/* Unix SMB/CIFS implementation. Infrastructure for async requests Copyright (C) Volker Lendecke 2008 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "includes.h" #include "lib/tevent/tevent.h" #include "lib/talloc/talloc.h" #include "lib/util/dlinklist.h" #include "lib/async_req/async_req.h" #ifndef TALLOC_FREE #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0) #endif /** * @brief Print an async_req structure * @param[in] mem_ctx The memory context for the result * @param[in] req The request to be printed * @retval Text representation of req * * This is a default print function for async requests. Implementations should * override this with more specific information. * * This function should not be used by async API users, this is non-static * only to allow implementations to easily provide default information in * their specific functions. */ char *async_req_print(TALLOC_CTX *mem_ctx, struct async_req *req) { return talloc_asprintf(mem_ctx, "async_req: state=%d, error=%d, " "priv=%s", req->state, (int)req->error, talloc_get_name(req->private_data)); } /** * @brief Create an async request * @param[in] mem_ctx The memory context for the result * @param[in] ev The event context this async request will be driven by * @retval A new async request * * The new async request will be initialized in state ASYNC_REQ_IN_PROGRESS */ struct async_req *async_req_new(TALLOC_CTX *mem_ctx) { struct async_req *result; result = talloc_zero(mem_ctx, struct async_req); if (result == NULL) { return NULL; } result->state = ASYNC_REQ_IN_PROGRESS; result->print = async_req_print; return result; } static void async_req_finish(struct async_req *req, enum async_req_state state) { req->state = state; if (req->async.fn != NULL) { req->async.fn(req); } } /** * @brief An async request has successfully finished * @param[in] req The finished request * * async_req_done is to be used by implementors of async requests. When a * request is successfully finished, this function calls the user's completion * function. */ void async_req_done(struct async_req *req) { async_req_finish(req, ASYNC_REQ_DONE); } /** * @brief An async request has seen an error * @param[in] req The request with an error * @param[in] error The error code * * async_req_done is to be used by implementors of async requests. When a * request can not successfully completed, the implementation should call this * function with the appropriate status code. */ void async_req_error(struct async_req *req, uint64_t error) { req->error = error; async_req_finish(req, ASYNC_REQ_USER_ERROR); } /** * @brief Timed event callback * @param[in] ev Event context * @param[in] te The timed event * @param[in] now zero time * @param[in] priv The async request to be finished */ static void async_trigger(struct tevent_context *ev, struct tevent_timer *te, struct timeval now, void *priv) { struct async_req *req = talloc_get_type_abort(priv, struct async_req); TALLOC_FREE(te); if (req->error == 0) { async_req_done(req); } else { async_req_error(req, req->error); } } /** * @brief Helper function for nomem check * @param[in] p The pointer to be checked * @param[in] req The request being processed * * Convenience helper to easily check alloc failure within a callback * implementing the next step of an async request. * * Call pattern would be * \code * p = talloc(mem_ctx, bla); * if (async_req_ntnomem(p, req)) { * return; * } * \endcode */ bool async_req_nomem(const void *p, struct async_req *req) { if (p != NULL) { return false; } async_req_finish(req, ASYNC_REQ_NO_MEMORY); return true; } /** * @brief Finish a request before it started processing * @param[in] req The finished request * @param[in] status The success code * * An implementation of an async request might find that it can either finish * the request without waiting for an external event, or it can't even start * the engine. To present the illusion of a callback to the user of the API, * the implementation can call this helper function which triggers an * immediate timed event. This way the caller can use the same calling * conventions, independent of whether the request was actually deferred. */ bool async_post_error(struct async_req *req, struct tevent_context *ev, uint64_t error) { req->error = error; if (tevent_add_timer(ev, req, tevent_timeval_zero(), async_trigger, req) == NULL) { return false; } return true; } bool async_req_is_error(struct async_req *req, enum async_req_state *state, uint64_t *error) { if (req->state == ASYNC_REQ_DONE) { return false; } if (req->state == ASYNC_REQ_USER_ERROR) { *error = req->error; } *state = req->state; return true; } static void async_req_timedout(struct tevent_context *ev, struct tevent_timer *te, struct timeval now, void *priv) { struct async_req *req = talloc_get_type_abort(priv, struct async_req); TALLOC_FREE(te); async_req_finish(req, ASYNC_REQ_TIMED_OUT); } bool async_req_set_timeout(struct async_req *req, struct tevent_context *ev, struct timeval to) { return (tevent_add_timer( ev, req, tevent_timeval_current_ofs(to.tv_sec, to.tv_usec), async_req_timedout, req) != NULL); } struct async_req *async_wait_send(TALLOC_CTX *mem_ctx, struct tevent_context *ev, struct timeval to) { struct async_req *result; result = async_req_new(mem_ctx); if (result == NULL) { return result; } if (!async_req_set_timeout(result, ev, to)) { TALLOC_FREE(result); return NULL; } return result; } bool async_wait_recv(struct async_req *req) { return true; } struct async_queue_entry { struct async_queue_entry *prev, *next; struct async_req_queue *queue; struct async_req *req; void (*trigger)(struct async_req *req); }; struct async_req_queue { struct async_queue_entry *queue; }; struct async_req_queue *async_req_queue_init(TALLOC_CTX *mem_ctx) { return talloc_zero(mem_ctx, struct async_req_queue); } static int async_queue_entry_destructor(struct async_queue_entry *e) { struct async_req_queue *queue = e->queue; DLIST_REMOVE(queue->queue, e); if (queue->queue != NULL) { queue->queue->trigger(queue->queue->req); } return 0; } static void async_req_immediate_trigger(struct tevent_context *ev, struct tevent_timer *te, struct timeval now, void *priv) { struct async_queue_entry *e = talloc_get_type_abort( priv, struct async_queue_entry); TALLOC_FREE(te); e->trigger(e->req); } bool async_req_enqueue(struct async_req_queue *queue, struct tevent_context *ev, struct async_req *req, void (*trigger)(struct async_req *req)) { struct async_queue_entry *e; bool busy; busy = (queue->queue != NULL); e = talloc(req, struct async_queue_entry); if (e == NULL) { return false; } e->req = req; e->trigger = trigger; e->queue = queue; DLIST_ADD_END(queue->queue, e, struct async_queue_entry *); talloc_set_destructor(e, async_queue_entry_destructor); if (!busy) { struct tevent_timer *te; te = tevent_add_timer(ev, e, tevent_timeval_zero(), async_req_immediate_trigger, e); if (te == NULL) { TALLOC_FREE(e); return false; } } return true; } bool _async_req_setup(TALLOC_CTX *mem_ctx, struct async_req **preq, void *pstate, size_t state_size, const char *typename) { struct async_req *req; void **ppstate = (void **)pstate; void *state; req = async_req_new(mem_ctx); if (req == NULL) { return false; } state = talloc_size(req, state_size); if (state == NULL) { TALLOC_FREE(req); return false; } talloc_set_name_const(state, typename); req->private_data = state; *preq = req; *ppstate = state; return true; }