. If tt('available = no'),
then em(ALL) attempts to connect to the service will fail. Such failures
are logged.
bf(Default:)
tt( available = yes)
bf(Example:)
tt( available = no)
label(bindinterfacesonly)
dit(bf(bind interfaces only (G)))
This global parameter allows the Samba admin to limit what interfaces
on a machine will serve smb requests. If affects file service
url(bf(smbd))(smbd.8.html) and name service url(bf(nmbd))(nmbd.8.html)
in slightly different ways.
For name service it causes url(bf(nmbd))(nmbd.8.html) to bind to ports
137 and 138 on the interfaces listed in the
link(bf('interfaces'))(interfaces)
parameter. url(bf(nmbd))(nmbd.8.html) also binds to the 'all
addresses' interface (0.0.0.0) on ports 137 and 138 for the purposes
of reading broadcast messages. If this option is not set then
url(bf(nmbd))(nmbd.8.html) will service name requests on all of these
sockets. If bf("bind interfaces only") is set then
url(bf(nmbd))(nmbd.8.html) will check the source address of any
packets coming in on the broadcast sockets and discard any that don't
match the broadcast addresses of the interfaces in the
link(bf('interfaces'))(interfaces) parameter list. As unicast packets
are received on the other sockets it allows url(bf(nmbd))(nmbd.8.html)
to refuse to serve names to machines that send packets that arrive
through any interfaces not listed in the
link(bf("interfaces"))(interfaces) list. IP Source address spoofing
does defeat this simple check, however so it must not be used
seriously as a security feature for url(bf(nmbd))(nmbd.8.html).
For file service it causes url(bf(smbd))(smbd.8.html) to bind only to
the interface list given in the link(bf('interfaces'))(interfaces)
parameter. This restricts the networks that url(bf(smbd))(smbd.8.html)
will serve to packets coming in those interfaces. Note that you
should not use this parameter for machines that are serving PPP or
other intermittent or non-broadcast network interfaces as it will not
cope with non-permanent interfaces.
If bf("bind interfaces only") is set then unless the network address
em(127.0.0.1) is added to the link(bf('interfaces'))(interfaces) parameter
list url(bf(smbpasswd))(smbpasswd.8.html) and
url(bf(swat))(swat.8.html) may not work as expected due to the
reasons covered below.
To change a users SMB password, the url(bf(smbpasswd))(smbpasswd.8.html)
by default connects to the em("localhost" - 127.0.0.1) address as an SMB
client to issue the password change request. If bf("bind interfaces only")
is set then unless the network address em(127.0.0.1) is added to the
link(bf('interfaces'))(interfaces) parameter list then
url(bf(smbpasswd))(smbpasswd.8.html) will fail to connect in it's
default mode. url(bf(smbpasswd))(smbpasswd.8.html) can be forced to
use the primary IP interface of the local host by using its
url(bf("-r remote machine"))(smbpasswd.8.html#minusr) parameter, with
bf("remote machine") set to the IP name of the primary interface
of the local host.
The url(bf(swat))(swat.8.html) status page tries to connect with
url(bf(smbd))(smbd.8.html) and url(bf(nmbd))(nmbd.8.html) at the address
em(127.0.0.1) to determine if they are running. Not adding em(127.0.0.1) will cause
url(bf(smbd))(smbd.8.html) and url(bf(nmbd))(nmbd.8.html) to always show
"not running" even if they really are. This can prevent
url(bf(swat))(swat.8.html) from starting/stopping/restarting
url(bf(smbd))(smbd.8.html) and url(bf(nmbd))(nmbd.8.html).
bf(Default:)
tt( bind interfaces only = False)
bf(Example:)
tt( bind interfaces only = True)
label(blockinglocks)
dit(bf(blocking locks (S)))
This parameter controls the behavior of url(bf(smbd))(smbd.8.html) when
given a request by a client to obtain a byte range lock on a region
of an open file, and the request has a time limit associated with it.
If this parameter is set and the lock range requested cannot be
immediately satisfied, Samba 2.0 will internally queue the lock
request, and periodically attempt to obtain the lock until the
timeout period expires.
If this parameter is set to "False", then Samba 2.0 will behave
as previous versions of Samba would and will fail the lock
request immediately if the lock range cannot be obtained.
This parameter can be set per share.
bf(Default:)
tt( blocking locks = True)
bf(Example:)
tt( blocking locks = False)
label(browsable)
dit(bf(browsable (S)))
Synonym for link(bf(browseable))(browseable).
label(browselist)
dit(bf(browse list(G)))
This controls whether url(bf(smbd))(smbd.8.html) will serve a browse
list to a client doing a NetServerEnum call. Normally set to true. You
should never need to change this.
bf(Default:)
tt( browse list = Yes)
label(browseable)
dit(bf(browseable))
This controls whether this share is seen in the list of available
shares in a net view and in the browse list.
bf(Default:)
tt( browseable = Yes)
bf(Example:)
tt( browseable = No)
label(casesensitive)
dit(bf(case sensitive (S)))
See the discussion in the section link(bf(NAME MANGLING))(NAMEMANGLING).
label(casesignames)
dit(bf(casesignames (S)))
Synonym for link(bf("case sensitive"))(casesensitive).
label(changenotifytimeout)
dit(bf(change notify timeout (G)))
One of the new NT SMB requests that Samba 2.0 supports is the
"ChangeNotify" requests. This SMB allows a client to tell a server to
em("watch") a particular directory for any changes and only reply to
the SMB request when a change has occurred. Such constant scanning of
a directory is expensive under UNIX, hence an
url(bf(smbd))(smbd.8.html) daemon only performs such a scan on each
requested directory once every bf(change notify timeout) seconds.
bf(change notify timeout) is specified in units of seconds.
bf(Default:)
tt( change notify timeout = 60)
bf(Example:)
tt( change notify timeout = 300)
Would change the scan time to every 5 minutes.
label(characterset)
dit(bf(character set (G)))
This allows a smbd to map incoming filenames from a DOS Code page (see
the link(bf(client code page))(clientcodepage) parameter) to several
built in UNIX character sets. The built in code page translations are:
startit()
it() bf(ISO8859-1) Western European UNIX character set. The parameter
link(bf(client code page))(clientcodepage) em(MUST) be set to code
page 850 if the bf(character set) parameter is set to iso8859-1
in order for the conversion to the UNIX character set to be done
correctly.
it() bf(ISO8859-2) Eastern European UNIX character set. The parameter
link(bf(client code page))(clientcodepage) em(MUST) be set to code
page 852 if the bf(character set) parameter is set to ISO8859-2
in order for the conversion to the UNIX character set to be done
correctly.
it() bf(ISO8859-5) Russian Cyrillic UNIX character set. The parameter
link(bf(client code page))(clientcodepage) em(MUST) be set to code
page 866 if the bf(character set) parameter is set to ISO8859-5
in order for the conversion to the UNIX character set to be done
correctly.
it() bf(ISO8859-7) Greek UNIX character set. The parameter
link(bf(client code page))(clientcodepage) em(MUST) be set to code
page 737 if the bf(character set) parameter is set to ISO8859-7
in order for the conversion to the UNIX character set to be done
correctly.
it() bf(KOI8-R) Alternate mapping for Russian Cyrillic UNIX
character set. The parameter link(bf(client code
page))(clientcodepage) em(MUST) be set to code page 866 if the
bf(character set) parameter is set to KOI8-R in order for the
conversion to the UNIX character set to be done correctly.
endit()
em(BUG). These MSDOS code page to UNIX character set mappings should
be dynamic, like the loading of MS DOS code pages, not static.
See also link(bf(client code page))(clientcodepage). Normally this
parameter is not set, meaning no filename translation is done.
bf(Default:)
tt( character set = )
bf(Example:)
tt( character set = ISO8859-1)
label(clientcodepage)
dit(bf(client code page (G)))
This parameter specifies the DOS code page that the clients accessing
Samba are using. To determine what code page a Windows or DOS client
is using, open a DOS command prompt and type the command "chcp". This
will output the code page. The default for USA MS-DOS, Windows 95, and
Windows NT releases is code page 437. The default for western european
releases of the above operating systems is code page 850.
This parameter tells url(bf(smbd))(smbd.8.html) which of the
tt(codepage.XXX) files to dynamically load on startup. These files,
described more fully in the manual page url(bf(make_smbcodepage
(1)))(make_smbcodepage.1.html), tell url(bf(smbd))(smbd.8.html) how
to map lower to upper case characters to provide the case insensitivity
of filenames that Windows clients expect.
Samba currently ships with the following code page files :
startit()
it() bf(Code Page 437 - MS-DOS Latin US)
it() bf(Code Page 737 - Windows '95 Greek)
it() bf(Code Page 850 - MS-DOS Latin 1)
it() bf(Code Page 852 - MS-DOS Latin 2)
it() bf(Code Page 861 - MS-DOS Icelandic)
it() bf(Code Page 866 - MS-DOS Cyrillic)
it() bf(Code Page 932 - MS-DOS Japanese SJIS)
it() bf(Code Page 936 - MS-DOS Simplified Chinese)
it() bf(Code Page 949 - MS-DOS Korean Hangul)
it() bf(Code Page 950 - MS-DOS Traditional Chinese)
endit()
Thus this parameter may have any of the values 437, 737, 850, 852,
861, 932, 936, 949, or 950. If you don't find the codepage you need,
read the comments in one of the other codepage files and the
url(bf(make_smbcodepage (1)))(make_smbcodepage.1.html) man page and
write one. Please remember to donate it back to the Samba user
community.
This parameter co-operates with the link(bf("valid
chars"))(validchars) parameter in determining what characters are
valid in filenames and how capitalization is done. If you set both
this parameter and the link(bf("valid chars"))(validchars) parameter
the bf("client code page") parameter em(MUST) be set before the
link(bf("valid chars"))(validchars) parameter in the bf(smb.conf)
file. The link(bf("valid chars"))(validchars) string will then augment
the character settings in the "client code page" parameter.
If not set, bf("client code page") defaults to 850.
See also : link(bf("valid chars"))(validchars)
bf(Default:)
tt( client code page = 850)
bf(Example:)
tt( client code page = 936)
label(codingsystem)
dit(bf(codingsystem (G)))
This parameter is used to determine how incoming Shift-JIS Japanese
characters are mapped from the incoming link(bf("client code
page"))(clientcodepage) used by the client, into file names in the
UNIX filesystem. Only useful if link(bf("client code
page"))(clientcodepage) is set to 932 (Japanese Shift-JIS).
The options are :
startit()
it() bf(SJIS) Shift-JIS. Does no conversion of the incoming filename.
it() bf(JIS8, J8BB, J8BH, J8@B, J8@J, J8@H ) Convert from incoming
Shift-JIS to eight bit JIS code with different shift-in, shift out
codes.
it() bf(JIS7, J7BB, J7BH, J7@B, J7@J, J7@H ) Convert from incoming
Shift-JIS to seven bit JIS code with different shift-in, shift out
codes.
it() bf(JUNET, JUBB, JUBH, JU@B, JU@J, JU@H ) Convert from incoming
Shift-JIS to JUNET code with different shift-in, shift out codes.
it() bf(EUC) Convert an incoming Shift-JIS character to EUC code.
it() bf(HEX) Convert an incoming Shift-JIS character to a 3 byte hex
representation, i.e. tt(:AB).
it() bf(CAP) Convert an incoming Shift-JIS character to the 3 byte hex
representation used by the Columbia AppleTalk Program (CAP),
i.e. tt(:AB). This is used for compatibility between Samba and CAP.
endit()
label(comment)
dit(bf(comment (S)))
This is a text field that is seen next to a share when a client does a
queries the server, either via the network neighborhood or via "net
view" to list what shares are available.
If you want to set the string that is displayed next to the machine
name then see the server string command.
bf(Default:)
tt( No comment string)
bf(Example:)
tt( comment = Fred's Files)
label(configfile)
dit(bf(config file (G)))
This allows you to override the config file to use, instead of the
default (usually bf(smb.conf)). There is a chicken and egg problem
here as this option is set in the config file!
For this reason, if the name of the config file has changed when the
parameters are loaded then it will reload them from the new config
file.
This option takes the usual substitutions, which can be very useful.
If the config file doesn't exist then it won't be loaded (allowing you
to special case the config files of just a few clients).
bf(Example:)
tt( config file = /usr/local/samba/lib/smb.conf.%m)
label(copy)
dit(bf(copy (S)))
This parameter allows you to em('clone') service entries. The specified
service is simply duplicated under the current service's name. Any
parameters specified in the current section will override those in the
section being copied.
This feature lets you set up a 'template' service and create similar
services easily. Note that the service being copied must occur earlier
in the configuration file than the service doing the copying.
bf(Default:)
tt( none)
bf(Example:)
tt( copy = otherservice)
label(createmask)
dit(bf(create mask (S)))
A synonym for this parameter is link(bf('create mode'))(createmode).
When a file is created, the necessary permissions are calculated
according to the mapping from DOS modes to UNIX permissions, and the
resulting UNIX mode is then bit-wise 'AND'ed with this parameter.
This parameter may be thought of as a bit-wise MASK for the UNIX modes
of a file. Any bit em(*not*) set here will be removed from the modes set
on a file when it is created.
The default value of this parameter removes the 'group' and 'other'
write and execute bits from the UNIX modes.
Following this Samba will bit-wise 'OR' the UNIX mode created from
this parameter with the value of the "force create mode" parameter
which is set to 000 by default.
This parameter does not affect directory modes. See the parameter
link(bf('directory mode'))(directorymode) for details.
See also the link(bf("force create mode"))(forcecreatemode) parameter
for forcing particular mode bits to be set on created files. See also
the link(bf("directory mode"))(directorymode) parameter for masking
mode bits on created directories.
See also the link(bf("inherit permissions"))(inheritpermissions) parameter.
bf(Default:)
tt( create mask = 0744)
bf(Example:)
tt( create mask = 0775)
label(createmode)
dit(bf(create mode (S)))
This is a synonym for link(bf(create mask))(createmask).
label(deadtime)
dit(bf(deadtime (G)))
The value of the parameter (a decimal integer) represents the number
of minutes of inactivity before a connection is considered dead, and
it is disconnected. The deadtime only takes effect if the number of
open files is zero.
This is useful to stop a server's resources being exhausted by a large
number of inactive connections.
Most clients have an auto-reconnect feature when a connection is
broken so in most cases this parameter should be transparent to users.
Using this parameter with a timeout of a few minutes is recommended
for most systems.
A deadtime of zero indicates that no auto-disconnection should be
performed.
bf(Default:)
tt( deadtime = 0)
bf(Example:)
tt( deadtime = 15)
label(debughirestimestamp)
dit(bf(debug hires timestamp (G)))
Sometimes the timestamps in the log messages are needed with a
resolution of higher that seconds, this boolean parameter adds
microsecond resolution to the timestamp message header when turned on.
Note that the parameter link(bf(debug timestamp))(debugtimestamp)
must be on for this to have an effect.
bf(Default:)
tt( debug hires timestamp = No)
bf(Example:)
tt( debug hires timestamp = Yes)
label(debugtimestamp)
dit(bf(debug timestamp (G)))
Samba2.0 debug log messages are timestamped by default. If you are
running at a high link(bf("debug level"))(debuglevel) these timestamps
can be distracting. This boolean parameter allows timestamping to be turned
off.
bf(Default:)
tt( debug timestamp = Yes)
bf(Example:)
tt( debug timestamp = No)
label(debugpid)
dit(bf(debug pid (G)))
When using only one log file for more then one forked smbd-process
there may be hard to follow which process outputs which message.
This boolean parameter is adds the process-id to the timestamp message
headers in the logfile when turned on.
Note that the parameter link(bf(debug timestamp))(debugtimestamp)
must be on for this to have an effect.
bf(Default:)
tt( debug pid = No)
bf(Example:)
tt( debug pid = Yes)
label(debuguid)
dit(bf(debug uid (G)))
Samba is sometimes run as root and sometime run as the connected
user, this boolean parameter inserts the current euid, egid, uid
and gid to the timestamp message headers in the log file if turned on.
Note that the parameter link(bf(debug timestamp))(debugtimestamp)
must be on for this to have an effect.
bf(Default:)
tt( debug uid = No)
bf(Example:)
tt( debug uid = Yes)
label(debuglevel)
dit(bf(debug level (G)))
The value of the parameter (an integer) allows the debug level
(logging level) to be specified in the bf(smb.conf) file. This is to
give greater flexibility in the configuration of the system.
The default will be the debug level specified on the command line
or level zero if none was specified.
bf(Example:)
tt( debug level = 3)
label(default)
dit(bf(default (G)))
A synonym for link(bf(default service))(defaultservice).
label(defaultcase)
dit(bf(default case (S)))
See the section on link(bf("NAME MANGLING"))(NAMEMANGLING). Also note
the link(bf("short preserve case"))(shortpreservecase) parameter.
label(defaultservice)
dit(bf(default service (G)))
This parameter specifies the name of a service which will be connected
to if the service actually requested cannot be found. Note that the
square brackets are em(NOT) given in the parameter value (see example
below).
There is no default value for this parameter. If this parameter is not
given, attempting to connect to a nonexistent service results in an
error.
Typically the default service would be a link(bf(guest ok))(guestok),
link(bf(read-only))(readonly) service.
Also note that the apparent service name will be changed to equal that
of the requested service, this is very useful as it allows you to use
macros like link(bf(%S))(percentS) to make a wildcard service.
Note also that any tt('_') characters in the name of the service used
in the default service will get mapped to a tt('/'). This allows for
interesting things.
bf(Example:)
verb(
default service = pub
[pub]
path = /%S
)
label(deleteuserscript)
dit(bf(delete user script (G)))
This is the full pathname to a script that will be run em(AS ROOT) by
url(bf(smbd (8)))(smbd.8.html) under special circumstances decribed
below.
Normally, a Samba server requires that UNIX users are created for all
users accessing files on this server. For sites that use Windows NT
account databases as their primary user database creating these users
and keeping the user list in sync with the Windows NT PDC is an
onerous task. This option allows url(bf(smbd))(smbd.8.html) to delete
the required UNIX users em(ON DEMAND) when a user accesses the Samba
server and the Windows NT user no longer exists.
In order to use this option, url(bf(smbd))(smbd.8.html) must be set to
link(bf(security=domain))(securityequaldomain) and bf("delete user
script") must be set to a full pathname for a script that will delete
a UNIX user given one argument of bf(%u), which expands into the UNIX
user name to delete. em(NOTE) that this is different to the
link(bf(add user script))(adduserscript) which will work with the
link(bf(security=server))(securityequalserver) option as well as
link(bf(security=domain))(securityequaldomain). The reason for this
is only when Samba is a domain member does it get the information
on an attempted user logon that a user no longer exists. In the
link(bf(security=server))(securityequalserver) mode a missing user
is treated the same as an invalid password logon attempt. Deleting
the user in this circumstance would not be a good idea.
When the Windows user attempts to access the Samba server, at
em("login")(session setup in the SMB protocol) time,
url(bf(smbd))(smbd.8.html) contacts the link(bf(password
server))(passwordserver) and attempts to authenticate the given user
with the given password. If the authentication fails with the specific
Domain error code meaning that the user no longer exists then
url(bf(smbd))(smbd.8.html) attempts to find a UNIX user in the UNIX
password database that matches the Windows user account. If this lookup succeeds,
and bf("delete user script") is set then url(bf(smbd))(smbd.8.html) will
call the specified script em(AS ROOT), expanding any bf(%u) argument
to be the user name to delete.
This script should delete the given UNIX username. In this way, UNIX
users are dynamically deleted to match existing Windows NT accounts.
See also link(bf(security=domain))(securityequaldomain),
link(bf(password server))(passwordserver), link(bf(add user
script))(adduserscript).
bf(Default:)
tt( delete user script = )
bf(Example:)
tt( delete user script = /usr/local/samba/bin/del_user %u)
label(deletereadonly)
dit(bf(delete readonly (S)))
This parameter allows readonly files to be deleted. This is not
normal DOS semantics, but is allowed by UNIX.
This option may be useful for running applications such as rcs, where
UNIX file ownership prevents changing file permissions, and DOS
semantics prevent deletion of a read only file.
bf(Default:)
tt( delete readonly = No)
bf(Example:)
tt( delete readonly = Yes)
label(deletevetofiles)
dit(bf(delete veto files (S)))
This option is used when Samba is attempting to delete a directory
that contains one or more vetoed directories (see the link(bf('veto
files'))(vetofiles) option). If this option is set to False (the
default) then if a vetoed directory contains any non-vetoed files or
directories then the directory delete will fail. This is usually what
you want.
If this option is set to True, then Samba will attempt to recursively
delete any files and directories within the vetoed directory. This can
be useful for integration with file serving systems such as bf(NetAtalk),
which create meta-files within directories you might normally veto
DOS/Windows users from seeing (e.g. tt(.AppleDouble))
Setting tt('delete veto files = True') allows these directories to be
transparently deleted when the parent directory is deleted (so long
as the user has permissions to do so).
See also the link(bf(veto files))(vetofiles) parameter.
bf(Default:)
tt( delete veto files = False)
bf(Example:)
tt( delete veto files = True)
label(denyhosts)
dit(bf(deny hosts (S)))
Synonym for link(bf(hosts deny))(hostsdeny).
label(dfreecommand)
dit(bf(dfree command (G)))
The dfree command setting should only be used on systems where a
problem occurs with the internal disk space calculations. This has
been known to happen with Ultrix, but may occur with other operating
systems. The symptom that was seen was an error of "Abort Retry
Ignore" at the end of each directory listing.
This setting allows the replacement of the internal routines to
calculate the total disk space and amount available with an external
routine. The example below gives a possible script that might fulfill
this function.
The external program will be passed a single parameter indicating a
directory in the filesystem being queried. This will typically consist
of the string tt("./"). The script should return two integers in
ascii. The first should be the total disk space in blocks, and the
second should be the number of available blocks. An optional third
return value can give the block size in bytes. The default blocksize
is 1024 bytes.
Note: Your script should em(NOT) be setuid or setgid and should be
owned by (and writeable only by) root!
bf(Default:)
tt( By default internal routines for determining the disk capacity
and remaining space will be used.)
bf(Example:)
tt( dfree command = /usr/local/samba/bin/dfree)
Where the script dfree (which must be made executable) could be:
verb(
#!/bin/sh
df $1 | tail -1 | awk '{print $2" "$4}'
)
or perhaps (on Sys V based systems):
verb(
#!/bin/sh
/usr/bin/df -k $1 | tail -1 | awk '{print $3" "$5}'
)
Note that you may have to replace the command names with full
path names on some systems.
label(directory)
dit(bf(directory (S)))
Synonym for link(bf(path))(path).
label(directorymask)
dit(bf(directory mask (S)))
This parameter is the octal modes which are used when converting DOS
modes to UNIX modes when creating UNIX directories.
When a directory is created, the necessary permissions are calculated
according to the mapping from DOS modes to UNIX permissions, and the
resulting UNIX mode is then bit-wise 'AND'ed with this parameter.
This parameter may be thought of as a bit-wise MASK for the UNIX modes
of a directory. Any bit em(*not*) set here will be removed from the
modes set on a directory when it is created.
The default value of this parameter removes the 'group' and 'other'
write bits from the UNIX mode, allowing only the user who owns the
directory to modify it.
Following this Samba will bit-wise 'OR' the UNIX mode created from
this parameter with the value of the "force directory mode"
parameter. This parameter is set to 000 by default (i.e. no extra mode
bits are added).
See the link(bf("force directory mode"))(forcedirectorymode) parameter
to cause particular mode bits to always be set on created directories.
See also the link(bf("create mode"))(createmode) parameter for masking
mode bits on created files, and the link(bf("directory security mask"))(directorysecuritymask)
parameter.
See also the link(bf("inherit permissions"))(inheritpermissions) parameter.
bf(Default:)
tt( directory mask = 0755)
bf(Example:)
tt( directory mask = 0775)
label(directorymode)
dit(bf(directory mode (S)))
Synonym for link(bf(directory mask))(directorymask).
label(directorysecuritymask)
dit(bf(directory security mask (S)))
This parameter controls what UNIX permission bits can be modified
when a Windows NT client is manipulating the UNIX permission on a
directory using the native NT security dialog box.
This parameter is applied as a mask (AND'ed with) to the changed
permission bits, thus preventing any bits not in this mask from
being modified. Essentially, zero bits in this mask may be treated
as a set of bits the user is not allowed to change.
If not set explicitly this parameter is set to the same value as the
link(bf(directory mask))(directorymask) parameter. To allow a user to
modify all the user/group/world permissions on a directory, set this
parameter to 0777.
em(Note) that users who can access the Samba server through other
means can easily bypass this restriction, so it is primarily
useful for standalone "appliance" systems. Administrators of
most normal systems will probably want to set it to 0777.
See also the link(bf(force directory security
mode))(forcedirectorysecuritymode), link(bf(security
mask))(securitymask), link(bf(force security mode))(forcesecuritymode)
parameters.
bf(Default:)
tt( directory security mask = )
bf(Example:)
tt( directory security mask = 0777)
label(dnsproxy)
dit(bf(dns proxy (G)))
Specifies that url(bf(nmbd))(nmbd.8.html) when acting as a WINS
server and finding that a NetBIOS name has not been registered, should
treat the NetBIOS name word-for-word as a DNS name and do a lookup
with the DNS server for that name on behalf of the name-querying
client.
Note that the maximum length for a NetBIOS name is 15 characters, so
the DNS name (or DNS alias) can likewise only be 15 characters,
maximum.
url(bf(nmbd))(nmbd.8.html) spawns a second copy of itself to do the
DNS name lookup requests, as doing a name lookup is a blocking action.
See also the parameter link(bf(wins support))(winssupport).
bf(Default:)
tt( dns proxy = yes)
label(domainadmingroup)
bf(domain admin group (G))
This is an bf(EXPERIMENTAL) parameter that is part of the unfinished
Samba NT Domain Controller Code. It may be removed in a later release.
To work with the latest code builds that may have more support for
Samba NT Domain Controller functionality please subscribe to the
mailing list bf(Samba-ntdom) available by visiting the web page at
url(http://lists.samba.org/)(http://lists.samba.org/)
label(domainadminusers)
dit(bf(domain admin users (G)))
This is an bf(EXPERIMENTAL) parameter that is part of the unfinished
Samba NT Domain Controller Code. It may be removed in a later release.
To work with the latest code builds that may have more support for
Samba NT Domain Controller functionality please subscribe to the
mailing list bf(Samba-ntdom) available by visiting the web page at
url(http://lists.samba.org/)(http://lists.samba.org/)
label(domaingroups)
dit(bf(domain groups (G)))
This is an bf(EXPERIMENTAL) parameter that is part of the unfinished
Samba NT Domain Controller Code. It may be removed in a later release.
To work with the latest code builds that may have more support for
Samba NT Domain Controller functionality please subscribe to the
mailing list bf(Samba-ntdom) available by visiting the web page at
url(http://lists.samba.org/)(http://lists.samba.org/)
label(domainguestgroup)
dit(bf(domain guest group (G)))
This is an bf(EXPERIMENTAL) parameter that is part of the unfinished
Samba NT Domain Controller Code. It may be removed in a later release.
To work with the latest code builds that may have more support for
Samba NT Domain Controller functionality please subscribe to the
mailing list bf(Samba-ntdom) available by visiting the web page at
url(http://lists.samba.org/)(http://lists.samba.org/)
label(domainguestusers)
dit(bf(domain guest users (G)))
This is an bf(EXPERIMENTAL) parameter that is part of the unfinished
Samba NT Domain Controller Code. It may be removed in a later release.
To work with the latest code builds that may have more support for
Samba NT Domain Controller functionality please subscribe to the
mailing list bf(Samba-ntdom) available by visiting the web page at
url(http://lists.samba.org/)(http://lists.samba.org/)
label(domainlogons)
dit(bf(domain logons (G)))
If set to true, the Samba server will serve Windows 95/98 Domain
logons for the link(bf(workgroup))(workgroup) it is in. For more
details on setting up this feature see the file DOMAINS.txt in the
Samba documentation directory tt(docs/) shipped with the source code.
Note that Win95/98 Domain logons are em(NOT) the same as Windows
NT Domain logons. NT Domain logons require a Primary Domain Controller
(PDC) for the Domain. It is intended that in a future release Samba
will be able to provide this functionality for Windows NT clients
also.
bf(Default:)
tt( domain logons = no)
label(domainmaster)
dit(bf(domain master (G)))
Tell url(bf(nmbd))(nmbd.8.html) to enable WAN-wide browse list
collation. Setting this option causes url(bf(nmbd))(nmbd.8.html) to
claim a special domain specific NetBIOS name that identifies it as a
domain master browser for its given
link(bf(workgroup))(workgroup). Local master browsers in the same
link(bf(workgroup))(workgroup) on broadcast-isolated subnets will give
this url(bf(nmbd))(nmbd.8.html) their local browse lists, and then
ask url(bf(smbd))(smbd.8.html) for a complete copy of the browse list
for the whole wide area network. Browser clients will then contact
their local master browser, and will receive the domain-wide browse
list, instead of just the list for their broadcast-isolated subnet.
Note that Windows NT Primary Domain Controllers expect to be able to
claim this link(bf(workgroup))(workgroup) specific special NetBIOS
name that identifies them as domain master browsers for that
link(bf(workgroup))(workgroup) by default (i.e. there is no way to
prevent a Windows NT PDC from attempting to do this). This means that
if this parameter is set and url(bf(nmbd))(nmbd.8.html) claims the
special name for a link(bf(workgroup))(workgroup) before a Windows NT
PDC is able to do so then cross subnet browsing will behave strangely
and may fail.
bf(Default:)
tt( domain master = no)
label(dont descend)
dit(bf(dont descend (S)))
There are certain directories on some systems (e.g., the tt(/proc) tree
under Linux) that are either not of interest to clients or are
infinitely deep (recursive). This parameter allows you to specify a
comma-delimited list of directories that the server should always show
as empty.
Note that Samba can be very fussy about the exact format of the "dont
descend" entries. For example you may need tt("./proc") instead of
just tt("/proc"). Experimentation is the best policy :-)
bf(Default:)
tt( none (i.e., all directories are OK to descend))
bf(Example:)
tt( dont descend = /proc,/dev)
label(dosfiletimeresolution)
dit(bf(dos filetime resolution (S)))
Under the DOS and Windows FAT filesystem, the finest granularity on
time resolution is two seconds. Setting this parameter for a share
causes Samba to round the reported time down to the nearest two second
boundary when a query call that requires one second resolution is made
to url(bf(smbd))(smbd.8.html).
This option is mainly used as a compatibility option for Visual C++
when used against Samba shares. If oplocks are enabled on a share,
Visual C++ uses two different time reading calls to check if a file
has changed since it was last read. One of these calls uses a
one-second granularity, the other uses a two second granularity. As
the two second call rounds any odd second down, then if the file has a
timestamp of an odd number of seconds then the two timestamps will not
match and Visual C++ will keep reporting the file has changed. Setting
this option causes the two timestamps to match, and Visual C++ is
happy.
bf(Default:)
tt( dos filetime resolution = False)
bf(Example:)
tt( dos filetime resolution = True)
label(dos filetimes)
dit(bf(dos filetimes (S)))
Under DOS and Windows, if a user can write to a file they can change
the timestamp on it. Under POSIX semantics, only the owner of the file
or root may change the timestamp. By default, Samba runs with POSIX
semantics and refuses to change the timestamp on a file if the user
smbd is acting on behalf of is not the file owner. Setting this option
to True allows DOS semantics and smbd will change the file timestamp as
DOS requires.
bf(Default:)
tt( dos filetimes = False)
bf(Example:)
tt( dos filetimes = True)
label(encryptpasswords)
dit(bf(encrypt passwords (G)))
This boolean controls whether encrypted passwords will be negotiated
with the client. Note that Windows NT 4.0 SP3 and above and also
Windows 98 will by default expect encrypted passwords unless a
registry entry is changed. To use encrypted passwords in Samba see the
file ENCRYPTION.txt in the Samba documentation directory tt(docs/)
shipped with the source code.
In order for encrypted passwords to work correctly
url(bf(smbd))(smbd.8.html) must either have access to a local
url(bf(smbpasswd (5)))(smbpasswd.5.html) file (see the
url(bf(smbpasswd (8)))(smbpasswd.8.html) program for information on
how to set up and maintain this file), or set the
link(bf(security=))(security) parameter to either
link(bf("server"))(securityequalserver) or
link(bf("domain"))(securityequaldomain) which causes
url(bf(smbd))(smbd.8.html) to authenticate against another server.
label(exec)
dit(bf(exec (S)))
This is a synonym for link(bf(preexec))(preexec).
label(fake directory create times)
dit(bf(fake directory create times (S)))
NTFS and Windows VFAT file systems keep a create time for all files
and directories. This is not the same as the ctime - status change
time - that Unix keeps, so Samba by default reports the earliest of
the various times Unix does keep. Setting this parameter for a share
causes Samba to always report midnight 1-1-1980 as the create time for
directories.
This option is mainly used as a compatibility option for Visual C++
when used against Samba shares. Visual C++ generated makefiles have
the object directory as a dependency for each object file, and a make
rule to create the directory. Also, when NMAKE compares timestamps it
uses the creation time when examining a directory. Thus the object
directory will be created if it does not exist, but once it does exist
it will always have an earlier timestamp than the object files it
contains.
However, Unix time semantics mean that the create time reported by
Samba will be updated whenever a file is created or deleted in the
directory. NMAKE therefore finds all object files in the object
directory bar the last one built are out of date compared to the
directory and rebuilds them. Enabling this option ensures directories
always predate their contents and an NMAKE build will proceed as
expected.
bf(Default:)
tt( fake directory create times = False)
bf(Example:)
tt( fake directory create times = True)
label(fakeoplocks)
dit(bf(fake oplocks (S)))
Oplocks are the way that SMB clients get permission from a server to
locally cache file operations. If a server grants an oplock
(opportunistic lock) then the client is free to assume that it is the
only one accessing the file and it will aggressively cache file
data. With some oplock types the client may even cache file open/close
operations. This can give enormous performance benefits.
When you set tt("fake oplocks = yes") url(bf(smbd))(smbd.8.html) will
always grant oplock requests no matter how many clients are using the
file.
It is generally much better to use the real link(bf(oplocks))(oplocks)
support rather than this parameter.
If you enable this option on all read-only shares or shares that you
know will only be accessed from one client at a time such as
physically read-only media like CDROMs, you will see a big performance
improvement on many operations. If you enable this option on shares
where multiple clients may be accessing the files read-write at the
same time you can get data corruption. Use this option carefully!
This option is disabled by default.
label(followsymlinks)
dit(bf(follow symlinks (S)))
This parameter allows the Samba administrator to stop
url(bf(smbd))(smbd.8.html) from following symbolic links in a
particular share. Setting this parameter to em("No") prevents any file
or directory that is a symbolic link from being followed (the user
will get an error). This option is very useful to stop users from
adding a symbolic link to tt(/etc/passwd) in their home directory for
instance. However it will slow filename lookups down slightly.
This option is enabled (i.e. url(bf(smbd))(smbd.8.html) will follow
symbolic links) by default.
label(forcecreatemode)
dit(bf(force create mode (S)))
This parameter specifies a set of UNIX mode bit permissions that will
em(*always*) be set on a file by Samba. This is done by bitwise
'OR'ing these bits onto the mode bits of a file that is being created
or having its permissions changed. The default for this parameter is
(in octal) 000. The modes in this parameter are bitwise 'OR'ed onto
the file mode after the mask set in the link(bf("create
mask"))(createmask) parameter is applied.
See also the parameter link(bf("create mask"))(createmask) for details
on masking mode bits on files.
See also the link(bf("inherit permissions"))(inheritpermissions) parameter.
bf(Default:)
tt( force create mode = 000)
bf(Example:)
tt( force create mode = 0755)
would force all created files to have read and execute permissions set
for 'group' and 'other' as well as the read/write/execute bits set for
the 'user'.
label(forcedirectorymode)
dit(bf(force directory mode (S)))
This parameter specifies a set of UNIX mode bit permissions that will
em(*always*) be set on a directory created by Samba. This is done by
bitwise 'OR'ing these bits onto the mode bits of a directory that is
being created. The default for this parameter is (in octal) 0000 which
will not add any extra permission bits to a created directory. This
operation is done after the mode mask in the parameter
link(bf("directory mask"))(directorymask) is applied.
See also the parameter link(bf("directory mask"))(directorymask) for
details on masking mode bits on created directories.
See also the link(bf("inherit permissions"))(inheritpermissions) parameter.
bf(Default:)
tt( force directory mode = 000)
bf(Example:)
tt( force directory mode = 0755)
would force all created directories to have read and execute
permissions set for 'group' and 'other' as well as the
read/write/execute bits set for the 'user'.
label(forcedirectorysecuritymode)
dit(bf(force directory security mode (S)))
This parameter controls what UNIX permission bits can be modified when
a Windows NT client is manipulating the UNIX permission on a directory
using the native NT security dialog box.
This parameter is applied as a mask (OR'ed with) to the changed
permission bits, thus forcing any bits in this mask that the user may
have modified to be on. Essentially, one bits in this mask may be
treated as a set of bits that, when modifying security on a directory,
the user has always set to be 'on'.
If not set explicitly this parameter is set to the same value as the
link(bf(force directory mode))(forcedirectorymode) parameter. To allow
a user to modify all the user/group/world permissions on a directory,
with restrictions set this parameter to 000.
em(Note) that users who can access the Samba server through other
means can easily bypass this restriction, so it is primarily
useful for standalone "appliance" systems. Administrators of
most normal systems will probably want to set it to 0000.
See also the link(bf(directory security mask))(directorysecuritymask),
link(bf(security mask))(securitymask), link(bf(force security
mode))(forcesecuritymode) parameters.
bf(Default:)
tt( force directory security mode = )
bf(Example:)
tt( force directory security mode = 0)
label(forcegroup)
dit(bf(force group (S)))
This specifies a UNIX group name that will be assigned as the default
primary group for all users connecting to this service. This is useful
for sharing files by ensuring that all access to files on service will
use the named group for their permissions checking. Thus, by assigning
permissions for this group to the files and directories within this
service the Samba administrator can restrict or allow sharing of these
files.
In Samba 2.0.5 and above this parameter has extended functionality in the following
way. If the group name listed here has a '+' character prepended to it
then the current user accessing the share only has the primary group
default assigned to this group if they are already assigned as a member
of that group. This allows an administrator to decide that only users
who are already in a particular group will create files with group
ownership set to that group. This gives a finer granularity of ownership
assignment. For example, the setting tt(force group = +sys) means
that only users who are already in group sys will have their default
primary group assigned to sys when accessing this Samba share. All
other users will retain their ordinary primary group.
If the link(bf("force user"))(forceuser) parameter is also set the
group specified in bf(force group) will override the primary group
set in link(bf("force user"))(forceuser).
See also link(bf("force user"))(forceuser)
bf(Default:)
tt( no forced group)
bf(Example:)
tt( force group = agroup)
label(forcesecuritymode)
dit(bf(force security mode (S)))
This parameter controls what UNIX permission bits can be modified when
a Windows NT client is manipulating the UNIX permission on a file
using the native NT security dialog box.
This parameter is applied as a mask (OR'ed with) to the changed
permission bits, thus forcing any bits in this mask that the user may
have modified to be on. Essentially, one bits in this mask may be
treated as a set of bits that, when modifying security on a file, the
user has always set to be 'on'.
If not set explicitly this parameter is set to the same value as the
link(bf(force create mode))(forcecreatemode) parameter. To allow
a user to modify all the user/group/world permissions on a file,
with no restrictions set this parameter to 000.
em(Note) that users who can access the Samba server through other
means can easily bypass this restriction, so it is primarily
useful for standalone "appliance" systems. Administrators of
most normal systems will probably want to set it to 0000.
See also the link(bf(force directory security
mode))(forcedirectorysecuritymode), link(bf(directory security
mask))(directorysecuritymask), link(bf(security mask))(securitymask)
parameters.
bf(Default:)
tt( force security mode = )
bf(Example:)
tt( force security mode = 0)
label(forceuser)
dit(bf(force user (S)))
This specifies a UNIX user name that will be assigned as the default
user for all users connecting to this service. This is useful for
sharing files. You should also use it carefully as using it
incorrectly can cause security problems.
This user name only gets used once a connection is established. Thus
clients still need to connect as a valid user and supply a valid
password. Once connected, all file operations will be performed as the
tt("forced user"), no matter what username the client connected as.
This can be very useful.
In Samba 2.0.5 and above this parameter also causes the primary
group of the forced user to be used as the primary group for all
file activity. Prior to 2.0.5 the primary group was left as the
primary group of the connecting user (this was a bug).
See also link(bf("force group"))(forcegroup)
bf(Default:)
tt( no forced user)
bf(Example:)
tt( force user = auser)
label(fstype)
dit(bf(fstype (S)))
This parameter allows the administrator to configure the string that
specifies the type of filesystem a share is using that is reported by
url(bf(smbd))(smbd.8.html) when a client queries the filesystem type
for a share. The default type is bf("NTFS") for compatibility with
Windows NT but this can be changed to other strings such as "Samba" or
"FAT" if required.
bf(Default:)
tt( fstype = NTFS)
bf(Example:)
tt( fstype = Samba)
label(getwdcache)
dit(bf(getwd cache (G)))
This is a tuning option. When this is enabled a caching algorithm
will be used to reduce the time taken for getwd() calls. This can have
a significant impact on performance, especially when the
link(bf(widelinks))(widelinks) parameter is set to False.
bf(Default:)
tt( getwd cache = No)
bf(Example:)
tt( getwd cache = Yes)
label(group)
dit(bf(group (S)))
Synonym for link(bf("force group"))(forcegroup).
label(guestaccount)
dit(bf(guest account (S)))
This is a username which will be used for access to services which are
specified as link(bf('guest ok'))(guestok) (see below). Whatever
privileges this user has will be available to any client connecting to
the guest service. Typically this user will exist in the password
file, but will not have a valid login. The user account bf("ftp") is
often a good choice for this parameter. If a username is specified in
a given service, the specified username overrides this one.
One some systems the default guest account "nobody" may not be able to
print. Use another account in this case. You should test this by
trying to log in as your guest user (perhaps by using the tt("su -")
command) and trying to print using the system print command such as
bf(lpr (1)) or bf(lp (1)).
bf(Default:)
tt( specified at compile time, usually "nobody")
bf(Example:)
tt( guest account = ftp)
label(guestok)
dit(bf(guest ok (S)))
If this parameter is em('yes') for a service, then no password is
required to connect to the service. Privileges will be those of the
link(bf(guest account))(guestaccount).
See the section below on link(bf(security))(security) for more
information about this option.
bf(Default:)
tt( guest ok = no)
bf(Example:)
tt( guest ok = yes)
label(guestonly)
dit(bf(guest only (S)))
If this parameter is em('yes') for a service, then only guest
connections to the service are permitted. This parameter will have no
affect if link(bf("guest ok"))(guestok) or link(bf("public"))(public)
is not set for the service.
See the section below on link(bf(security))(security) for more
information about this option.
bf(Default:)
tt( guest only = no)
bf(Example:)
tt( guest only = yes)
label(hidedotfiles)
dit(bf(hide dot files (S)))
This is a boolean parameter that controls whether files starting with
a dot appear as hidden files.
bf(Default:)
tt( hide dot files = yes)
bf(Example:)
tt( hide dot files = no)
label(hidefiles)
dit(bf(hide files(S)))
This is a list of files or directories that are not visible but are
accessible. The DOS 'hidden' attribute is applied to any files or
directories that match.
Each entry in the list must be separated by a tt('/'), which allows
spaces to be included in the entry. tt('*') and tt('?') can be used
to specify multiple files or directories as in DOS wildcards.
Each entry must be a Unix path, not a DOS path and must not include the
Unix directory separator tt('/').
Note that the case sensitivity option is applicable in hiding files.
Setting this parameter will affect the performance of Samba, as it
will be forced to check all files and directories for a match as they
are scanned.
See also link(bf("hide dot files"))(hidedotfiles), link(bf("veto
files"))(vetofiles) and link(bf("case sensitive"))(casesensitive).
bf(Default)
verb(
No files or directories are hidden by this option (dot files are
hidden by default because of the "hide dot files" option).
)
bf(Example)
tt( hide files = /.*/DesktopFolderDB/TrashFor%m/resource.frk/)
The above example is based on files that the Macintosh SMB client
(DAVE) available from url(bf(Thursby))(http://www.thursby.com) creates for
internal use, and also still hides all files beginning with a dot.
label(hidelocalusers)
dit(bf(hide local users(G)))
This parameter toggles the hiding of local UNIX users (root, wheel, floppy, etc)
from remote clients.
bf(Default:)
tt( hide local users = No)
bf(Example:)
tt( hide local users = Yes)
label(homedirmap)
dit(bf(homedir map (G)))
If link(bf("nis homedir"))(nishomedir) is true, and
url(bf(smbd))(smbd.8.html) is also acting as a Win95/98 link(bf(logon
server))(domainlogons) then this parameter specifies the NIS (or YP)
map from which the server for the user's home directory should be
extracted. At present, only the Sun auto.home map format is
understood. The form of the map is:
tt(username server:/some/file/system)
and the program will extract the servername from before the first
tt(':'). There should probably be a better parsing system that copes
with different map formats and also Amd (another automounter) maps.
NB: A working NIS is required on the system for this option to work.
See also link(bf("nis homedir"))(nishomedir), link(bf(domain
logons))(domainlogons).
bf(Default:)
tt( homedir map = auto.home)
bf(Example:)
tt( homedir map = amd.homedir)
label(hostsallow)
dit(bf(hosts allow (S)))
A synonym for this parameter is link(bf('allow hosts'))(allowhosts)
This parameter is a comma, space, or tab delimited set of hosts which
are permitted to access a service.
If specified in the link(bf([global]))(global) section then it will
apply to all services, regardless of whether the individual service
has a different setting.
You can specify the hosts by name or IP number. For example, you could
restrict access to only the hosts on a Class C subnet with something
like tt("allow hosts = 150.203.5."). The full syntax of the list is
described in the man page bf(hosts_access (5)). Note that this man
page may not be present on your system, so a brief description will
be given here also.
Note that the localhost address 127.0.0.1 will always be allowed
access unless specifically denied by a "hosts deny" option.
You can also specify hosts by network/netmask pairs and by netgroup
names if your system supports netgroups. The em(EXCEPT) keyword can also
be used to limit a wildcard list. The following examples may provide
some help:
bf(Example 1): allow all IPs in 150.203.*.* except one
tt( hosts allow = 150.203. EXCEPT 150.203.6.66)
bf(Example 2): allow hosts that match the given network/netmask
tt( hosts allow = 150.203.15.0/255.255.255.0)
bf(Example 3): allow a couple of hosts
tt( hosts allow = lapland, arvidsjaur)
bf(Example 4): allow only hosts in NIS netgroup "foonet", but
deny access from one particular host
tt( hosts allow = @foonet)
tt( hosts deny = pirate)
Note that access still requires suitable user-level passwords.
See url(bf(testparm (1)))(testparm.1.html) for a way of testing your
host access to see if it does what you expect.
bf(Default:)
tt( none (i.e., all hosts permitted access))
bf(Example:)
tt( allow hosts = 150.203.5. myhost.mynet.edu.au)
label(hostsdeny)
dit(bf(hosts deny (S)))
The opposite of link(bf('hosts allow'))(hostsallow) - hosts listed
here are em(NOT) permitted access to services unless the specific
services have their own lists to override this one. Where the lists
conflict, the link(bf('allow'))(hostsallow) list takes precedence.
bf(Default:)
tt( none (i.e., no hosts specifically excluded))
bf(Example:)
tt( hosts deny = 150.203.4. badhost.mynet.edu.au)
label(hostsequiv)
dit(bf(hosts equiv (G)))
If this global parameter is a non-null string, it specifies the name
of a file to read for the names of hosts and users who will be allowed
access without specifying a password.
This is not be confused with link(bf(hosts allow))(hostsallow) which
is about hosts access to services and is more useful for guest
services. bf(hosts equiv) may be useful for NT clients which will not
supply passwords to samba.
NOTE: The use of bf(hosts equiv) can be a major security hole. This is
because you are trusting the PC to supply the correct username. It is
very easy to get a PC to supply a false username. I recommend that the
bf(hosts equiv) option be only used if you really know what you are
doing, or perhaps on a home network where you trust your spouse and
kids. And only if you em(really) trust them :-).
bf(Default)
tt( No host equivalences)
bf(Example)
tt( hosts equiv = /etc/hosts.equiv)
label(include)
dit(bf(include (G)))
This allows you to include one config file inside another. The file
is included literally, as though typed in place.
It takes the standard substitutions, except link(bf(%u))(percentu),
link(bf(%P))(percentP) and link(bf(%S))(percentS).
label(inheritpermissions)
dit(bf(inherit permissions (S)))
The permissions on new files and directories are normally governed by
link(bf("create mask"))(createmask),
link(bf("directory mask"))(directorymask),
link(bf("force create mode"))(forcecreatemode) and
link(bf("force directory mode"))(forcedirectorymode)
but the boolean inherit permissions parameter overrides this.
New directories inherit the mode of the parent directory,
including bits such as setgid.
New files inherit their read/write bits from the parent directory.
Their execute bits continue to be determined by
link(bf("map archive"))(maparchive),
link(bf("map hidden"))(maphidden) and
link(bf("map system"))(mapsystem) as usual.
Note that the setuid bit is *never* set via inheritance
(the code explicitly prohibits this).
This can be particularly useful on large systems with many users,
perhaps several thousand,
to allow a single bf([homes]) share to be used flexibly by each user.
See also link(bf("create mask"))(createmask), link(bf("directory mask"))(directorymask),
link(bf("force create mode"))(forcecreatemode) and
link(bf("force directory mode"))(forcedirectorymode).
bf(Default)
tt( inherit permissions = no)
bf(Example)
tt( inherit permissions = yes)
label(interfaces)
dit(bf(interfaces (G)))
This option allows you to override the default network interfaces list
that Samba will use for browsing, name registration and other NBT
traffic. By default Samba will query the kernel for the list of all
active interfaces and use any interfaces except 127.0.0.1 that are
broadcast capable.
The option takes a list of interface strings. Each string can be in
any of the following forms:
startit()
it() a network interface name (such as eth0). This may include
shell-like wildcards so eth* will match any interface starting
with the substring "eth"
it() an IP address. In this case the netmask is determined
from the list of interfaces obtained from the kernel
it() an IP/mask pair.
it() a broadcast/mask pair.
endit()
The "mask" parameters can either be a bit length (such as 24 for a C
class network) or a full netmask in dotted decmal form.
The "IP" parameters above can either be a full dotted decimal IP
address or a hostname which will be looked up via the OSes normal
hostname resolution mechanisms.
For example, the following line:
tt(interfaces = eth0 192.168.2.10/24 192.168.3.10/255.255.255.0)
would configure three network interfaces corresponding to the eth0
device and IP addresses 192.168.2.10 and 192.168.3.10. The netmasks of
the latter two interfaces would be set to 255.255.255.0.
See also link(bf("bind interfaces only"))(bindinterfacesonly).
label(invalidusers)
dit(bf(invalid users (S)))
This is a list of users that should not be allowed to login to this
service. This is really a em("paranoid") check to absolutely ensure an
improper setting does not breach your security.
A name starting with a tt('@') is interpreted as an NIS netgroup first
(if your system supports NIS), and then as a UNIX group if the name
was not found in the NIS netgroup database.
A name starting with tt('+') is interpreted only by looking in the
UNIX group database. A name starting with tt('&') is interpreted only
by looking in the NIS netgroup database (this requires NIS to be
working on your system). The characters tt('+') and tt('&') may be
used at the start of the name in either order so the value
tt("+&group") means check the UNIX group database, followed by the NIS
netgroup database, and the value tt("&+group") means check the NIS
netgroup database, followed by the UNIX group database (the same as
the tt('@') prefix).
The current servicename is substituted for
link(bf(%S))(percentS). This is useful in the link(bf([homes]))(homes)
section.
See also link(bf("valid users"))(validusers).
bf(Default:)
tt( No invalid users)
bf(Example:)
tt( invalid users = root fred admin @wheel)
label(keepalive)
dit(bf(keepalive (G)))
The value of the parameter (an integer) represents the number of
seconds between bf('keepalive') packets. If this parameter is zero, no
keepalive packets will be sent. Keepalive packets, if sent, allow the
server to tell whether a client is still present and responding.
Keepalives should, in general, not be needed if the socket being used
has the SO_KEEPALIVE attribute set on it (see link(bf("socket
options"))(socketoptions)). Basically you should only use this option
if you strike difficulties.
bf(Default:)
tt( keepalive = 0)
bf(Example:)
tt( keepalive = 60)
label(kerneloplocks)
dit(bf(kernel oplocks (G)))
For UNIXs that support kernel based link(bf(oplocks))(oplocks)
(currently only IRIX but hopefully also Linux and FreeBSD soon) this
parameter allows the use of them to be turned on or off.
Kernel oplocks support allows Samba link(bf(oplocks))(oplocks) to be
broken whenever a local UNIX process or NFS operation accesses a file
that url(bf(smbd))(smbd.8.html) has oplocked. This allows complete
data consistency between SMB/CIFS, NFS and local file access (and is a
em(very) cool feature :-).
This parameter defaults to em("On") on systems that have the support,
and em("off") on systems that don't. You should never need to touch
this parameter.
See also the link(bf("oplocks"))(oplocks) and link(bf("level2 oplocks"))(level2oplocks)
parameters.
label(ldapfilter)
dit(bf(ldap filter (G)))
This parameter is part of the em(EXPERIMENTAL) Samba support for a
password database stored on an LDAP server back-end. These options
are only available if your version of Samba was configured with
the bf(--with-ldap) option.
This parameter specifies an LDAP search filter used to search for a
user name in the LDAP database. It must contain the string
link(bf(%u))(percentU) which will be replaced with the user being
searched for.
bf(Default:)
tt( empty string.)
label(ldapport)
dit(bf(ldap port (G)))
This parameter is part of the em(EXPERIMENTAL) Samba support for a
password database stored on an LDAP server back-end. These options
are only available if your version of Samba was configured with
the bf(--with-ldap) option.
This parameter specifies the TCP port number to use to contact
the LDAP server on.
bf(Default:)
tt( ldap port = 389.)
label(ldaproot)
dit(bf(ldap root (G)))
This parameter is part of the em(EXPERIMENTAL) Samba support for a
password database stored on an LDAP server back-end. These options
are only available if your version of Samba was configured with
the bf(--with-ldap) option.
This parameter specifies the entity to bind to the LDAP server
as (essentially the LDAP username) in order to be able to perform
queries and modifications on the LDAP database.
See also link(bf(ldap root passwd))(ldaprootpasswd).
bf(Default:)
tt( empty string (no user defined))
label(ldaprootpasswd)
dit(bf(ldap root passwd (G)))
This parameter is part of the em(EXPERIMENTAL) Samba support for a
password database stored on an LDAP server back-end. These options
are only available if your version of Samba was configured with
the bf(--with-ldap) option.
This parameter specifies the password for the entity to bind to the
LDAP server as (the password for this LDAP username) in order to be
able to perform queries and modifications on the LDAP database.
em(BUGS:) This parameter should em(NOT) be a readable parameter
in the bf(smb.conf) file and will be removed once a correct
storage place is found.
See also link(bf(ldap root))(ldaproot).
bf(Default:)
tt( empty string.)
label(ldapserver)
dit(bf(ldap server (G)))
This parameter is part of the em(EXPERIMENTAL) Samba support for a
password database stored on an LDAP server back-end. These options
are only available if your version of Samba was configured with
the bf(--with-ldap) option.
This parameter specifies the DNS name of the LDAP server to use
for SMB/CIFS authentication purposes.
bf(Default:)
tt( ldap server = localhost)
label(ldapsuffix)
dit(bf(ldap suffix (G)))
This parameter is part of the em(EXPERIMENTAL) Samba support for a
password database stored on an LDAP server back-end. These options
are only available if your version of Samba was configured with
the bf(--with-ldap) option.
This parameter specifies the tt("dn") or LDAP em("distinguished name")
that tells url(bf(smbd))(smbd.8.html) to start from when searching
for an entry in the LDAP password database.
bf(Default:)
tt( empty string.)
label(level2oplocks)
dit(bf(level2 oplocks (S)))
This parameter (new in Samba 2.0.5) controls whether Samba supports
level2 (read-only) oplocks on a share. In Samba 2.0.5 this parameter
defaults to "False" as the code is new, but will default to "True"
in a later release.
Level2, or read-only oplocks allow Windows NT clients that have an
oplock on a file to downgrade from a read-write oplock to a read-only
oplock once a second client opens the file (instead of releasing all
oplocks on a second open, as in traditional, exclusive oplocks). This
allows all openers of the file that support level2 oplocks to cache
the file for read-ahead only (ie. they may not cache writes or lock
requests) and increases performance for many acesses of files that
are not commonly written (such as application .EXE files).
Once one of the clients which have a read-only oplock writes to
the file all clients are notified (no reply is needed or waited
for) and told to break their oplocks to "none" and delete any
read-ahead caches.
It is recommended that this parameter be turned on to speed access
to shared executables (and also to test the code :-).
For more discussions on level2 oplocks see the CIFS spec.
Currently, if link(bf("kernel oplocks"))(kerneloplocks) are supported
then level2 oplocks are not granted (even if this parameter is set
to tt("true")). Note also, the link(bf("oplocks"))(oplocks) parameter must
be set to "true" on this share in order for this parameter to have any
effect.
See also the link(bf("oplocks"))(oplocks) and link(bf("kernel oplocks"))(kerneloplocks) parameters.
bf(Default:)
tt( level2 oplocks = False)
bf(Example:)
tt( level2 oplocks = True)
label(lmannounce)
dit(bf(lm announce (G)))
This parameter determines if url(bf(nmbd))(nmbd.8.html) will produce
Lanman announce broadcasts that are needed by bf(OS/2) clients in order
for them to see the Samba server in their browse list. This parameter
can have three values, tt("true"), tt("false"), or tt("auto"). The
default is tt("auto"). If set to tt("false") Samba will never produce
these broadcasts. If set to tt("true") Samba will produce Lanman
announce broadcasts at a frequency set by the parameter link(bf("lm
interval"))(lminterval). If set to tt("auto") Samba will not send Lanman
announce broadcasts by default but will listen for them. If it hears
such a broadcast on the wire it will then start sending them at a
frequency set by the parameter link(bf("lm interval"))(lminterval).
See also link(bf("lm interval"))(lminterval).
bf(Default:)
tt( lm announce = auto)
bf(Example:)
tt( lm announce = true)
label(lminterval)
dit(bf(lm interval (G)))
If Samba is set to produce Lanman announce broadcasts needed by
bf(OS/2) clients (see the link(bf("lm announce"))(lmannounce)
parameter) then this parameter defines the frequency in seconds with
which they will be made. If this is set to zero then no Lanman
announcements will be made despite the setting of the link(bf("lm
announce"))(lmannounce) parameter.
See also link(bf("lm announce"))(lmannounce).
bf(Default:)
tt( lm interval = 60)
bf(Example:)
tt( lm interval = 120)
label(loadprinters)
dit(bf(load printers (G)))
A boolean variable that controls whether all printers in the printcap
will be loaded for browsing by default. See the
link(bf("printers"))(printers) section for more details.
bf(Default:)
tt( load printers = yes)
bf(Example:)
tt( load printers = no)
label(localmaster)
dit(bf(local master (G)))
This option allows url(bf(nmbd))(nmbd.8.html) to try and become a
local master browser on a subnet. If set to False then
url(bf(nmbd))(nmbd.8.html) will not attempt to become a local master
browser on a subnet and will also lose in all browsing elections. By
default this value is set to true. Setting this value to true doesn't
mean that Samba will em(become) the local master browser on a subnet,
just that url(bf(nmbd))(nmbd.8.html) will em(participate) in
elections for local master browser.
Setting this value to False will cause url(bf(nmbd))(nmbd.8.html)
em(never) to become a local master browser.
bf(Default:)
tt( local master = yes)
label(lock dir)
dit(bf(lock dir (G)))
Synonym for link(bf("lock directory"))(lockdirectory).
label(lockdirectory)
dit(bf(lock directory (G)))
This option specifies the directory where lock files will be placed.
The lock files are used to implement the link(bf("max
connections"))(maxconnections) option.
bf(Default:)
tt( lock directory = /tmp/samba)
bf(Example:)
tt( lock directory = /usr/local/samba/var/locks)
label(locking)
dit(bf(locking (S)))
This controls whether or not locking will be performed by the server
in response to lock requests from the client.
If tt("locking = no"), all lock and unlock requests will appear to
succeed and all lock queries will indicate that the queried lock is
clear.
If tt("locking = yes"), real locking will be performed by the server.
This option em(may) be useful for read-only filesystems which em(may)
not need locking (such as cdrom drives), although setting this
parameter of tt("no") is not really recommended even in this case.
Be careful about disabling locking either globally or in a specific
service, as lack of locking may result in data corruption. You should
never need to set this parameter.
bf(Default:)
tt( locking = yes)
bf(Example:)
tt( locking = no)
label(logfile)
dit(bf(log file (G)))
This options allows you to override the name of the Samba log file
(also known as the debug file).
This option takes the standard substitutions, allowing you to have
separate log files for each user or machine.
bf(Example:)
tt( log file = /usr/local/samba/var/log.%m)
label(loglevel)
dit(bf(log level (G)))
Synonym for link(bf("debug level"))(debuglevel).
label(logondrive)
dit(bf(logon drive (G)))
This parameter specifies the local path to which the home directory
will be connected (see link(bf("logon home"))(logonhome)) and is only
used by NT Workstations.
Note that this option is only useful if Samba is set up as a
link(bf(logon server))(domainlogons).
bf(Example:)
tt( logon drive = h:)
label(logonhome)
dit(bf(logon home (G)))
This parameter specifies the home directory location when a Win95/98 or
NT Workstation logs into a Samba PDC. It allows you to do
tt("NET USE H: /HOME")
from a command prompt, for example.
This option takes the standard substitutions, allowing you to have
separate logon scripts for each user or machine.
This parameter can be used with Win9X workstations to ensure that
roaming profiles are stored in a subdirectory of the user's home
directory. This is done in the following way:
tt(" logon home = \\%L\%U\profile")
This tells Samba to return the above string, with substitutions made
when a client requests the info, generally in a NetUserGetInfo request.
Win9X clients truncate the info to \\server\share when a user does tt("net use /home"),
but use the whole string when dealing with profiles.
Note that in prior versions of Samba, the tt("logon path") was returned rather than
tt("logon home"). This broke tt("net use /home") but allowed profiles outside the
home directory. The current implementation is correct, and can be used for profiles
if you use the above trick.
Note that this option is only useful if Samba is set up as a
link(bf(logon server))(domainlogons).
bf(Example:)
tt( logon home = "\\remote_smb_server\%U")
bf(Default:)
tt( logon home = "\\%N\%U")
label(logonpath)
dit(bf(logon path (G)))
This parameter specifies the home directory where roaming profiles
(NTuser.dat etc files for Windows NT) are stored. Contrary to previous
versions of these manual pages, it has nothing to do with Win 9X roaming
profiles. To find out how to handle roaming profiles for Win 9X system, see
the tt("logon home") parameter.
This option takes the standard substitutions, allowing you to have
separate logon scripts for each user or machine. It also specifies
the directory from which the tt("application data"), (tt("desktop"), tt("start menu"),
tt("network neighborhood"), tt("programs") and other folders, and their
contents, are loaded and displayed on your Windows NT client.
The share and the path must be readable by the user for the
preferences and directories to be loaded onto the Windows NT
client. The share must be writeable when the logs in for the first
time, in order that the Windows NT client can create the NTuser.dat
and other directories.
Thereafter, the directories and any of the contents can, if required, be
made read-only. It is not advisable that the NTuser.dat file be made
read-only - rename it to NTuser.man to achieve the desired effect (a
em(MAN)datory profile).
Windows clients can sometimes maintain a connection to the [homes]
share, even though there is no user logged in. Therefore, it is vital
that the logon path does not include a reference to the homes share
(i.e. setting this parameter to tt(\\%N\HOMES\profile_path) will cause
problems).
This option takes the standard substitutions, allowing you to have
separate logon scripts for each user or machine.
Note that this option is only useful if Samba is set up as a
link(bf(logon server))(domainlogons).
bf(Default:)
tt( logon path = \\%N\%U\profile)
bf(Example:)
tt( logon path = \\PROFILESERVER\HOME_DIR\%U\PROFILE)
label(logonscript)
dit(bf(logon script (G)))
This parameter specifies the batch file (.bat) or NT command file
(.cmd) to be downloaded and run on a machine when a user successfully
logs in. The file must contain the DOS style cr/lf line endings.
Using a DOS-style editor to create the file is recommended.
The script must be a relative path to the tt([netlogon]) service. If
the tt([netlogon]) service specifies a link(bf(path))(path) of
/usr/local/samba/netlogon, and logon script = STARTUP.BAT, then the
file that will be downloaded is:
tt(/usr/local/samba/netlogon/STARTUP.BAT)
The contents of the batch file is entirely your choice. A suggested
command would be to add tt(NET TIME \\SERVER /SET /YES), to force every
machine to synchronize clocks with the same time server. Another use
would be to add tt(NET USE U: \\SERVER\UTILS) for commonly used
utilities, or tt(NET USE Q: \\SERVER\ISO9001_QA) for example.
Note that it is particularly important not to allow write access to
the tt([netlogon]) share, or to grant users write permission on the
batch files in a secure environment, as this would allow the batch
files to be arbitrarily modified and security to be breached.
This option takes the standard substitutions, allowing you to have
separate logon scripts for each user or machine.
Note that this option is only useful if Samba is set up as a
link(bf(logon server))(domainlogons).
bf(Example:)
tt( logon script = scripts\%U.bat)
label(lppausecommand)
dit(bf(lppause command (S)))
This parameter specifies the command to be executed on the server host
in order to stop printing or spooling a specific print job.
This command should be a program or script which takes a printer name
and job number to pause the print job. One way of implementing this is
by using job priorities, where jobs having a too low priority won't be
sent to the printer.
If a tt("%p") is given then the printername is put in its place. A
tt("%j") is replaced with the job number (an integer). On HPUX (see
link(bf(printing=hpux))(printing)), if the tt("-p%p") option is added
to the lpq command, the job will show up with the correct status,
i.e. if the job priority is lower than the set fence priority it will
have the PAUSED status, whereas if the priority is equal or higher it
will have the SPOOLED or PRINTING status.
Note that it is good practice to include the absolute path in the
lppause command as the PATH may not be available to the server.
See also the link(bf("printing"))(printing) parameter.
bf(Default:)
Currently no default value is given to this string, unless the
value of the link(bf("printing"))(printing) parameter is tt(SYSV), in
which case the default is :
tt( lp -i %p-%j -H hold)
or if the value of the link(bf("printing"))(printing) parameter is tt(softq),
then the default is:
tt( qstat -s -j%j -h)
bf(Example for HPUX:)
lppause command = /usr/bin/lpalt %p-%j -p0
label(lpqcachetime)
dit(bf(lpq cache time (G)))
This controls how long lpq info will be cached for to prevent the
bf(lpq) command being called too often. A separate cache is kept for
each variation of the bf(lpq) command used by the system, so if you
use different bf(lpq) commands for different users then they won't
share cache information.
The cache files are stored in tt(/tmp/lpq.xxxx) where xxxx is a hash of
the bf(lpq) command in use.
The default is 10 seconds, meaning that the cached results of a
previous identical bf(lpq) command will be used if the cached data is
less than 10 seconds old. A large value may be advisable if your
bf(lpq) command is very slow.
A value of 0 will disable caching completely.
See also the link(bf("printing"))(printing) parameter.
bf(Default:)
tt( lpq cache time = 10)
bf(Example:)
tt( lpq cache time = 30)
label(lpqcommand)
dit(bf(lpq command (S)))
This parameter specifies the command to be executed on the server host
in order to obtain tt("lpq")-style printer status information.
This command should be a program or script which takes a printer name
as its only parameter and outputs printer status information.
Currently eight styles of printer status information are supported;
BSD, AIX, LPRNG, PLP, SYSV, HPUX, QNX and SOFTQ. This covers most UNIX
systems. You control which type is expected using the
link(bf("printing ="))(printing) option.
Some clients (notably Windows for Workgroups) may not correctly send
the connection number for the printer they are requesting status
information about. To get around this, the server reports on the first
printer service connected to by the client. This only happens if the
connection number sent is invalid.
If a tt(%p) is given then the printername is put in its place. Otherwise
it is placed at the end of the command.
Note that it is good practice to include the absolute path in the bf(lpq
command) as the PATH may not be available to the server.
See also the link(bf("printing"))(printing) parameter.
bf(Default:)
tt( depends on the setting of printing =)
bf(Example:)
tt( lpq command = /usr/bin/lpq %p)
label(lpresumecommand)
dit(bf(lpresume command (S)))
This parameter specifies the command to be executed on the server host
in order to restart or continue printing or spooling a specific print
job.
This command should be a program or script which takes a printer name
and job number to resume the print job. See also the link(bf("lppause
command"))(lppausecommand) parameter.
If a tt(%p) is given then the printername is put in its place. A
tt(%j) is replaced with the job number (an integer).
Note that it is good practice to include the absolute path in the bf(lpresume
command) as the PATH may not be available to the server.
See also the link(bf("printing"))(printing) parameter.
bf(Default:)
Currently no default value is given to this string, unless the
value of the link(bf("printing"))(printing) parameter is tt(SYSV), in
which case the default is :
tt( lp -i %p-%j -H resume)
or if the value of the link(bf("printing"))(printing) parameter is tt(softq),
then the default is:
tt( qstat -s -j%j -r)
bf(Example for HPUX:)
tt( lpresume command = /usr/bin/lpalt %p-%j -p2)
label(lprmcommand)
dit(bf(lprm command (S)))
This parameter specifies the command to be executed on the server host
in order to delete a print job.
This command should be a program or script which takes a printer name
and job number, and deletes the print job.
If a tt(%p) is given then the printername is put in its place. A
tt(%j) is replaced with the job number (an integer).
Note that it is good practice to include the absolute path in the
bf(lprm command) as the PATH may not be available to the server.
See also the link(bf("printing"))(printing) parameter.
bf(Default:)
tt( depends on the setting of "printing =")
bf(Example 1:)
tt( lprm command = /usr/bin/lprm -P%p %j)
bf(Example 2:)
tt( lprm command = /usr/bin/cancel %p-%j)
label(machinepasswordtimeout)
dit(bf(machine password timeout (G)))
If a Samba server is a member of an Windows NT Domain (see the
link(bf("security=domain"))(securityequaldomain)) parameter) then
periodically a running url(bf(smbd))(smbd.8.html) process will try and
change the bf(MACHINE ACCOUNT PASWORD) stored in the file called
tt(..mac) where tt() is the name of the
Domain we are a member of and tt() is the primary
link(bf("NetBIOS name"))(netbiosname) of the machine
url(bf(smbd))(smbd.8.html) is running on. This parameter specifies how
often this password will be changed, in seconds. The default is one
week (expressed in seconds), the same as a Windows NT Domain member
server.
See also url(bf(smbpasswd (8)))(smbpasswd.8.html), and the
link(bf("security=domain"))(securityequaldomain)) parameter.
bf(Default:)
tt( machine password timeout = 604800)
label(magicoutput)
dit(bf(magic output (S)))
This parameter specifies the name of a file which will contain output
created by a magic script (see the link(bf("magic
script"))(magicscript) parameter below).
Warning: If two clients use the same link(bf("magic
script"))(magicscript) in the same directory the output file content
is undefined.
bf(Default:)
tt( magic output = .out)
bf(Example:)
tt( magic output = myfile.txt)
label(magicscript)
dit(bf(magic script (S)))
This parameter specifies the name of a file which, if opened, will be
executed by the server when the file is closed. This allows a UNIX
script to be sent to the Samba host and executed on behalf of the
connected user.
Scripts executed in this way will be deleted upon completion,
permissions permitting.
If the script generates output, output will be sent to the file
specified by the link(bf("magic output"))(magicoutput) parameter (see
above).
Note that some shells are unable to interpret scripts containing
carriage-return-linefeed instead of linefeed as the end-of-line
marker. Magic scripts must be executable em("as is") on the host,
which for some hosts and some shells will require filtering at the DOS
end.
Magic scripts are em(EXPERIMENTAL) and should em(NOT) be relied upon.
bf(Default:)
tt( None. Magic scripts disabled.)
bf(Example:)
tt( magic script = user.csh)
label(manglecase)
dit(bf(mangle case (S)))
See the section on link(bf("NAME MANGLING"))(NAMEMANGLING).
label(manglelocks)
dit(bf(mangle locks (S)))
This option is was introduced with Samba 2.0.4 and above and has been
removed in Samba 2.0.6 as Samba now dynamically configures such things
on 32 bit systems.
label(mangledmap)
dit(bf(mangled map (S)))
This is for those who want to directly map UNIX file names which can
not be represented on Windows/DOS. The mangling of names is not always
what is needed. In particular you may have documents with file
extensions that differ between DOS and UNIX. For example, under UNIX
it is common to use tt(".html") for HTML files, whereas under
Windows/DOS tt(".htm") is more commonly used.
So to map tt("html") to tt("htm") you would use:
tt( mangled map = (*.html *.htm))
One very useful case is to remove the annoying tt(";1") off the ends
of filenames on some CDROMS (only visible under some UNIXs). To do
this use a map of (*;1 *).
bf(default:)
tt( no mangled map)
bf(Example:)
tt( mangled map = (*;1 *))
label(manglednames)
dit(bf(mangled names (S)))
This controls whether non-DOS names under UNIX should be mapped to
DOS-compatible names ("mangled") and made visible, or whether non-DOS
names should simply be ignored.
See the section on link(bf("NAME MANGLING"))(NAMEMANGLING) for details
on how to control the mangling process.
If mangling is used then the mangling algorithm is as follows:
startit()
it() The first (up to) five alphanumeric characters before the
rightmost dot of the filename are preserved, forced to upper case, and
appear as the first (up to) five characters of the mangled name.
it() A tilde tt("~") is appended to the first part of the mangled
name, followed by a two-character unique sequence, based on the
original root name (i.e., the original filename minus its final
extension). The final extension is included in the hash calculation
only if it contains any upper case characters or is longer than three
characters.
Note that the character to use may be specified using the
link(bf("mangling char"))(manglingchar) option, if you don't like
tt('~').
it() The first three alphanumeric characters of the final extension
are preserved, forced to upper case and appear as the extension of the
mangled name. The final extension is defined as that part of the
original filename after the rightmost dot. If there are no dots in the
filename, the mangled name will have no extension (except in the case
of link(bf("hidden files"))(hidefiles) - see below).
it() Files whose UNIX name begins with a dot will be presented as DOS
hidden files. The mangled name will be created as for other filenames,
but with the leading dot removed and tt("___") as its extension regardless
of actual original extension (that's three underscores).
endit()
The two-digit hash value consists of upper case alphanumeric
characters.
This algorithm can cause name collisions only if files in a directory
share the same first five alphanumeric characters. The probability of
such a clash is 1/1300.
The name mangling (if enabled) allows a file to be copied between UNIX
directories from Windows/DOS while retaining the long UNIX
filename. UNIX files can be renamed to a new extension from
Windows/DOS and will retain the same basename. Mangled names do not
change between sessions.
bf(Default:)
tt( mangled names = yes)
bf(Example:)
tt( mangled names = no)
label(manglingchar)
dit(bf(mangling char (S)))
This controls what character is used as the em("magic") character in
link(bf(name mangling))(manglednames). The default is a tt('~') but
this may interfere with some software. Use this option to set it to
whatever you prefer.
bf(Default:)
tt( mangling char = ~)
bf(Example:)
tt( mangling char = ^)
label(mangledstack)
dit(bf(mangled stack (G)))
This parameter controls the number of mangled names that should be
cached in the Samba server url(bf(smbd))(smbd.8.html).
This stack is a list of recently mangled base names (extensions are
only maintained if they are longer than 3 characters or contains upper
case characters).
The larger this value, the more likely it is that mangled names can be
successfully converted to correct long UNIX names. However, large
stack sizes will slow most directory access. Smaller stacks save
memory in the server (each stack element costs 256 bytes).
It is not possible to absolutely guarantee correct long file names, so
be prepared for some surprises!
bf(Default:)
tt( mangled stack = 50)
bf(Example:)
tt( mangled stack = 100)
label(maparchive)
dit(bf(map archive (S)))
This controls whether the DOS archive attribute should be mapped to
the UNIX owner execute bit. The DOS archive bit is set when a file
has been modified since its last backup. One motivation for this
option it to keep Samba/your PC from making any file it touches from
becoming executable under UNIX. This can be quite annoying for shared
source code, documents, etc...
Note that this requires the link(bf("create mask"))(createmask)
parameter to be set such that owner execute bit is not masked out
(i.e. it must include 100). See the parameter link(bf("create
mask"))(createmask) for details.
bf(Default:)
tt( map archive = yes)
bf(Example:)
tt( map archive = no)
label(maphidden)
dit(bf(map hidden (S)))
This controls whether DOS style hidden files should be mapped to the
UNIX world execute bit.
Note that this requires the link(bf("create mask"))(createmask) to be
set such that the world execute bit is not masked out (i.e. it must
include 001). See the parameter link(bf("create mask"))(createmask)
for details.
bf(Default:)
tt( map hidden = no)
bf(Example:)
tt( map hidden = yes)
label(mapsystem)
dit(bf(map system (S)))
This controls whether DOS style system files should be mapped to the
UNIX group execute bit.
Note that this requires the link(bf("create mask"))(createmask) to be
set such that the group execute bit is not masked out (i.e. it must
include 010). See the parameter link(bf("create mask"))(createmask)
for details.
bf(Default:)
tt( map system = no)
bf(Example:)
tt( map system = yes)
label(maptoguest)
dit(bf(map to guest (G)))
This parameter is only useful in link(bf(security))(security) modes
other than link(bf("security=share"))(securityequalshare) - i.e. user,
server, and domain.
This parameter can take three different values, which tell
url(bf(smbd))(smbd.8.html) what to do with user login requests that
don't match a valid UNIX user in some way.
The three settings are :
startit()
it() bf("Never") - Means user login requests with an invalid password
are rejected. This is the default.
it() bf("Bad User") - Means user logins with an invalid password are
rejected, unless the username does not exist, in which case it is
treated as a guest login and mapped into the link(bf("guest
account"))(guestaccount).
it() bf("Bad Password") - Means user logins with an invalid
password are treated as a guest login and mapped into the
link(bf("guest account"))(guestaccount). Note that this can
cause problems as it means that any user incorrectly typing their
password will be silently logged on a bf("guest") - and
will not know the reason they cannot access files they think
they should - there will have been no message given to them
that they got their password wrong. Helpdesk services will
em(*hate*) you if you set the bf("map to guest") parameter
this way :-).
endit()
Note that this parameter is needed to set up bf("Guest") share
services when using link(bf(security))(security) modes other than
share. This is because in these modes the name of the resource being
requested is em(*not*) sent to the server until after the server has
successfully authenticated the client so the server cannot make
authentication decisions at the correct time (connection to the
share) for bf("Guest") shares.
For people familiar with the older Samba releases, this parameter
maps to the old compile-time setting of the GUEST_SESSSETUP value
in local.h.
bf(Default:)
tt( map to guest = Never)
bf(Example):
tt( map to guest = Bad User)
label(maxconnections)
dit(bf(max connections (S)))
This option allows the number of simultaneous connections to a service
to be limited. If bf("max connections") is greater than 0 then
connections will be refused if this number of connections to the
service are already open. A value of zero mean an unlimited number of
connections may be made.
Record lock files are used to implement this feature. The lock files
will be stored in the directory specified by the link(bf("lock
directory"))(lockdirectory) option.
bf(Default:)
tt( max connections = 0)
bf(Example:)
tt( max connections = 10)
label(maxdisksize)
dit(bf(max disk size (G)))
This option allows you to put an upper limit on the apparent size of
disks. If you set this option to 100 then all shares will appear to be
not larger than 100 MB in size.
Note that this option does not limit the amount of data you can put on
the disk. In the above case you could still store much more than 100
MB on the disk, but if a client ever asks for the amount of free disk
space or the total disk size then the result will be bounded by the
amount specified in bf("max disk size").
This option is primarily useful to work around bugs in some pieces of
software that can't handle very large disks, particularly disks over
1GB in size.
A bf("max disk size") of 0 means no limit.
bf(Default:)
tt( max disk size = 0)
bf(Example:)
tt( max disk size = 1000)
label(maxlogsize)
dit(bf(max log size (G)))
This option (an integer in kilobytes) specifies the max size the log
file should grow to. Samba periodically checks the size and if it is
exceeded it will rename the file, adding a tt(".old") extension.
A size of 0 means no limit.
bf(Default:)
tt( max log size = 5000)
bf(Example:)
tt( max log size = 1000)
label(maxmux)
dit(bf(max mux (G)))
This option controls the maximum number of outstanding simultaneous
SMB operations that samba tells the client it will allow. You should
never need to set this parameter.
bf(Default:)
tt( max mux = 50)
label(maxopenfiles)
dit(bf(max open files (G)))
This parameter limits the maximum number of open files that one
url(bf(smbd))(smbd.8.html) file serving process may have open for
a client at any one time. The default for this parameter is set
very high (10,000) as Samba uses only one bit per unopened file.
The limit of the number of open files is usually set by the
UNIX per-process file descriptor limit rather than this parameter
so you should never need to touch this parameter.
bf(Default:)
tt( max open files = 10000)
label(maxpacket)
dit(bf(max packet (G)))
Synonym for link(bf("packet size"))(packetsize).
label(maxttl)
dit(bf(max ttl (G)))
This option tells url(bf(nmbd))(nmbd.8.html) what the default 'time
to live' of NetBIOS names should be (in seconds) when
url(bf(nmbd))(nmbd.8.html) is requesting a name using either a
broadcast packet or from a WINS server. You should never need to
change this parameter. The default is 3 days.
bf(Default:)
tt( max ttl = 259200)
label(maxwinsttl)
dit(bf(max wins ttl (G)))
This option tells url(bf(nmbd))(nmbd.8.html) when acting as a WINS
server link(bf((wins support =true)))(winssupport) what the maximum
'time to live' of NetBIOS names that url(bf(nmbd))(nmbd.8.html) will
grant will be (in seconds). You should never need to change this
parameter. The default is 6 days (518400 seconds).
See also the link(bf("min wins ttl"))(minwinsttl) parameter.
bf(Default:)
tt( max wins ttl = 518400)
label(maxxmit)
dit(bf(max xmit (G)))
This option controls the maximum packet size that will be negotiated
by Samba. The default is 65535, which is the maximum. In some cases
you may find you get better performance with a smaller value. A value
below 2048 is likely to cause problems.
bf(Default:)
tt( max xmit = 65535)
bf(Example:)
tt( max xmit = 8192)
label(messagecommand)
dit(bf(message command (G)))
This specifies what command to run when the server receives a WinPopup
style message.
This would normally be a command that would deliver the message
somehow. How this is to be done is up to your imagination.
An example is:
tt( message command = csh -c 'xedit %s;rm %s' &)
This delivers the message using bf(xedit), then removes it
afterwards. em(NOTE THAT IT IS VERY IMPORTANT THAT THIS COMMAND RETURN
IMMEDIATELY). That's why I have the tt('&') on the end. If it doesn't
return immediately then your PCs may freeze when sending messages
(they should recover after 30secs, hopefully).
All messages are delivered as the global guest user. The command takes
the standard substitutions, although link(bf(%u))(percentu) won't work
(link(bf(%U))(percentU) may be better in this case).
Apart from the standard substitutions, some additional ones apply. In
particular:
startit()
it() tt("%s") = the filename containing the message.
it() tt("%t") = the destination that the message was sent to (probably the server
name).
it() tt("%f") = who the message is from.
endit()
You could make this command send mail, or whatever else takes your
fancy. Please let us know of any really interesting ideas you have.
Here's a way of sending the messages as mail to root:
tt(message command = /bin/mail -s 'message from %f on %m' root < %s; rm %s)
If you don't have a message command then the message won't be
delivered and Samba will tell the sender there was an
error. Unfortunately WfWg totally ignores the error code and carries
on regardless, saying that the message was delivered.
If you want to silently delete it then try:
tt("message command = rm %s").
bf(Default:)
tt( no message command)
bf(Example:)
tt( message command = csh -c 'xedit %s;rm %s' &)
label(minprintspace)
dit(bf(min print space (S)))
This sets the minimum amount of free disk space that must be available
before a user will be able to spool a print job. It is specified in
kilobytes. The default is 0, which means a user can always spool a print
job.
See also the link(bf(printing))(printing) parameter.
bf(Default:)
tt( min print space = 0)
bf(Example:)
tt( min print space = 2000)
label(minpasswdlength)
dit(bf(min passwd length (G)))
Synonym for link(bf("min password length"))(minpasswordlength).
label(minpasswordlength)
dit(bf(min password length (G)))
This option sets the minimum length in characters of a plaintext password
than smbd will accept when performing UNIX password changing.
See also link(bf("unix password sync"))(unixpasswordsync),
link(bf("passwd program"))(passwdprogram) and link(bf("passwd chat
debug"))(passwdchatdebug).
bf(Default:)
tt( min password length = 5)
label(minwinsttl)
dit(bf(min wins ttl (G)))
This option tells url(bf(nmbd))(nmbd.8.html) when acting as a WINS
server link(bf((wins support = true)))(winssupport) what the minimum
'time to live' of NetBIOS names that url(bf(nmbd))(nmbd.8.html) will
grant will be (in seconds). You should never need to change this
parameter. The default is 6 hours (21600 seconds).
bf(Default:)
tt( min wins ttl = 21600)
label(nameresolveorder)
dit(bf(name resolve order (G)))
This option is used by the programs in the Samba suite to determine
what naming services and in what order to resolve host names to IP
addresses. The option takes a space separated string of different name
resolution options.
The options are :"lmhosts", "host", "wins" and "bcast". They cause
names to be resolved as follows :
startit()
it() bf(lmhosts) : Lookup an IP address in the Samba lmhosts file.
If the line in lmhosts has no name type attached to the NetBIOS
name (see the url(bf(lmhosts (5)))(lmhosts.5.html) for details) then
any name type matches for lookup.
it() bf(host) : Do a standard host name to IP address resolution,
using the system /etc/hosts, NIS, or DNS lookups. This method of name
resolution is operating system depended for instance on IRIX or
Solaris this may be controlled by the em(/etc/nsswitch.conf) file).
Note that this method is only used if the NetBIOS name type being
queried is the 0x20 (server) name type, otherwise it is ignored.
it() bf(wins) : Query a name with the IP address listed in the
link(bf(wins server))(winsserver) parameter. If no WINS server has
been specified this method will be ignored.
it() bf(bcast) : Do a broadcast on each of the known local interfaces
listed in the link(bf(interfaces))(interfaces) parameter. This is the
least reliable of the name resolution methods as it depends on the
target host being on a locally connected subnet.
endit()
bf(Default:)
tt( name resolve order = lmhosts host wins bcast)
bf(Example:)
tt( name resolve order = lmhosts bcast host)
This will cause the local lmhosts file to be examined first, followed
by a broadcast attempt, followed by a normal system hostname lookup.
label(netbiosaliases)
dit(bf(netbios aliases (G)))
This is a list of NetBIOS names that url(bf(nmbd))(nmbd.8.html) will
advertise as additional names by which the Samba server is known. This
allows one machine to appear in browse lists under multiple names. If
a machine is acting as a link(bf(browse server))(localmaster) or
link(bf(logon server))(domainlogons) none of these names will be
advertised as either browse server or logon servers, only the primary
name of the machine will be advertised with these capabilities.
See also link(bf("netbios name"))(netbiosname).
bf(Default:)
tt( empty string (no additional names))
bf(Example:)
tt( netbios aliases = TEST TEST1 TEST2)
label(netbiosname)
dit(bf(netbios name (G)))
This sets the NetBIOS name by which a Samba server is known. By
default it is the same as the first component of the host's DNS name.
If a machine is a link(bf(browse server))(localmaster) or
link(bf(logon server))(domainlogons) this name (or the first component
of the hosts DNS name) will be the name that these services are
advertised under.
See also link(bf("netbios aliases"))(netbiosaliases).
bf(Default:)
tt( Machine DNS name.)
bf(Example:)
tt( netbios name = MYNAME)
label(netbiosscope)
dit(bf(netbios scope (G)))
This sets the NetBIOS scope that Samba will operate under. This should
not be set unless every machine on your LAN also sets this value.
label(nishomedir)
dit(bf(nis homedir (G)))
Get the home share server from a NIS map. For UNIX systems that use an
automounter, the user's home directory will often be mounted on a
workstation on demand from a remote server.
When the Samba logon server is not the actual home directory server,
but is mounting the home directories via NFS then two network hops
would be required to access the users home directory if the logon
server told the client to use itself as the SMB server for home
directories (one over SMB and one over NFS). This can be very
slow.
This option allows Samba to return the home share as being on a
different server to the logon server and as long as a Samba daemon is
running on the home directory server, it will be mounted on the Samba
client directly from the directory server. When Samba is returning the
home share to the client, it will consult the NIS map specified in
link(bf("homedir map"))(homedirmap) and return the server listed
there.
Note that for this option to work there must be a working NIS
system and the Samba server with this option must also be a
link(bf(logon server))(domainlogons).
bf(Default:)
tt( nis homedir = false)
bf(Example:)
tt( nis homedir = true)
label(ntaclsupport)
dit(bf(nt acl support (G)))
This boolean parameter controls whether url(bf(smbd))(smbd.8.html)
will attempt to map UNIX permissions into Windows NT access control lists.
bf(Default:)
tt( nt acl support = yes)
bf(Example:)
tt( nt acl support = no)
label(ntpipesupport)
dit(bf(nt pipe support (G)))
This boolean parameter controls whether url(bf(smbd))(smbd.8.html)
will allow Windows NT clients to connect to the NT SMB specific
tt(IPC$) pipes. This is a developer debugging option and can be left
alone.
bf(Default:)
tt( nt pipe support = yes)
label(ntsmbsupport)
dit(bf(nt smb support (G)))
This boolean parameter controls whether url(bf(smbd))(smbd.8.html)
will negotiate NT specific SMB support with Windows NT
clients. Although this is a developer debugging option and should be
left alone, benchmarking has discovered that Windows NT clients give
faster performance with this option set to tt("no"). This is still
being investigated. If this option is set to tt("no") then Samba
offers exactly the same SMB calls that versions prior to Samba2.0
offered. This information may be of use if any users are having
problems with NT SMB support.
bf(Default:)
tt( nt support = yes)
label(nullpasswords)
dit(bf(null passwords (G)))
Allow or disallow client access to accounts that have null passwords.
See also url(bf(smbpasswd (5)))(smbpasswd.5.html).
bf(Default:)
tt( null passwords = no)
bf(Example:)
tt( null passwords = yes)
label(olelockingcompatibility)
dit(bf(ole locking compatibility (G)))
This parameter allows an administrator to turn off the byte range lock
manipulation that is done within Samba to give compatibility for OLE
applications. Windows OLE applications use byte range locking as a
form of inter-process communication, by locking ranges of bytes around
the 2^32 region of a file range. This can cause certain UNIX lock
managers to crash or otherwise cause problems. Setting this parameter
to tt("no") means you trust your UNIX lock manager to handle such cases
correctly.
bf(Default:)
tt( ole locking compatibility = yes)
bf(Example:)
tt( ole locking compatibility = no)
label(onlyguest)
dit(bf(only guest (S)))
A synonym for link(bf("guest only"))(guestonly).
label(onlyuser)
dit(bf(only user (S)))
This is a boolean option that controls whether connections with
usernames not in the link(bf(user=))(user) list will be allowed. By
default this option is disabled so a client can supply a username to
be used by the server.
Note that this also means Samba won't try to deduce usernames from the
service name. This can be annoying for the link(bf([homes]))(homes)
section. To get around this you could use "link(bf(user))(user) =
link(bf(%S))(percentS)" which means your link(bf("user"))(user) list
will be just the service name, which for home directories is the name
of the user.
See also the link(bf(user))(user) parameter.
bf(Default:)
tt( only user = False)
bf(Example:)
tt( only user = True)
label(oplocks)
dit(bf(oplocks (S)))
This boolean option tells smbd whether to issue oplocks (opportunistic
locks) to file open requests on this share. The oplock code can
dramatically (approx. 30% or more) improve the speed of access to files
on Samba servers. It allows the clients to aggressively cache files
locally and you may want to disable this option for unreliable network
environments (it is turned on by default in Windows NT Servers). For
more information see the file Speed.txt in the Samba docs/ directory.
Oplocks may be selectively turned off on certain files on a per share basis.
See the 'veto oplock files' parameter. On some systems oplocks are recognized
by the underlying operating system. This allows data synchronization between
all access to oplocked files, whether it be via Samba or NFS or a local
UNIX process. See the link(bf(kernel oplocks))(kerneloplocks) parameter
for details.
See also the link(bf("kernel oplocks"))(kerneloplocks) and
link(bf("level2 oplocks"))(level2oplocks) parameters.
bf(Default:)
tt( oplocks = True)
bf(Example:)
tt( oplocks = False)
label(oplockbreakwaittime)
dit(bf(oplock break wait time (G)))
This is a tuning parameter added due to bugs in both Windows 9x and WinNT.
If Samba responds to a client too quickly when that client issues an SMB that
can cause an oplock break request, then the client redirector can fail and
not respond to the break request. This tuning parameter (which is set in
milliseconds) is the amount of time Samba will wait before sending an
oplock break request to such (broken) clients.
em(DO NOT CHANGE THIS PARAMETER UNLESS YOU HAVE READ AND UNDERSTOOD THE SAMBA
OPLOCK CODE).
bf(Default:)
tt( oplock break wait time = 10)
label(oplockcontentionlimit)
dit(bf(oplock contention limit (S)))
This is a em(very) advanced url(bf(smbd))(smbd.8.html) tuning option to improve
the efficiency of the granting of oplocks under multiple client contention for the same file.
In brief it specifies a number, which causes smbd not to grant an oplock even
when requested if the approximate number of clients contending for an oplock on
the same file goes over this limit. This causes url(bf(smbd))(smbd.8.html) to
behave in a similar way to Windows NT.
em(DO NOT CHANGE THIS PARAMETER UNLESS YOU HAVE READ AND UNDERSTOOD THE SAMBA
OPLOCK CODE).
bf(Default:)
tt( oplock contention limit = 2)
label(oslevel)
dit(bf(os level (G)))
This integer value controls what level Samba advertises itself as for
browse elections. The value of this parameter determines whether
url(bf(nmbd))(nmbd.8.html) has a chance of becoming a local master
browser for the link(bf(WORKGROUP))(workgroup) in the local broadcast
area. The default is zero, which means url(bf(nmbd))(nmbd.8.html) will
lose elections to Windows machines. See BROWSING.txt in the Samba
docs/ directory for details.
bf(Default:)
tt( os level = 20)
bf(Example:)
tt( os level = 65 ; This will win against any NT Server)
label(packetsize)
dit(bf(packet size (G)))
This is a deprecated parameter that has no effect on the current
Samba code. It is left in the parameter list to prevent breaking
old bf(smb.conf) files.
label(panicaction)
dit(bf(panic action (G)))
This is a Samba developer option that allows a system command to be
called when either url(bf(smbd))(smbd.8.html) or
url(bf(nmbd))(nmbd.8.html) crashes. This is usually used to draw
attention to the fact that a problem occurred.
bf(Default:)
tt( panic action = )
label(passwdchat)
dit(bf(passwd chat (G)))
This string controls the em("chat") conversation that takes places
between url(bf(smbd))(smbd.8.html) and the local password changing
program to change the users password. The string describes a sequence
of response-receive pairs that url(bf(smbd))(smbd.8.html) uses to
determine what to send to the link(bf(passwd))(passwdprogram) program
and what to expect back. If the expected output is not received then
the password is not changed.
This chat sequence is often quite site specific, depending on what
local methods are used for password control (such as NIS etc).
The string can contain the macros tt("%o") and tt("%n") which are
substituted for the old and new passwords respectively. It can also
contain the standard macros tt("\n"), tt("\r"), tt("\t") and tt("\s")
to give line-feed, carriage-return, tab and space.
The string can also contain a tt('*') which matches any sequence of
characters.
Double quotes can be used to collect strings with spaces in them into
a single string.
If the send string in any part of the chat sequence is a fullstop
tt(".") then no string is sent. Similarly, is the expect string is a
fullstop then no string is expected.
Note that if the link(bf("unix password sync"))(unixpasswordsync)
parameter is set to true, then this sequence is called em(*AS ROOT*)
when the SMB password in the smbpasswd file is being changed, without
access to the old password cleartext. In this case the old password
cleartext is set to tt("") (the empty string).
See also link(bf("unix password sync"))(unixpasswordsync),
link(bf("passwd program"))(passwdprogram) and link(bf("passwd chat
debug"))(passwdchatdebug).
bf(Example:)
verb( passwd chat = "*Enter OLD password*" %o\n "*Enter NEW password*" %n\n \
"*Reenter NEW password*" %n\n "*Password changed*"
)
bf(Default:)
verb( passwd chat = *old*password* %o\n *new*password* %n\n *new*password* %n\n *changed*)
label(passwdchatdebug)
dit(bf(passwd chat debug (G)))
This boolean specifies if the passwd chat script parameter is run in
tt("debug") mode. In this mode the strings passed to and received from
the passwd chat are printed in the url(bf(smbd))(smbd.8.html) log with
a link(bf("debug level"))(debuglevel) of 100. This is a dangerous
option as it will allow plaintext passwords to be seen in the
url(bf(smbd))(smbd.8.html) log. It is available to help Samba admins
debug their link(bf("passwd chat"))(passwdchat) scripts when calling
the link(bf("passwd program"))(passwdprogram) and should be turned off
after this has been done. This parameter is off by default.
See also link(bf("passwd chat"))(passwdchat), link(bf("passwd
program"))(passwdprogram).
bf(Example:)
tt( passwd chat debug = True)
bf(Default:)
tt( passwd chat debug = False)
label(passwdprogram)
dit(bf(passwd program (G)))
The name of a program that can be used to set UNIX user passwords.
Any occurrences of link(bf(%u))(percentu) will be replaced with the
user name. The user name is checked for existence before calling the
password changing program.
Also note that many passwd programs insist in em("reasonable")
passwords, such as a minimum length, or the inclusion of mixed case
chars and digits. This can pose a problem as some clients (such as
Windows for Workgroups) uppercase the password before sending it.
em(Note) that if the link(bf("unix password sync"))(unixpasswordsync)
parameter is set to tt("True") then this program is called em(*AS
ROOT*) before the SMB password in the
url(bf(smbpasswd))(smbpasswd.5.html) file is changed. If this UNIX
password change fails, then url(bf(smbd))(smbd.8.html) will fail to
change the SMB password also (this is by design).
If the link(bf("unix password sync"))(unixpasswordsync) parameter is
set this parameter em(MUST USE ABSOLUTE PATHS) for em(ALL) programs
called, and must be examined for security implications. Note that by
default link(bf("unix password sync"))(unixpasswordsync) is set to
tt("False").
See also link(bf("unix password sync"))(unixpasswordsync).
bf(Default:)
tt( passwd program = /bin/passwd)
bf(Example:)
tt( passwd program = /sbin/passwd %u)
label(passwordlevel)
dit(bf(password level (G)))
Some client/server combinations have difficulty with mixed-case
passwords. One offending client is Windows for Workgroups, which for
some reason forces passwords to upper case when using the LANMAN1
protocol, but leaves them alone when using COREPLUS!
This parameter defines the maximum number of characters that may be
upper case in passwords.
For example, say the password given was tt("FRED"). If bf(password
level) is set to 1, the following combinations would be tried if
tt("FRED") failed:
tt("Fred"), tt("fred"), tt("fRed"), tt("frEd"), tt("freD")
If bf(password level) was set to 2, the following combinations would
also be tried:
tt("FRed"), tt("FrEd"), tt("FreD"), tt("fREd"), tt("fReD"),
tt("frED"), tt(..)
And so on.
The higher value this parameter is set to the more likely it is that a
mixed case password will be matched against a single case
password. However, you should be aware that use of this parameter
reduces security and increases the time taken to process a new
connection.
A value of zero will cause only two attempts to be made - the password
as is and the password in all-lower case.
bf(Default:)
tt( password level = 0)
bf(Example:)
tt( password level = 4)
label(passwordserver)
dit(bf(password server (G)))
By specifying the name of another SMB server (such as a WinNT box)
with this option, and using link(bf("security = domain"))(security) or
link(bf("security = server"))(security) you can get Samba to do all
its username/password validation via a remote server.
This options sets the name of the password server to use. It must be a
NetBIOS name, so if the machine's NetBIOS name is different from its
internet name then you may have to add its NetBIOS name to the lmhosts
file which is stored in the same directory as the bf(smb.conf) file.
The name of the password server is looked up using the parameter
link(bf("name resolve order="))(nameresolveorder) and so may resolved
by any method and order described in that parameter.
The password server much be a machine capable of using the "LM1.2X002"
or the "LM NT 0.12" protocol, and it must be in user level security
mode.
NOTE: Using a password server means your UNIX box (running Samba) is
only as secure as your password server. em(DO NOT CHOOSE A PASSWORD
SERVER THAT YOU DON'T COMPLETELY TRUST).
Never point a Samba server at itself for password serving. This will
cause a loop and could lock up your Samba server!
The name of the password server takes the standard substitutions, but
probably the only useful one is link(bf(%m))(percentm), which means
the Samba server will use the incoming client as the password
server. If you use this then you better trust your clients, and you
better restrict them with hosts allow!
If the link(bf("security"))(security) parameter is set to
bf("domain"), then the list of machines in this option must be a list
of Primary or Backup Domain controllers for the
link(bf(Domain))(workgroup) or the character tt(*), as the Samba server is cryptographicly
in that domain, and will use cryptographicly authenticated RPC calls
to authenticate the user logging on. The advantage of using
link(bf("security=domain"))(securityequaldomain) is that if you list
several hosts in the bf("password server") option then
url(bf(smbd))(smbd.8.html) will try each in turn till it finds one
that responds. This is useful in case your primary server goes down.
If the bf("password server") option is set to the character tt(*),
then Samba will attempt to auto-locate the Primary or Backup Domain controllers
to authenticate against by doing a query for the name tt(WORKGROUP<1C>)
and then contacting each server returned in the list of IP addresses
from the link(bf(name resolution))(nameresolveorder) source.
If the link(bf("security"))(security) parameter is set to
link(bf("server"))(securityequalserver), then there are different
restrictions that link(bf("security=domain"))(securityequaldomain)
doesn't suffer from:
startit()
it() You may list several password servers in the bf("password server")
parameter, however if an url(bf(smbd))(smbd.8.html) makes a connection
to a password server, and then the password server fails, no more
users will be able to be authenticated from this
url(bf(smbd))(smbd.8.html). This is a restriction of the SMB/CIFS
protocol when in link(bf("security=server"))(securityequalserver) mode
and cannot be fixed in Samba.
it() If you are using a Windows NT server as your password server then
you will have to ensure that your users are able to login from the
Samba server, as when in
link(bf("security=server"))(securityequalserver) mode the network
logon will appear to come from there rather than from the users
workstation.
endit()
See also the link(bf("security"))(security) parameter.
bf(Default:)
tt( password server = )
bf(Example:)
tt( password server = NT-PDC, NT-BDC1, NT-BDC2)
bf(Example:)
tt( password server = *)
label(path)
dit(bf(path (S)))
This parameter specifies a directory to which the user of the service
is to be given access. In the case of printable services, this is
where print data will spool prior to being submitted to the host for
printing.
For a printable service offering guest access, the service should be
readonly and the path should be world-writeable and have the sticky bit
set. This is not mandatory of course, but you probably won't get the
results you expect if you do otherwise.
Any occurrences of link(bf(%u))(percentu) in the path will be replaced
with the UNIX username that the client is using on this
connection. Any occurrences of link(bf(%m))(percentm) will be replaced
by the NetBIOS name of the machine they are connecting from. These
replacements are very useful for setting up pseudo home directories
for users.
Note that this path will be based on link(bf("root dir"))(rootdir) if
one was specified.
bf(Default:)
tt( none)
bf(Example:)
tt( path = /home/fred)
label(postexec)
dit(bf(postexec (S)))
This option specifies a command to be run whenever the service is
disconnected. It takes the usual substitutions. The command may be run
as the root on some systems.
An interesting example may be do unmount server resources:
tt(postexec = /etc/umount /cdrom)
See also link(bf(preexec))(preexec).
bf(Default:)
tt( none (no command executed))
bf(Example:)
tt( postexec = echo "%u disconnected from %S from %m (%I)" >> /tmp/log)
label(postscript)
dit(bf(postscript (S)))
This parameter forces a printer to interpret the print files as
postscript. This is done by adding a tt(%!) to the start of print output.
This is most useful when you have lots of PCs that persist in putting
a control-D at the start of print jobs, which then confuses your
printer.
bf(Default:)
tt( postscript = False)
bf(Example:)
tt( postscript = True)
label(preexec)
dit(bf(preexec (S)))
This option specifies a command to be run whenever the service is
connected to. It takes the usual substitutions.
An interesting example is to send the users a welcome message every
time they log in. Maybe a message of the day? Here is an example:
verb(
preexec = csh -c 'echo \"Welcome to %S!\" | \
/usr/local/samba/bin/smbclient -M %m -I %I' &
)
Of course, this could get annoying after a while :-)
See also link(bf(preexec close))(preexecclose) and link(bf(postexec))(postexec).
bf(Default:)
tt( none (no command executed))
bf(Example:)
tt( preexec = echo \"%u connected to %S from %m (%I)\" >> /tmp/log)
label(preexecclose)
dit(bf(preexec close (S)))
This boolean option controls whether a non-zero return code from
link(bf("preexec"))(preexec) should close the service being connected to.
bf(Default:)
tt( preexec close = no)
bf(Example:)
tt( preexec close = yes)
label(preferredmaster)
dit(bf(preferred master (G)))
This boolean parameter controls if url(bf(nmbd))(nmbd.8.html) is a
preferred master browser for its workgroup.
If this is set to true, on startup, url(bf(nmbd))(nmbd.8.html) will
force an election, and it will have a slight advantage in winning the
election. It is recommended that this parameter is used in
conjunction with link(bf("domain master = yes"))(domainmaster), so
that url(bf(nmbd))(nmbd.8.html) can guarantee becoming a domain
master.
Use this option with caution, because if there are several hosts
(whether Samba servers, Windows 95 or NT) that are preferred master
browsers on the same subnet, they will each periodically and
continuously attempt to become the local master browser. This will
result in unnecessary broadcast traffic and reduced browsing
capabilities.
See also link(bf(os level))(oslevel).
bf(Default:)
tt( preferred master = no)
bf(Example:)
tt( preferred master = yes)
label(preferedmaster)
dit(bf(prefered master (G)))
Synonym for link(bf("preferred master"))(preferredmaster) for people
who cannot spell :-).
label(preload)
dit(bf(preload))
Synonym for link(bf("auto services"))(autoservices).
label(preservecase)
dit(bf(preserve case (S)))
This controls if new filenames are created with the case that the
client passes, or if they are forced to be the tt("default") case.
bf(Default:)
tt( preserve case = yes)
See the section on link(bf("NAME MANGLING"))(NAMEMANGLING) for a
fuller discussion.
label(printcommand)
dit(bf(print command (S)))
After a print job has finished spooling to a service, this command
will be used via a tt(system()) call to process the spool
file. Typically the command specified will submit the spool file to
the host's printing subsystem, but there is no requirement that this
be the case. The server will not remove the spool file, so whatever
command you specify should remove the spool file when it has been
processed, otherwise you will need to manually remove old spool files.
The print command is simply a text string. It will be used verbatim,
with two exceptions: All occurrences of tt("%s") and tt("%f") will be
replaced by the appropriate spool file name, and all occurrences of
tt("%p") will be replaced by the appropriate printer name. The spool
file name is generated automatically by the server, the printer name
is discussed below.
The print command em(MUST) contain at least one occurrence of tt("%s")
or tt("%f") - the tt("%p") is optional. At the time a job is
submitted, if no printer name is supplied the tt("%p") will be
silently removed from the printer command.
If specified in the link(bf("[global]"))(global) section, the print
command given will be used for any printable service that does not
have its own print command specified.
If there is neither a specified print command for a printable service
nor a global print command, spool files will be created but not
processed and (most importantly) not removed.
Note that printing may fail on some UNIXs from the tt("nobody")
account. If this happens then create an alternative guest account that
can print and set the link(bf("guest account"))(guestaccount) in the
link(bf("[global]"))(global) section.
You can form quite complex print commands by realizing that they are
just passed to a shell. For example the following will log a print
job, print the file, then remove it. Note that tt(';') is the usual
separator for command in shell scripts.
tt(print command = echo Printing %s >> /tmp/print.log; lpr -P %p %s; rm %s)
You may have to vary this command considerably depending on how you
normally print files on your system. The default for the parameter
varies depending on the setting of the link(bf("printing="))(printing)
parameter.
bf(Default:)
For link(bf("printing="))(printing) BSD, AIX, QNX, LPRNG or PLP :
tt( print command = lpr -r -P%p %s)
For link(bf("printing="))(printing) SYS or HPUX :
tt( print command = lp -c -d%p %s; rm %s)
For link(bf("printing="))(printing) SOFTQ :
tt( print command = lp -d%p -s %s; rm %s)
bf(Example:)
tt( print command = /usr/local/samba/bin/myprintscript %p %s)
label(printok)
dit(bf(print ok (S)))
Synonym for link(bf(printable))(printable).
label(printable)
dit(bf(printable (S)))
If this parameter is tt("yes"), then clients may open, write to and
submit spool files on the directory specified for the service.
Note that a printable service will ALWAYS allow writing to the service
path (user privileges permitting) via the spooling of print data. The
link(bf("writeable"))(writeable) parameter controls only non-printing
access to the resource.
bf(Default:)
tt( printable = no)
bf(Example:)
tt( printable = yes)
label(printcap)
dit(bf(printcap (G)))
Synonym for link(bf(printcapname))(printcapname).
label(printer admin)
dit(bf(printer admin (S)))
This is a list of users that can do anything to printers via the
remote administration interfaces offered by MSRPC (usually using a NT
workstation). Note that the root user always has admin rights.
bf(Default:)
tt( printer admin = )
bf(Example:)
tt( printer admin = admin, @staff)
label(printcapname)
dit(bf(printcap name (G)))
This parameter may be used to override the compiled-in default
printcap name used by the server (usually /etc/printcap). See the
discussion of the link(bf([printers]))(printers) section above for
reasons why you might want to do this.
On System V systems that use bf(lpstat) to list available printers you
can use tt("printcap name = lpstat") to automatically obtain lists of
available printers. This is the default for systems that define SYSV
at configure time in Samba (this includes most System V based
systems). If bf("printcap name") is set to bf(lpstat) on these systems
then Samba will launch tt("lpstat -v") and attempt to parse the output
to obtain a printer list.
A minimal printcap file would look something like this:
verb(
print1|My Printer 1
print2|My Printer 2
print3|My Printer 3
print4|My Printer 4
print5|My Printer 5
)
where the tt('|') separates aliases of a printer. The fact that the
second alias has a space in it gives a hint to Samba that it's a
comment.
em(NOTE): Under AIX the default printcap name is
tt("/etc/qconfig"). Samba will assume the file is in AIX tt("qconfig")
format if the string tt("/qconfig") appears in the printcap filename.
bf(Default:)
tt( printcap name = /etc/printcap)
bf(Example:)
tt( printcap name = /etc/myprintcap)
label(printer)
dit(bf(printer (S)))
This parameter specifies the name of the printer to which print jobs
spooled through a printable service will be sent.
If specified in the link(bf([global]))(global) section, the printer
name given will be used for any printable service that does not have
its own printer name specified.
bf(Default:)
none (but may be tt("lp") on many systems)
bf(Example:)
printer name = laserwriter
label(printerdriver)
dit(bf(printer driver (S)))
This option allows you to control the string that clients receive when
they ask the server for the printer driver associated with a
printer. If you are using Windows95 or WindowsNT then you can use this
to automate the setup of printers on your system.
You need to set this parameter to the exact string (case sensitive)
that describes the appropriate printer driver for your system. If you
don't know the exact string to use then you should first try with no
bf("printer driver") option set and the client will give you a list of
printer drivers. The appropriate strings are shown in a scrollbox
after you have chosen the printer manufacturer.
See also link(bf("printer driver file"))(printerdriverfile).
bf(Example:)
printer driver = HP LaserJet 4L
label(printerdriverfile)
dit(bf(printer driver file (G)))
This parameter tells Samba where the printer driver definition file,
used when serving drivers to Windows 95 clients, is to be found. If
this is not set, the default is :
tt(SAMBA_INSTALL_DIRECTORY/lib/printers.def)
This file is created from Windows 95 tt("msprint.inf") files found on
the Windows 95 client system. For more details on setting up serving
of printer drivers to Windows 95 clients, see the documentation file
in the docs/ directory, PRINTER_DRIVER.txt.
bf(Default:)
tt( None (set in compile).)
bf(Example:)
tt( printer driver file = /usr/local/samba/printers/drivers.def)
See also link(bf("printer driver location"))(printerdriverlocation).
label(printerdriverlocation)
dit(bf(printer driver location (S)))
This parameter tells clients of a particular printer share where to
find the printer driver files for the automatic installation of
drivers for Windows 95 machines. If Samba is set up to serve printer
drivers to Windows 95 machines, this should be set to
tt(\\MACHINE\PRINTER$)
Where MACHINE is the NetBIOS name of your Samba server, and PRINTER$
is a share you set up for serving printer driver files. For more
details on setting this up see the documentation file in the docs/
directory, PRINTER_DRIVER.txt.
bf(Default:)
tt( None)
bf(Example:)
tt( printer driver location = \\MACHINE\PRINTER$)
See also link(bf("printer driver file"))(printerdriverfile).
label(printername)
dit(bf(printer name (S)))
Synonym for link(bf(printer))(printer).
label(printing)
dit(bf(printing (S)))
This parameters controls how printer status information is interpreted
on your system. It also affects the default values for the
link(bf("print command"))(printcommand), link(bf("lpq
command"))(lpqcommand) link(bf("lppause command"))(lppausecommand),
link(bf("lpresume command"))(lpresumecommand), and link(bf("lprm
command"))(lprmcommand) if specified in the link(bf([global]))(global)
section.
Currently eight printing styles are supported. They are
bf("printing=BSD"), bf("printing=AIX"),
bf("printing=LPRNG"), bf("printing=PLP"), bf("printing=SYSV"),
bf("printing="HPUX"), bf("printing=QNX"), bf("printing=SOFTQ"),
and bf("printing=CUPS").
To see what the defaults are for the other print commands when using
the various options use the url(bf("testparm"))(testparm.1.html) program.
This option can be set on a per printer basis
See also the discussion in the link(bf([printers]))(printers) section.
label(privatedir)
dit(bf(private dir(G)))
The bf(private dir) parameter allows an administator to define a
directory path used to hold the various databases Samba will use
to store things like a the machine trust account information
when acting as a domain member (i.e. where the secrets.tdb file will
be located), where the passdb.tbd file will stored in the case
of using the experiemental tdbsam support, etc...
bf(Default:)
tt( private dir = )
bf(Example:)
tt( private dir = /etc/smbprivate)
label(protocol)
dit(bf(protocol (G)))
The value of the parameter (a string) is the highest protocol level
that will be supported by the server.
Possible values are :
startit()
it() CORE: Earliest version. No concept of user names.
it() COREPLUS: Slight improvements on CORE for efficiency.
it() LANMAN1: First em("modern") version of the protocol. Long
filename support.
it() LANMAN2: Updates to Lanman1 protocol.
it() NT1: Current up to date version of the protocol. Used by Windows
NT. Known as CIFS.
endit()
Normally this option should not be set as the automatic negotiation
phase in the SMB protocol takes care of choosing the appropriate
protocol.
bf(Default:)
tt( protocol = NT1)
bf(Example:)
tt( protocol = LANMAN1)
label(public)
dit(bf(public (S)))
Synonym for link(bf("guest ok"))(guestok).
label(queuepausecommand)
dit(bf(queuepause command (S)))
This parameter specifies the command to be executed on the server host
in order to pause the printerqueue.
This command should be a program or script which takes a printer name
as its only parameter and stops the printerqueue, such that no longer
jobs are submitted to the printer.
This command is not supported by Windows for Workgroups, but can be
issued from the Printer's window under Windows 95 & NT.
If a tt("%p") is given then the printername is put in its
place. Otherwise it is placed at the end of the command.
Note that it is good practice to include the absolute path in the
command as the PATH may not be available to the server.
bf(Default:)
tt( depends on the setting of "printing =")
bf(Example:)
tt( queuepause command = disable %p)
label(queueresumecommand)
dit(bf(queueresume command (S)))
This parameter specifies the command to be executed on the server host
in order to resume the printerqueue. It is the command to undo the
behavior that is caused by the previous parameter
(link(bf("queuepause command))(queuepausecommand)).
This command should be a program or script which takes a printer name
as its only parameter and resumes the printerqueue, such that queued
jobs are resubmitted to the printer.
This command is not supported by Windows for Workgroups, but can be
issued from the Printer's window under Windows 95 & NT.
If a tt("%p") is given then the printername is put in its
place. Otherwise it is placed at the end of the command.
Note that it is good practice to include the absolute path in the
command as the PATH may not be available to the server.
bf(Default:)
tt( depends on the setting of "printing =")
bf(Example:)
tt( queuepause command = enable %p)
label(read bmpx)
dit(bf(read bmpx (G)))
This boolean parameter controls whether url(bf(smbd))(smbd.8.html)
will support the "Read Block Multiplex" SMB. This is now rarely used
and defaults to off. You should never need to set this parameter.
bf(Default:)
read bmpx = No
label(readlist)
dit(bf(read list (S)))
This is a list of users that are given read-only access to a
service. If the connecting user is in this list then they will not be
given write access, no matter what the link(bf("writeable"))(writeable)
option is set to. The list can include group names using the syntax
described in the link(bf("invalid users"))(invalidusers) parameter.
See also the link(bf("write list"))(writelist) parameter and
the link(bf("invalid users"))(invalidusers) parameter.
bf(Default:)
tt( read list = )
bf(Example:)
tt( read list = mary, @students)
label(readonly)
dit(bf(read only (S)))
Note that this is an inverted synonym for
link(bf("writeable"))(writeable).
label(readprediction)
dit(bf(read prediction (G)))
em(NOTE): This code is currently disabled in Samba2.0 and
may be removed at a later date. Hence this parameter has
no effect.
This options enables or disables the read prediction code used to
speed up reads from the server. When enabled the server will try to
pre-read data from the last accessed file that was opened read-only
while waiting for packets.
bf(Default:)
tt( read prediction = False)
label(readraw)
dit(bf(read raw (G)))
This parameter controls whether or not the server will support the raw
read SMB requests when transferring data to clients.
If enabled, raw reads allow reads of 65535 bytes in one packet. This
typically provides a major performance benefit.
However, some clients either negotiate the allowable block size
incorrectly or are incapable of supporting larger block sizes, and for
these clients you may need to disable raw reads.
In general this parameter should be viewed as a system tuning tool and left
severely alone. See also link(bf("write raw"))(writeraw).
bf(Default:)
tt( read raw = yes)
label(readsize)
dit(bf(read size (G)))
The option bf("read size") affects the overlap of disk reads/writes
with network reads/writes. If the amount of data being transferred in
several of the SMB commands (currently SMBwrite, SMBwriteX and
SMBreadbraw) is larger than this value then the server begins writing
the data before it has received the whole packet from the network, or
in the case of SMBreadbraw, it begins writing to the network before
all the data has been read from disk.
This overlapping works best when the speeds of disk and network access
are similar, having very little effect when the speed of one is much
greater than the other.
The default value is 16384, but very little experimentation has been
done yet to determine the optimal value, and it is likely that the
best value will vary greatly between systems anyway. A value over
65536 is pointless and will cause you to allocate memory
unnecessarily.
bf(Default:)
tt( read size = 16384)
bf(Example:)
tt( read size = 8192)
label(remoteannounce)
dit(bf(remote announce (G)))
This option allows you to setup url(bf(nmbd))(nmbd.8.html) to
periodically announce itself to arbitrary IP addresses with an
arbitrary workgroup name.
This is useful if you want your Samba server to appear in a remote
workgroup for which the normal browse propagation rules don't
work. The remote workgroup can be anywhere that you can send IP
packets to.
For example:
tt( remote announce = 192.168.2.255/SERVERS 192.168.4.255/STAFF)
the above line would cause nmbd to announce itself to the two given IP
addresses using the given workgroup names. If you leave out the
workgroup name then the one given in the
link(bf("workgroup"))(workgroup) parameter is used instead.
The IP addresses you choose would normally be the broadcast addresses
of the remote networks, but can also be the IP addresses of known
browse masters if your network config is that stable.
See the documentation file BROWSING.txt in the docs/ directory.
bf(Default:)
tt( remote announce = )
bf(Example:)
tt( remote announce = 192.168.2.255/SERVERS 192.168.4.255/STAFF)
label(remotebrowsesync)
dit(bf(remote browse sync (G)))
This option allows you to setup url(bf(nmbd))(nmbd.8.html) to
periodically request synchronization of browse lists with the master
browser of a samba server that is on a remote segment. This option
will allow you to gain browse lists for multiple workgroups across
routed networks. This is done in a manner that does not work with any
non-samba servers.
This is useful if you want your Samba server and all local clients to
appear in a remote workgroup for which the normal browse propagation
rules don't work. The remote workgroup can be anywhere that you can
send IP packets to.
For example:
tt( remote browse sync = 192.168.2.255 192.168.4.255)
the above line would cause url(bf(nmbd))(nmbd.8.html) to request the
master browser on the specified subnets or addresses to synchronize
their browse lists with the local server.
The IP addresses you choose would normally be the broadcast addresses
of the remote networks, but can also be the IP addresses of known
browse masters if your network config is that stable. If a machine IP
address is given Samba makes NO attempt to validate that the remote
machine is available, is listening, nor that it is in fact the browse
master on it's segment.
bf(Default:)
tt( remote browse sync = )
bf(Example:)
tt( remote browse sync = 192.168.2.255 192.168.4.255)
label(restrict anonymous)
dit(bf(restrict anonymous (G)))
This is a boolean parameter. If it is true, then anonymous access
to the server will be restricted, namely in the case where the server
is expecting the client to send a username, but it doesn't. Setting
it to true will force these anonymous connections to be denied, and
the client will be required to always supply a username and password
when connecting. Use of this parameter is only recommened for homogenous
NT client environments.
This parameter makes the use of macro expansions that rely
on the username (%U, %G, etc) consistant. NT 4.0 likes to use
anonymous connections when refreshing the share list, and this
is a way to work around that.
When restrict anonymous is true, all anonymous connections are denied
no matter what they are for. This can effect the ability of a machine
to access the samba Primary Domain Controller to revalidate it's machine
account after someone else has logged on the client interactively. The
NT client will display a message saying that the machine's account in
the domain doesn't exist or the password is bad. The best way to deal
with this is to reboot NT client machines between interactive logons,
using "Shutdown and Restart", rather than "Close all programs and logon
as a different user".
bf(Default:)
tt( restrict anonymous = false)
bf(Example:)
tt( restrict anonymous = true)
label(root)
dit(bf(root (G)))
Synonym for link(bf("root directory"))(rootdirectory).
label(rootdir)
dit(bf(root dir (G)))
Synonym for link(bf("root directory"))(rootdirectory).
label(rootdirectory)
dit(bf(root directory (G)))
The server will tt("chroot()") (i.e. Change it's root directory) to
this directory on startup. This is not strictly necessary for secure
operation. Even without it the server will deny access to files not in
one of the service entries. It may also check for, and deny access to,
soft links to other parts of the filesystem, or attempts to use
tt("..") in file names to access other directories (depending on the
setting of the link(bf("wide links"))(widelinks) parameter).
Adding a bf("root directory") entry other than tt("/") adds an extra
level of security, but at a price. It absolutely ensures that no
access is given to files not in the sub-tree specified in the bf("root
directory") option, em(*including*) some files needed for complete
operation of the server. To maintain full operability of the server
you will need to mirror some system files into the bf("root
directory") tree. In particular you will need to mirror /etc/passwd
(or a subset of it), and any binaries or configuration files needed
for printing (if required). The set of files that must be mirrored is
operating system dependent.
bf(Default:)
tt( root directory = /)
bf(Example:)
tt( root directory = /homes/smb)
label(rootpostexec)
dit(bf(root postexec (S)))
This is the same as the link(bf("postexec"))(postexec) parameter
except that the command is run as root. This is useful for unmounting
filesystems (such as cdroms) after a connection is closed.
See also link(bf("postexec"))(postexec).
label(rootpreexec)
dit(bf(root preexec (S)))
This is the same as the link(bf("preexec"))(preexec) parameter except
that the command is run as root. This is useful for mounting
filesystems (such as cdroms) before a connection is finalized.
See also link(bf("preexec"))(preexec)
and link(bf("root preexec close"))(rootpreexecclose).
label(rootpreexecclose)
dit(bf(root preexec close (S)))
This is the same as the link(bf("preexec close"))(preexecclose) parameter
except that the command is run as root.
See also link(bf("preexec"))(preexec), link(bf("preexec close"))(preexecclose).
label(security)
dit(bf(security (G)))
This option affects how clients respond to Samba and is one of the most
important settings in the bf(smb.conf) file.
The option sets the tt("security mode bit") in replies to protocol
negotiations with url(bf(smbd))(smbd.8.html) to turn share level
security on or off. Clients decide based on this bit whether (and how)
to transfer user and password information to the server.
The default is link("security=user")(securityequaluser), as this is
the most common setting needed when talking to Windows 98 and Windows
NT.
The alternatives are link(bf("security = share"))(securityequalshare),
link(bf("security = server"))(securityequalserver) or
link(bf("security=domain"))(securityequaldomain).
em(*****NOTE THAT THIS DEFAULT IS DIFFERENT IN SAMBA2.0 THAN FOR
PREVIOUS VERSIONS OF SAMBA *******).
In previous versions of Samba the default was
link(bf("security=share"))(securityequalshare) mainly because that was
the only option at one stage.
There is a bug in WfWg that has relevance to this setting. When in
user or server level security a WfWg client will totally ignore the
password you type in the "connect drive" dialog box. This makes it
very difficult (if not impossible) to connect to a Samba service as
anyone except the user that you are logged into WfWg as.
If your PCs use usernames that are the same as their usernames on the
UNIX machine then you will want to use bf("security = user"). If you
mostly use usernames that don't exist on the UNIX box then use
bf("security = share").
You should also use link(bf(security=share))(securityequalshare) if
you want to mainly setup shares without a password (guest
shares). This is commonly used for a shared printer server. It is more
difficult to setup guest shares with
link(bf(security=user))(securityequaluser), see the link(bf("map to
guest"))(maptoguest)parameter for details.
It is possible to use url(bf(smbd))(smbd.8.html) in a em("hybrid
mode") where it is offers both user and share level security under
different link(bf(NetBIOS aliases))(netbiosaliases). See the
link(bf(NetBIOS aliases))(netbiosaliases) and the
link(bf(include))(include) parameters for more information.
The different settings will now be explained.
startdit()
label(securityequalshare)
dit(bf("security=share")) When clients connect to a share level
security server then need not log onto the server with a valid
username and password before attempting to connect to a shared
resource (although modern clients such as Windows 95/98 and Windows NT
will send a logon request with a username but no password when talking
to a bf(security=share) server). Instead, the clients send
authentication information (passwords) on a per-share basis, at the
time they attempt to connect to that share.
Note that url(bf(smbd))(smbd.8.html) em(*ALWAYS*) uses a valid UNIX
user to act on behalf of the client, even in bf("security=share")
level security.
As clients are not required to send a username to the server
in share level security, url(bf(smbd))(smbd.8.html) uses several
techniques to determine the correct UNIX user to use on behalf
of the client.
A list of possible UNIX usernames to match with the given
client password is constructed using the following methods :
startit()
it() If the link(bf("guest only"))(guestonly) parameter is set, then
all the other stages are missed and only the link(bf("guest
account"))(guestaccount) username is checked.
it() Is a username is sent with the share connection request, then
this username (after mapping - see link(bf("username
map"))(usernamemap)), is added as a potential username.
it() If the client did a previous em("logon") request (the
SessionSetup SMB call) then the username sent in this SMB
will be added as a potential username.
it() The name of the service the client requested is added
as a potential username.
it() The NetBIOS name of the client is added to the list as a
potential username.
it() Any users on the link(bf("user"))(user) list are added
as potential usernames.
endit()
If the link(bf("guest only"))(guestonly) parameter is not set, then
this list is then tried with the supplied password. The first user for
whom the password matches will be used as the UNIX user.
If the link(bf("guest only"))(guestonly) parameter is set, or no
username can be determined then if the share is marked as available to
the link(bf("guest account"))(guestaccount), then this guest user will
be used, otherwise access is denied.
Note that it can be em(*very*) confusing in share-level security as to
which UNIX username will eventually be used in granting access.
See also the section link(bf("NOTE ABOUT USERNAME/PASSWORD
VALIDATION"))(NOTEABOUTUSERNAMEPASSWORDVALIDATION).
label(securityequaluser)
dit(bf("security=user"))
This is the default security setting in Samba2.0. With user-level
security a client must first tt("log-on") with a valid username and
password (which can be mapped using the link(bf("username
map"))(usernamemap) parameter). Encrypted passwords (see the
link(bf("encrypted passwords"))(encryptpasswords) parameter) can also
be used in this security mode. Parameters such as
link(bf("user"))(user) and link(bf("guest only"))(guestonly), if set
are then applied and may change the UNIX user to use on this
connection, but only after the user has been successfully
authenticated.
em(Note) that the name of the resource being requested is
em(*not*) sent to the server until after the server has successfully
authenticated the client. This is why guest shares don't work in user
level security without allowing the server to automatically map unknown
users into the link(bf("guest account"))(guestaccount). See the
link(bf("map to guest"))(maptoguest) parameter for details on
doing this.
See also the section link(bf("NOTE ABOUT USERNAME/PASSWORD
VALIDATION"))(NOTEABOUTUSERNAMEPASSWORDVALIDATION).
label(securityequalserver)
dit(bf("security=server"))
In this mode Samba will try to validate the username/password by
passing it to another SMB server, such as an NT box. If this fails it
will revert to bf("security = user"), but note that if encrypted
passwords have been negotiated then Samba cannot revert back to
checking the UNIX password file, it must have a valid smbpasswd file
to check users against. See the documentation file in the docs/
directory ENCRYPTION.txt for details on how to set this up.
em(Note) that from the clients point of view bf("security=server") is
the same as link(bf("security=user"))(securityequaluser). It only
affects how the server deals with the authentication, it does not in
any way affect what the client sees.
em(Note) that the name of the resource being requested is
em(*not*) sent to the server until after the server has successfully
authenticated the client. This is why guest shares don't work in server
level security without allowing the server to automatically map unknown
users into the link(bf("guest account"))(guestaccount). See the
link(bf("map to guest"))(maptoguest) parameter for details on
doing this.
See also the section link(bf("NOTE ABOUT USERNAME/PASSWORD
VALIDATION"))(NOTEABOUTUSERNAMEPASSWORDVALIDATION).
See also the link(bf("password server"))(passwordserver) parameter.
and the link(bf("encrypted passwords"))(encryptpasswords) parameter.
label(securityequaldomain)
dit(bf("security=domain"))
This mode will only work correctly if
url(bf(smbpasswd))(smbpasswd.8.html) has been used to add this machine
into a Windows NT Domain. It expects the link(bf("encrypted
passwords"))(encryptpasswords) parameter to be set to tt("true"). In
this mode Samba will try to validate the username/password by passing
it to a Windows NT Primary or Backup Domain Controller, in exactly the
same way that a Windows NT Server would do.
em(Note) that a valid UNIX user must still exist as well as the
account on the Domain Controller to allow Samba to have a valid
UNIX account to map file access to.
em(Note) that from the clients point of view bf("security=domain") is
the same as link(bf("security=user"))(securityequaluser). It only
affects how the server deals with the authentication, it does not in
any way affect what the client sees.
em(Note) that the name of the resource being requested is
em(*not*) sent to the server until after the server has successfully
authenticated the client. This is why guest shares don't work in domain
level security without allowing the server to automatically map unknown
users into the link(bf("guest account"))(guestaccount). See the
link(bf("map to guest"))(maptoguest) parameter for details on
doing this.
em(BUG:) There is currently a bug in the implementation of
bf("security=domain) with respect to multi-byte character
set usernames. The communication with a Domain Controller
must be done in UNICODE and Samba currently does not widen
multi-byte user names to UNICODE correctly, thus a multi-byte
username will not be recognized correctly at the Domain Controller.
This issue will be addressed in a future release.
See also the section link(bf("NOTE ABOUT USERNAME/PASSWORD
VALIDATION"))(NOTEABOUTUSERNAMEPASSWORDVALIDATION).
See also the link(bf("password server"))(passwordserver) parameter.
and the link(bf("encrypted passwords"))(encryptpasswords) parameter.
enddit()
bf(Default:)
tt( security = USER)
bf(Example:)
tt( security = DOMAIN)
label(securitymask)
dit(bf(security mask (S)))
This parameter controls what UNIX permission bits can be modified
when a Windows NT client is manipulating the UNIX permission on a
file using the native NT security dialog box.
This parameter is applied as a mask (AND'ed with) to the changed
permission bits, thus preventing any bits not in this mask from
being modified. Essentially, zero bits in this mask may be treated
as a set of bits the user is not allowed to change.
If not set explicitly this parameter is set to the same value as the
link(bf(create mask))(createmask) parameter. To allow a user to
modify all the user/group/world permissions on a file, set this
parameter to 0777.
em(Note) that users who can access the Samba server through other
means can easily bypass this restriction, so it is primarily
useful for standalone "appliance" systems. Administrators of
most normal systems will probably want to set it to 0777.
See also the link(bf(force directory security
mode))(forcedirectorysecuritymode), link(bf(directory security
mask))(directorysecuritymask), link(bf(force security
mode))(forcesecuritymode) parameters.
bf(Default:)
tt( security mask = )
bf(Example:)
tt( security mask = 0777)
label(serverstring)
dit(bf(server string (G)))
This controls what string will show up in the printer comment box in
print manager and next to the IPC connection in tt("net view"). It can be
any string that you wish to show to your users.
It also sets what will appear in browse lists next to the machine
name.
A tt("%v") will be replaced with the Samba version number.
A tt("%h") will be replaced with the hostname.
bf(Default:)
tt( server string = Samba %v)
bf(Example:)
tt( server string = University of GNUs Samba Server)
label(setdirectory)
dit(bf(set directory (S)))
If tt("set directory = no"), then users of the service may not use the
setdir command to change directory.
The setdir command is only implemented in the Digital Pathworks
client. See the Pathworks documentation for details.
bf(Default:)
tt( set directory = no)
bf(Example:)
tt( set directory = yes)
label(sharemodes)
dit(bf(share modes (S)))
This enables or disables the honoring of the tt("share modes") during a
file open. These modes are used by clients to gain exclusive read or
write access to a file.
These open modes are not directly supported by UNIX, so they are
simulated using shared memory, or lock files if your UNIX doesn't
support shared memory (almost all do).
The share modes that are enabled by this option are DENY_DOS,
DENY_ALL, DENY_READ, DENY_WRITE, DENY_NONE and DENY_FCB.
This option gives full share compatibility and enabled by default.
You should em(*NEVER*) turn this parameter off as many Windows
applications will break if you do so.
bf(Default:)
tt( share modes = yes)
label(sharedmemsize)
dit(bf(shared mem size (G)))
It specifies the size of the shared memory (in bytes) to use between
url(bf(smbd))(smbd.8.html) processes. This parameter defaults to one
megabyte of shared memory. It is possible that if you have a large
server with many files open simultaneously that you may need to
increase this parameter. Signs that this parameter is set too low are
users reporting strange problems trying to save files (locking errors)
and error messages in the smbd log looking like tt("ERROR
smb_shm_alloc : alloc of XX bytes failed").
If your OS refuses the size that Samba asks for then Samba will try a
smaller size, reducing by a factor of 0.8 until the OS accepts it.
bf(Default:)
tt( shared mem size = 1048576)
bf(Example:)
tt( shared mem size = 5242880 ; Set to 5mb for a large number of files.)
label(shortpreservecase)
dit(bf(short preserve case (S)))
This boolean parameter controls if new files which conform to 8.3
syntax, that is all in upper case and of suitable length, are created
upper case, or if they are forced to be the tt("default") case. This
option can be use with link(bf("preserve case
=yes"))(preservecaseoption) to permit long filenames to retain their
case, while short names are lowered. Default em(Yes).
See the section on link(bf(NAME MANGLING))(NAMEMANGLING).
bf(Default:)
tt( short preserve case = yes)
label(smbpasswdfile)
dit(bf(smb passwd file (G)))
This option sets the path to the encrypted smbpasswd file. By default
the path to the smbpasswd file is compiled into Samba.
bf(Default:)
tt( smb passwd file= )
bf(Example:)
tt( smb passwd file = /usr/samba/private/smbpasswd)
label(smbrun)
dit(bf(smbrun (G)))
This sets the full path to the bf(smbrun) binary. This defaults to the
value in the Makefile.
You must get this path right for many services to work correctly.
You should not need to change this parameter so long as Samba
is installed correctly.
bf(Default:)
tt( smbrun=)
bf(Example:)
tt( smbrun = /usr/local/samba/bin/smbrun)
label(socketaddress)
dit(bf(socket address (G)))
This option allows you to control what address Samba will listen for
connections on. This is used to support multiple virtual interfaces on
the one server, each with a different configuration.
By default samba will accept connections on any address.
bf(Example:)
tt( socket address = 192.168.2.20)
label(socketoptions)
dit(bf(socket options (G)))
This option allows you to set socket options to be used when talking
with the client.
Socket options are controls on the networking layer of the operating
systems which allow the connection to be tuned.
This option will typically be used to tune your Samba server for
optimal performance for your local network. There is no way that Samba
can know what the optimal parameters are for your net, so you must
experiment and choose them yourself. We strongly suggest you read the
appropriate documentation for your operating system first (perhaps
bf("man setsockopt") will help).
You may find that on some systems Samba will say "Unknown socket
option" when you supply an option. This means you either incorrectly
typed it or you need to add an include file to includes.h for your OS.
If the latter is the case please send the patch to
email(samba@samba.org).
Any of the supported socket options may be combined in any way you
like, as long as your OS allows it.
This is the list of socket options currently settable using this
option:
startit()
it() SO_KEEPALIVE
it() SO_REUSEADDR
it() SO_BROADCAST
it() TCP_NODELAY
it() IPTOS_LOWDELAY
it() IPTOS_THROUGHPUT
it() SO_SNDBUF *
it() SO_RCVBUF *
it() SO_SNDLOWAT *
it() SO_RCVLOWAT *
endit()
Those marked with a tt(*) take an integer argument. The others can
optionally take a 1 or 0 argument to enable or disable the option, by
default they will be enabled if you don't specify 1 or 0.
To specify an argument use the syntax SOME_OPTION=VALUE for example
tt(SO_SNDBUF=8192). Note that you must not have any spaces before or after
the = sign.
If you are on a local network then a sensible option might be
tt(socket options = IPTOS_LOWDELAY)
If you have a local network then you could try:
tt(socket options = IPTOS_LOWDELAY TCP_NODELAY)
If you are on a wide area network then perhaps try setting
IPTOS_THROUGHPUT.
Note that several of the options may cause your Samba server to fail
completely. Use these options with caution!
bf(Default:)
tt( socket options = TCP_NODELAY)
bf(Example:)
tt( socket options = IPTOS_LOWDELAY)
label(sourceenvironment)
dit(bf(source environment (G)))
This parameter causes Samba to set environment variables as per the
content of the file named.
The file bf(must) be owned by root and not world writable in order
to be read (this is a security check).
If the value of this parameter starts with a "|" character then Samba will
treat that value as a pipe command to open and will set the environment
variables from the oput of the pipe. This command must not be world writable
and must reside in a directory that is not world writable.
The contents of the file or the output of the pipe should be formatted
as the output of the standard Unix env(1) command. This is of the form :
Example environment entry:
tt( SAMBA_NETBIOS_NAME=myhostname )
bf(Default:)
tt(No default value)
bf(Examples:)
tt( source environment = |/etc/smb.conf.sh)
tt( source environment = /usr/local/smb_env_vars)
label(ssl)
dit(bf(ssl (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This variable enables or disables the entire SSL mode. If it is set to
"no", the SSL enabled samba behaves exactly like the non-SSL samba. If
set to "yes", it depends on the variables link(bf("ssl
hosts"))(sslhosts) and link(bf("ssl hosts resign"))(sslhostsresign)
whether an SSL connection will be required.
bf(Default:)
tt( ssl=no)
bf(Example:)
tt( ssl=yes)
label(sslCAcertDir)
dit(bf(ssl CA certDir (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This variable defines where to look up the Certification
Authorities. The given directory should contain one file for each CA
that samba will trust. The file name must be the hash value over the
"Distinguished Name" of the CA. How this directory is set up is
explained later in this document. All files within the directory that
don't fit into this naming scheme are ignored. You don't need this
variable if you don't verify client certificates.
bf(Default:)
tt( ssl CA certDir = /usr/local/ssl/certs)
label(sslCAcertFile)
dit(bf(ssl CA certFile (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This variable is a second way to define the trusted CAs. The
certificates of the trusted CAs are collected in one big file and this
variable points to the file. You will probably only use one of the two
ways to define your CAs. The first choice is preferable if you have
many CAs or want to be flexible, the second is preferable if you only
have one CA and want to keep things simple (you won't need to create
the hashed file names). You don't need this variable if you don't
verify client certificates.
bf(Default:)
tt( ssl CA certFile = /usr/local/ssl/certs/trustedCAs.pem)
label(sslciphers)
dit(bf(ssl ciphers (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This variable defines the ciphers that should be offered during SSL
negotiation. You should not set this variable unless you know what you
are doing.
label(sslclientcert)
dit(bf(ssl client cert (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
The certificate in this file is used by
url(bf(smbclient))(smbclient.1.html) if it exists. It's needed if the
server requires a client certificate.
bf(Default:)
tt( ssl client cert = /usr/local/ssl/certs/smbclient.pem)
label(sslclientkey)
dit(bf(ssl client key (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This is the private key for url(bf(smbclient))(smbclient.1.html). It's
only needed if the client should have a certificate.
bf(Default:)
tt( ssl client key = /usr/local/ssl/private/smbclient.pem)
label(sslcompatibility)
dit(bf(ssl compatibility (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This variable defines whether SSLeay should be configured for bug
compatibility with other SSL implementations. This is probably not
desirable because currently no clients with SSL implementations other
than SSLeay exist.
bf(Default:)
tt( ssl compatibility = no)
label(sslhosts)
dit(bf(ssl hosts (G)))
See link(bf("ssl hosts resign"))(sslhostsresign).
label(sslhostsresign)
dit(bf(ssl hosts resign (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
These two variables define whether samba will go into SSL mode or
not. If none of them is defined, samba will allow only SSL
connections. If the link(bf("ssl hosts"))(sslhosts) variable lists
hosts (by IP-address, IP-address range, net group or name), only these
hosts will be forced into SSL mode. If the bf("ssl hosts resign")
variable lists hosts, only these hosts will NOT be forced into SSL
mode. The syntax for these two variables is the same as for the
link(bf("hosts allow"))(hostsallow) and link(bf("hosts
deny"))(hostsdeny) pair of variables, only that the subject of the
decision is different: It's not the access right but whether SSL is
used or not. See the link(bf("allow hosts"))(allowhosts) parameter for
details. The example below requires SSL connections from all hosts
outside the local net (which is 192.168.*.*).
bf(Default:)
tt( ssl hosts = )
tt( ssl hosts resign = )
bf(Example:)
tt( ssl hosts resign = 192.168.)
label(sslrequireclientcert)
dit(bf(ssl require clientcert (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
If this variable is set to tt("yes"), the server will not tolerate
connections from clients that don't have a valid certificate. The
directory/file given in link(bf("ssl CA certDir"))(sslCAcertDir) and
link(bf("ssl CA certFile"))(sslCAcertFile) will be used to look up the
CAs that issued the client's certificate. If the certificate can't be
verified positively, the connection will be terminated. If this
variable is set to tt("no"), clients don't need certificates. Contrary
to web applications you really em(*should*) require client
certificates. In the web environment the client's data is sensitive
(credit card numbers) and the server must prove to be trustworthy. In
a file server environment the server's data will be sensitive and the
clients must prove to be trustworthy.
bf(Default:)
tt( ssl require clientcert = no)
label(sslrequireservercert)
dit(bf(ssl require servercert (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
If this variable is set to tt("yes"), the
url(bf(smbclient))(smbclient.1.html) will request a certificate from
the server. Same as link(bf("ssl require
clientcert"))(sslrequireclientcert) for the server.
bf(Default:)
tt( ssl require servercert = no)
label(sslservercert)
dit(bf(ssl server cert (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This is the file containing the server's certificate. The server _must_
have a certificate. The file may also contain the server's private key.
See later for how certificates and private keys are created.
bf(Default:)
tt( ssl server cert = )
label(sslserverkey)
dit(bf(ssl server key (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This file contains the private key of the server. If this variable is
not defined, the key is looked up in the certificate file (it may be
appended to the certificate). The server em(*must*) have a private key
and the certificate em(*must*) match this private key.
bf(Default:)
tt( ssl server key = )
label(sslversion)
dit(bf(ssl version (G)))
This variable is part of SSL-enabled Samba. This is only available if
the SSL libraries have been compiled on your system and the configure
option tt("--with-ssl") was given at configure time.
em(Note) that for export control reasons this code is em(**NOT**)
enabled by default in any current binary version of Samba.
This enumeration variable defines the versions of the SSL protocol
that will be used. tt("ssl2or3") allows dynamic negotiation of SSL v2
or v3, tt("ssl2") results in SSL v2, tt("ssl3") results in SSL v3 and
"tls1" results in TLS v1. TLS (Transport Layer Security) is the
(proposed?) new standard for SSL.
bf(Default:)
tt( ssl version = "ssl2or3")
label(statcache)
dit(bf(stat cache (G)))
This parameter determines if url(bf(smbd))(smbd.8.html) will use a
cache in order to speed up case insensitive name mappings. You should
never need to change this parameter.
bf(Default:)
tt( stat cache = yes)
label(statcachesize)
dit(bf(stat cache size (G)))
This parameter determines the number of entries in the link(bf(stat
cache))(statcache). You should never need to change this parameter.
bf(Default:)
tt( stat cache size = 50)
label(status)
dit(bf(status (G)))
This enables or disables logging of connections to a status file that
url(bf(smbstatus))(smbstatus.1.html) can read.
With this disabled url(bf(smbstatus))(smbstatus.1.html) won't be able
to tell you what connections are active. You should never need to
change this parameter.
bf(Default:)
status = yes
label(strictlocking)
dit(bf(strict locking (S)))
This is a boolean that controls the handling of file locking in the
server. When this is set to tt("yes") the server will check every read and
write access for file locks, and deny access if locks exist. This can
be slow on some systems.
When strict locking is tt("no") the server does file lock checks only
when the client explicitly asks for them.
Well behaved clients always ask for lock checks when it is important,
so in the vast majority of cases bf("strict locking = no") is
preferable.
bf(Default:)
tt( strict locking = no)
bf(Example:)
tt( strict locking = yes)
label(strictsync)
dit(bf(strict sync (S)))
Many Windows applications (including the Windows 98 explorer shell)
seem to confuse flushing buffer contents to disk with doing a sync to
disk. Under UNIX, a sync call forces the process to be suspended until
the kernel has ensured that all outstanding data in kernel disk
buffers has been safely stored onto stable storage. This is very slow
and should only be done rarely. Setting this parameter to "no" (the
default) means that smbd ignores the Windows applications requests for
a sync call. There is only a possibility of losing data if the
operating system itself that Samba is running on crashes, so there is
little danger in this default setting. In addition, this fixes many
performance problems that people have reported with the new Windows98
explorer shell file copies.
See also the link(bf("sync always"))(syncalways) parameter.
bf(Default:)
tt( strict sync = no)
bf(Example:)
tt( strict sync = yes)
label(stripdot)
dit(bf(strip dot (G)))
This is a boolean that controls whether to strip trailing dots off
UNIX filenames. This helps with some CDROMs that have filenames ending
in a single dot.
bf(Default:)
tt( strip dot = no)
bf(Example:)
tt( strip dot = yes)
label(syncalways)
dit(bf(sync always (S)))
This is a boolean parameter that controls whether writes will always
be written to stable storage before the write call returns. If this is
false then the server will be guided by the client's request in each
write call (clients can set a bit indicating that a particular write
should be synchronous). If this is true then every write will be
followed by a fsync() call to ensure the data is written to disk.
Note that the link(bf("strict sync"))(strictsync) parameter must be
set to tt("yes") in order for this parameter to have any affect.
See also the link(bf("strict sync"))(strictsync) parameter.
bf(Default:)
tt( sync always = no)
bf(Example:)
tt( sync always = yes)
label(syslog)
dit(bf(syslog (G)))
This parameter maps how Samba debug messages are logged onto the
system syslog logging levels. Samba debug level zero maps onto syslog
LOG_ERR, debug level one maps onto LOG_WARNING, debug level two maps
onto LOG_NOTICE, debug level three maps onto LOG_INFO. All higher
levels are mapped to LOG_DEBUG.
This paramter sets the threshold for sending messages to syslog.
Only messages with debug level less than this value will be sent
to syslog.
bf(Default:)
tt( syslog = 1)
label(syslogonly)
dit(bf(syslog only (G)))
If this parameter is set then Samba debug messages are logged into the
system syslog only, and not to the debug log files.
bf(Default:)
tt( syslog only = no)
label(templatehomedir)
dit(bf(template homedir (G)))
NOTE: this parameter is only available in Samba 3.0.
When filling out the user information for a Windows NT user, the
url(bf(winbindd))(winbindd.8.html) daemon uses this parameter to fill in
the home directory for that user. If the string tt(%D) is present it is
substituted with the user's Windows NT domain name. If the string tt(%U)
is present it is substituted with the user's Windows NT user name.
bf(Default:)
tt( template homedir = /home/%D/%U)
label(templateshell)
dit(bf(template shell (G)))
NOTE: this parameter is only available in Samba 3.0.
When filling out the user information for a Windows NT user, the
url(bf(winbindd))(winbindd.8.html) daemon uses this parameter to fill in
the login shell for that user.
bf(Default:)
tt( template shell = /bin/false)
label(timeoffset)
dit(bf(time offset (G)))
This parameter is a setting in minutes to add to the normal GMT to
local time conversion. This is useful if you are serving a lot of PCs
that have incorrect daylight saving time handling.
bf(Default:)
tt( time offset = 0)
bf(Example:)
tt( time offset = 60)
label(timeserver)
dit(bf(time server (G)))
This parameter determines if url(bf(nmbd))(nmbd.8.html) advertises
itself as a time server to Windows clients. The default is False.
bf(Default:)
tt( time server = False)
bf(Example:)
tt( time server = True)
label(timestamplogs)
dit(bf(timestamp logs (G)))
Synonym for url(bf("debug timestamp"))(debugtimestamp).
label(unixpasswordsync)
dit(bf(unix password sync (G)))
This boolean parameter controls whether Samba attempts to synchronize
the UNIX password with the SMB password when the encrypted SMB
password in the smbpasswd file is changed. If this is set to true the
program specified in the link(bf("passwd program"))(passwdprogram)
parameter is called em(*AS ROOT*) - to allow the new UNIX password to be
set without access to the old UNIX password (as the SMB password has
change code has no access to the old password cleartext, only the
new). By default this is set to tt("false").
See also link(bf("passwd program"))(passwdprogram), link(bf("passwd
chat"))(passwdchat).
bf(Default:)
tt( unix password sync = False)
bf(Example:)
tt( unix password sync = True)
label(unixrealname)
dit(bf(unix realname (G)))
This boolean parameter when set causes samba to supply the real name
field from the unix password file to the client. This is useful for
setting up mail clients and WWW browsers on systems used by more than
one person.
bf(Default:)
tt( unix realname = no)
bf(Example:)
tt( unix realname = yes)
label(updateencrypted)
dit(bf(update encrypted (G)))
This boolean parameter allows a user logging on with a plaintext
password to have their encrypted (hashed) password in the smbpasswd
file to be updated automatically as they log on. This option allows a
site to migrate from plaintext password authentication (users
authenticate with plaintext password over the wire, and are checked
against a UNIX account database) to encrypted password authentication
(the SMB challenge/response authentication mechanism) without forcing
all users to re-enter their passwords via smbpasswd at the time the
change is made. This is a convenience option to allow the change over
to encrypted passwords to be made over a longer period. Once all users
have encrypted representations of their passwords in the smbpasswd
file this parameter should be set to tt("off").
In order for this parameter to work correctly the link(bf("encrypt
passwords"))(encryptpasswords) parameter must be set to tt("no") when
this parameter is set to tt("yes").
Note that even when this parameter is set a user authenticating to
smbd must still enter a valid password in order to connect correctly,
and to update their hashed (smbpasswd) passwords.
bf(Default:)
tt( update encrypted = no)
bf(Example:)
tt( update encrypted = yes)
label(userhosts)
dit(bf(use rhosts (G)))
If this global parameter is a true, it specifies that the UNIX users
tt(".rhosts") file in their home directory will be read to find the
names of hosts and users who will be allowed access without specifying
a password.
NOTE: The use of bf(use rhosts) can be a major security hole. This is
because you are trusting the PC to supply the correct username. It is
very easy to get a PC to supply a false username. I recommend that the
bf(use rhosts) option be only used if you really know what you are
doing.
bf(Default:)
tt( use rhosts = no)
bf(Example:)
tt( use rhosts = yes)
label(user)
dit(bf(user (S)))
Synonym for link(bf("username"))(username).
label(users)
dit(bf(users (S)))
Synonym for link(bf("username"))(username).
label(username)
dit(bf(username (S)))
Multiple users may be specified in a comma-delimited list, in which
case the supplied password will be tested against each username in
turn (left to right).
The bf(username=) line is needed only when the PC is unable to supply
its own username. This is the case for the COREPLUS protocol or where
your users have different WfWg usernames to UNIX usernames. In both
these cases you may also be better using the tt(\\server\share%user)
syntax instead.
The bf(username=) line is not a great solution in many cases as it
means Samba will try to validate the supplied password against each of
the usernames in the username= line in turn. This is slow and a bad
idea for lots of users in case of duplicate passwords. You may get
timeouts or security breaches using this parameter unwisely.
Samba relies on the underlying UNIX security. This parameter does not
restrict who can login, it just offers hints to the Samba server as to
what usernames might correspond to the supplied password. Users can
login as whoever they please and they will be able to do no more
damage than if they started a telnet session. The daemon runs as the
user that they log in as, so they cannot do anything that user cannot
do.
To restrict a service to a particular set of users you can use the
link(bf("valid users="))(validusers) parameter.
If any of the usernames begin with a tt('@') then the name will be
looked up first in the yp netgroups list (if Samba is compiled with
netgroup support), followed by a lookup in the UNIX groups database
and will expand to a list of all users in the group of that name.
If any of the usernames begin with a tt('+') then the name will be
looked up only in the UNIX groups database and will expand to a list
of all users in the group of that name.
If any of the usernames begin with a tt('&') then the name will be
looked up only in the yp netgroups database (if Samba is compiled with
netgroup support) and will expand to a list of all users in the
netgroup group of that name.
Note that searching though a groups database can take quite some time,
and some clients may time out during the search.
See the section link(bf("NOTE ABOUT USERNAME/PASSWORD
VALIDATION"))(NOTEABOUTUSERNAMEPASSWORDVALIDATION) for more
information on how this parameter determines access to the services.
bf(Default:)
tt( The guest account if a guest service, else the name of the service.)
bf(Examples:)
verb(
username = fred
username = fred, mary, jack, jane, @users, @pcgroup
)
label(usernamelevel)
dit(bf(username level (G)))
This option helps Samba to try and 'guess' at the real UNIX username,
as many DOS clients send an all-uppercase username. By default Samba
tries all lowercase, followed by the username with the first letter
capitalized, and fails if the username is not found on the UNIX
machine.
If this parameter is set to non-zero the behavior changes. This
parameter is a number that specifies the number of uppercase
combinations to try whilst trying to determine the UNIX user name. The
higher the number the more combinations will be tried, but the slower
the discovery of usernames will be. Use this parameter when you have
strange usernames on your UNIX machine, such as tt("AstrangeUser").
bf(Default:)
tt( username level = 0)
bf(Example:)
tt( username level = 5)
label(usernamemap)
dit(bf(username map (G)))
This option allows you to specify a file containing a mapping of
usernames from the clients to the server. This can be used for several
purposes. The most common is to map usernames that users use on DOS or
Windows machines to those that the UNIX box uses. The other is to map
multiple users to a single username so that they can more easily share
files.
The map file is parsed line by line. Each line should contain a single
UNIX username on the left then a tt('=') followed by a list of
usernames on the right. The list of usernames on the right may contain
names of the form @group in which case they will match any UNIX
username in that group. The special client name tt('*') is a wildcard
and matches any name. Each line of the map file may be up to 1023
characters long.
The file is processed on each line by taking the supplied username and
comparing it with each username on the right hand side of the tt('=')
signs. If the supplied name matches any of the names on the right hand
side then it is replaced with the name on the left. Processing then
continues with the next line.
If any line begins with a tt('#') or a tt(';') then it is ignored
If any line begins with an tt('!') then the processing will stop after
that line if a mapping was done by the line. Otherwise mapping
continues with every line being processed. Using tt('!') is most
useful when you have a wildcard mapping line later in the file.
For example to map from the name tt("admin") or tt("administrator") to
the UNIX name tt("root") you would use:
tt( root = admin administrator)
Or to map anyone in the UNIX group tt("system") to the UNIX name
tt("sys") you would use:
tt( sys = @system)
You can have as many mappings as you like in a username map file.
If your system supports the NIS NETGROUP option then the netgroup
database is checked before the tt(/etc/group) database for matching
groups.
You can map Windows usernames that have spaces in them by using double
quotes around the name. For example:
tt( tridge = "Andrew Tridgell")
would map the windows username tt("Andrew Tridgell") to the unix
username tridge.
The following example would map mary and fred to the unix user sys,
and map the rest to guest. Note the use of the tt('!') to tell Samba
to stop processing if it gets a match on that line.
verb(
!sys = mary fred
guest = *
)
Note that the remapping is applied to all occurrences of
usernames. Thus if you connect to tt("\\server\fred") and tt("fred")
is remapped to tt("mary") then you will actually be connecting to
tt("\\server\mary") and will need to supply a password suitable for
tt("mary") not tt("fred"). The only exception to this is the username
passed to the link(bf("password server"))(passwordserver) (if you have
one). The password server will receive whatever username the client
supplies without modification.
Also note that no reverse mapping is done. The main effect this has is
with printing. Users who have been mapped may have trouble deleting
print jobs as PrintManager under WfWg will think they don't own the
print job.
bf(Default:)
tt( no username map)
bf(Example:)
tt( username map = /usr/local/samba/lib/users.map)
label(utmp)
dit(bf(utmp (S)))
This boolean parameter is only available if Samba has been configured and compiled
with the option tt(--with-utmp). If set to True then Samba will attempt
to add utmp or utmpx records (depending on the UNIX system) whenever a
connection is made to a Samba server. Sites may use this to record the
user connecting to a Samba share.
See also the link(bf("utmp directory"))(utmpdirectory) parameter.
bf(Default:)
tt(utmp = False)
bf(Example:)
tt(utmp = True)
label(utmpdirectory)
dit(bf(utmp directory(G)))
This parameter is only available if Samba has been configured and compiled
with the option tt(--with-utmp). It specifies a directory pathname that is
used to store the utmp or utmpx files (depending on the UNIX system) that
record user connections to a Samba server. See also the link(bf("utmp"))(utmp)
parameter. By default this is not set, meaning the system will use whatever
utmp file the native system is set to use (usually /var/run/utmp on Linux).
bf(Default:)
tt(no utmp directory)
bf(Example:)
tt(utmp directory = /var/adm/)
label(winbindcachetime)
dit(winbind cache time)
NOTE: this parameter is only available in Samba 3.0.
This parameter specifies the number of seconds the
url(bf(winbindd))(winbindd.8.html) daemon will cache user and group
information before querying a Windows NT server again.
bf(Default:)
tt( winbind cache type = 15)
label(winbindgid)
dit(winbind gid)
NOTE: this parameter is only available in Samba 3.0.
The winbind gid parameter specifies the range of group ids that are
allocated by the url(bf(winbindd))(winbindd.8.html) daemon. This range of
group ids should have no existing local or nis groups within it as strange
conflicts can occur otherwise.
bf(Default:)
tt( winbind gid = )
bf(Example:)
tt( winbind gid = 10000-20000)
label(winbinduid)
dit(winbind uid)
NOTE: this parameter is only available in Samba 3.0.
The winbind uid parameter specifies the range of user ids that are
allocated by the url(bf(winbindd))(winbindd.8.html) daemon. This range of
ids should have no existing local or nis users within it as strange
conflicts can occur otherwise.
bf(Default:)
tt( winbind uid = )
bf(Example:)
tt( winbind uid = 10000-20000)
label(validchars)
dit(bf(valid chars (G)))
The option allows you to specify additional characters that should be
considered valid by the server in filenames. This is particularly
useful for national character sets, such as adding u-umlaut or a-ring.
The option takes a list of characters in either integer or character
form with spaces between them. If you give two characters with a colon
between them then it will be taken as an lowercase:uppercase pair.
If you have an editor capable of entering the characters into the
config file then it is probably easiest to use this method. Otherwise
you can specify the characters in octal, decimal or hexadecimal form
using the usual C notation.
For example to add the single character tt('Z') to the charset (which
is a pointless thing to do as it's already there) you could do one of
the following
verb(
valid chars = Z
valid chars = z:Z
valid chars = 0132:0172
)
The last two examples above actually add two characters, and alter the
uppercase and lowercase mappings appropriately.
Note that you MUST specify this parameter after the link(bf("client
code page"))(clientcodepage) parameter if you have both set. If
link(bf("client code page"))(clientcodepage) is set after the
bf("valid chars") parameter the bf("valid chars") settings will be
overwritten.
See also the link(bf("client code page"))(clientcodepage) parameter.
bf(Default:)
verb(
Samba defaults to using a reasonable set of valid characters
for English systems
)
bf(Example)
tt( valid chars = 0345:0305 0366:0326 0344:0304)
The above example allows filenames to have the Swedish characters in
them.
NOTE: It is actually quite difficult to correctly produce a bf("valid
chars") line for a particular system. To automate the process
email(tino@augsburg.net) has written a package called bf("validchars")
which will automatically produce a complete bf("valid chars") line for
a given client system. Look in the examples/validchars/ subdirectory
of your Samba source code distribution for this package.
label(validusers)
dit(bf(valid users (S)))
This is a list of users that should be allowed to login to this
service. Names starting with tt('@'), tt('+') and tt('&') are
interpreted using the same rules as described in the link(bf("invalid
users"))(invalidusers) parameter.
If this is empty (the default) then any user can login. If a username
is in both this list and the link(bf("invalid users"))(invalidusers)
list then access is denied for that user.
The current servicename is substituted for
link(bf("%S"))(percentS). This is useful in the
link(bf([homes]))(homes) section.
See also link(bf("invalid users"))(invalidusers).
bf(Default:)
tt( No valid users list. (anyone can login))
bf(Example:)
tt( valid users = greg, @pcusers)
label(vetofiles)
dit(bf(veto files(S)))
This is a list of files and directories that are neither visible nor
accessible. Each entry in the list must be separated by a tt('/'),
which allows spaces to be included in the entry. tt('*') and tt('?')
can be used to specify multiple files or directories as in DOS
wildcards.
Each entry must be a unix path, not a DOS path and must em(*not*) include the
unix directory separator tt('/').
Note that the link(bf("case sensitive"))(casesensitive) option is
applicable in vetoing files.
One feature of the veto files parameter that it is important to be
aware of, is that if a directory contains nothing but files that match
the veto files parameter (which means that Windows/DOS clients cannot
ever see them) is deleted, the veto files within that directory *are
automatically deleted* along with it, if the user has UNIX permissions
to do so.
Setting this parameter will affect the performance of Samba, as it
will be forced to check all files and directories for a match as they
are scanned.
See also link(bf("hide files"))(hidefiles) and link(bf("case
sensitive"))(casesensitive).
bf(Default:)
tt( No files or directories are vetoed.)
bf(Examples:)
Example 1.
verb(
Veto any files containing the word Security,
any ending in .tmp, and any directory containing the
word root.
veto files = /*Security*/*.tmp/*root*/
)
Example 2.
verb(
Veto the Apple specific files that a NetAtalk server
creates.
veto files = /.AppleDouble/.bin/.AppleDesktop/Network Trash Folder/
)
label(vetooplockfiles)
dit(bf(veto oplock files (S)))
This parameter is only valid when the link(bf("oplocks"))(oplocks)
parameter is turned on for a share. It allows the Samba administrator
to selectively turn off the granting of oplocks on selected files that
match a wildcarded list, similar to the wildcarded list used in the
link(bf("veto files"))(vetofiles) parameter.
bf(Default:)
tt( No files are vetoed for oplock grants.)
bf(Examples:)
You might want to do this on files that you know will be heavily
contended for by clients. A good example of this is in the NetBench
SMB benchmark program, which causes heavy client contention for files
ending in tt(".SEM"). To cause Samba not to grant oplocks on these
files you would use the line (either in the link(bf([global]))(global)
section or in the section for the particular NetBench share :
tt( veto oplock files = /*.SEM/)
label(volume)
dit(bf(volume (S)))
This allows you to override the volume label returned for a
share. Useful for CDROMs with installation programs that insist on a
particular volume label.
The default is the name of the share.
label(widelinks)
dit(bf(wide links (S)))
This parameter controls whether or not links in the UNIX file system
may be followed by the server. Links that point to areas within the
directory tree exported by the server are always allowed; this
parameter controls access only to areas that are outside the directory
tree being exported.
Note that setting this parameter can have a negative effect on your
server performance due to the extra system calls that Samba has to
do in order to perform the link checks.
bf(Default:)
tt( wide links = yes)
bf(Example:)
tt( wide links = no)
label(winsproxy)
dit(bf(wins proxy (G)))
This is a boolean that controls if url(bf(nmbd))(nmbd.8.html) will
respond to broadcast name queries on behalf of other hosts. You may
need to set this to tt("yes") for some older clients.
bf(Default:)
tt( wins proxy = no)
label(winsserver)
dit(bf(wins server (G)))
This specifies the IP address (or DNS name: IP address for preference)
of the WINS server that url(bf(nmbd))(nmbd.8.html) should register with.
If you have a WINS server on your network then you should set this to
the WINS server's IP.
You should point this at your WINS server if you have a
multi-subnetted network.
em(NOTE). You need to set up Samba to point to a WINS server if you
have multiple subnets and wish cross-subnet browsing to work correctly.
See the documentation file BROWSING.txt in the docs/ directory of your
Samba source distribution.
bf(Default:)
tt( wins server = )
bf(Example:)
tt( wins server = 192.9.200.1)
label(winshook)
dit(bf(wins hook (G)))
When Samba is running as a WINS server this allows you to call an
external program for all changes to the WINS database. The primary use
for this option is to allow the dynamic update of external name
resolution databases such as dynamic DNS.
The wins hook parameter specifies the name of a script or executable
that will be called as follows:
wins_hook operation name nametype ttl IP_list
The first argument is the operation and is one of "add", "delete",
or "refresh". In most cases the operation can be ignored as the rest
of the parameters provide sufficient information. Note that "refresh"
may sometimes be called when the name has not previously been added,
in that case it should be treated as an add.
The second argument is the netbios name. If the name is not a legal
name then the wins hook is not called. Legal names contain only
letters, digits, hyphens, underscores and periods.
The third argument is the netbios name type as a 2 digit hexadecimal
number.
The fourth argument is the TTL (time to live) for the name in seconds.
The fifth and subsequent arguments are the IP addresses currently
registered for that name. If this list is empty then the name should
be deleted.
An example script that calls the BIND dynamic DNS update program
"nsupdate" is provided in the examples directory of the Samba source
code.
label(winssupport)
dit(bf(wins support (G)))
This boolean controls if the url(bf(nmbd))(nmbd.8.html) process in
Samba will act as a WINS server. You should not set this to true
unless you have a multi-subnetted network and you wish a particular
url(bf(nmbd))(nmbd.8.html) to be your WINS server. Note that you
should em(*NEVER*) set this to true on more than one machine in your
network.
bf(Default:)
tt( wins support = no)
label(workgroup)
dit(bf(workgroup (G)))
This controls what workgroup your server will appear to be in when
queried by clients. Note that this parameter also controls the Domain
name used with the link(bf("security=domain"))(securityequaldomain)
setting.
bf(Default:)
tt( set at compile time to WORKGROUP)
bf(Example:)
workgroup = MYGROUP
label(writable)
dit(bf(writable (S)))
Synonym for link(bf("writeable"))(writeable) for people who can't spell :-).
label(writelist)
dit(bf(write list (S)))
This is a list of users that are given read-write access to a
service. If the connecting user is in this list then they will be
given write access, no matter what the link(bf("writeable"))(writeable)
option is set to. The list can include group names using the @group
syntax.
Note that if a user is in both the read list and the write list then
they will be given write access.
See also the link(bf("read list"))(readlist) option.
bf(Default:)
tt( write list = )
bf(Example:)
tt( write list = admin, root, @staff)
label(writecachesize)
dit(bf(write cache size (S)))
This integer parameter (new with Samba 2.0.7) if set to non-zero causes Samba to create an in-memory
cache for each oplocked file (it does bf(not) do this for non-oplocked files). All
writes that the client does not request to be flushed directly to disk will be
stored in this cache if possible. The cache is flushed onto disk when a write
comes in whose offset would not fit into the cache or when the file is closed
by the client. Reads for the file are also served from this cache if the data
is stored within it.
This cache allows Samba to batch client writes into a more efficient write
size for RAID disks (ie. writes may be tuned to be the RAID stripe size) and
can improve performance on systems where the disk subsystem is a bottleneck
but there is free memory for userspace programs.
The integer parameter specifies the size of this cache (per oplocked file)
in bytes.
bf(Default:)
tt( write cache size = 0)
bf(Example:)
tt( write cache size = 262144)
for a 256k cache size per file.
label(writeok)
dit(bf(write ok (S)))
Synonym for link(bf(writeable))(writeable).
label(writeraw)
dit(bf(write raw (G)))
This parameter controls whether or not the server will support raw
writes SMB's when transferring data from clients. You should never
need to change this parameter.
bf(Default:)
tt( write raw = yes)
label(writeable)
dit(bf(writeable))
An inverted synonym is link(bf("read only"))(readonly).
If this parameter is tt("no"), then users of a service may not create
or modify files in the service's directory.
Note that a printable service link(bf(("printable = yes")))(printable)
will em(*ALWAYS*) allow writing to the directory (user privileges
permitting), but only via spooling operations.
bf(Default:)
tt( writeable = no)
bf(Examples:)
verb(
read only = no
writeable = yes
write ok = yes
)
endit()
label(WARNINGS)
manpagesection(WARNINGS)
Although the configuration file permits service names to contain
spaces, your client software may not. Spaces will be ignored in
comparisons anyway, so it shouldn't be a problem - but be aware of the
possibility.
On a similar note, many clients - especially DOS clients - limit
service names to eight characters. url(bf(Smbd))(smbd.8.html) has no
such limitation, but attempts to connect from such clients will fail
if they truncate the service names. For this reason you should
probably keep your service names down to eight characters in length.
Use of the link(bf([homes]))(homes) and link(bf([printers]))(printers)
special sections make life for an administrator easy, but the various
combinations of default attributes can be tricky. Take extreme care
when designing these sections. In particular, ensure that the
permissions on spool directories are correct.
label(VERSION)
manpagesection(VERSION)
This man page is correct for version 2.0 of the Samba suite.
label(SEEALSO)
manpagesection(SEE ALSO)
url(bf(smbd (8)))(smbd.8.html), url(bf(smbclient (1)))(smbclient.1.html),
url(bf(nmbd (8)))(nmbd.8.html), url(bf(testparm (1)))(testparm.1.html),
url(bf(testprns (1)))(testprns.1.html), url(bf(Samba))(samba.7.html),
url(bf(nmblookup (1)))(nmblookup.1.html), url(bf(smbpasswd (5)))(smbpasswd.5.html),
url(bf(smbpasswd (8)))(smbpasswd.8.html).
label(AUTHOR)
manpageauthor()
The original Samba software and related utilities were created by
Andrew Tridgell email(samba@samba.org). Samba is now developed
by the Samba Team as an Open Source project similar to the way the
Linux kernel is developed.
The original Samba man pages were written by Karl Auer. The man page
sources were converted to YODL format (another excellent piece of Open
Source software, available at
url(bf(ftp://ftp.icce.rug.nl/pub/unix/))(ftp://ftp.icce.rug.nl/pub/unix/))
and updated for the Samba2.0 release by Jeremy Allison.
email(samba@samba.org).
See url(bf(samba (7)))(samba.7.html) to find out how to get a full
list of contributors and details on how to submit bug reports,
comments etc.