/* Unix SMB/CIFS implementation. async socket syscalls Copyright (C) Volker Lendecke 2008 ** NOTE! The following LGPL license applies to the async_sock ** library. This does NOT imply that all of Samba is released ** under the LGPL This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "replace.h" #include "system/network.h" #include "system/filesys.h" #include <talloc.h> #include <tevent.h> #include "lib/async_req/async_sock.h" /* Note: lib/util/ is currently GPL */ #include "lib/util/tevent_unix.h" #include "lib/util/util.h" #ifndef TALLOC_FREE #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0) #endif struct sendto_state { int fd; const void *buf; size_t len; int flags; const struct sockaddr_storage *addr; socklen_t addr_len; ssize_t sent; }; static void sendto_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data); struct tevent_req *sendto_send(TALLOC_CTX *mem_ctx, struct tevent_context *ev, int fd, const void *buf, size_t len, int flags, const struct sockaddr_storage *addr) { struct tevent_req *result; struct sendto_state *state; struct tevent_fd *fde; result = tevent_req_create(mem_ctx, &state, struct sendto_state); if (result == NULL) { return result; } state->fd = fd; state->buf = buf; state->len = len; state->flags = flags; state->addr = addr; switch (addr->ss_family) { case AF_INET: state->addr_len = sizeof(struct sockaddr_in); break; #if defined(HAVE_IPV6) case AF_INET6: state->addr_len = sizeof(struct sockaddr_in6); break; #endif case AF_UNIX: state->addr_len = sizeof(struct sockaddr_un); break; default: state->addr_len = sizeof(struct sockaddr_storage); break; } fde = tevent_add_fd(ev, state, fd, TEVENT_FD_WRITE, sendto_handler, result); if (fde == NULL) { TALLOC_FREE(result); return NULL; } return result; } static void sendto_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct tevent_req *req = talloc_get_type_abort( private_data, struct tevent_req); struct sendto_state *state = tevent_req_data(req, struct sendto_state); state->sent = sendto(state->fd, state->buf, state->len, state->flags, (const struct sockaddr *)state->addr, state->addr_len); if ((state->sent == -1) && (errno == EINTR)) { /* retry */ return; } if (state->sent == -1) { tevent_req_error(req, errno); return; } tevent_req_done(req); } ssize_t sendto_recv(struct tevent_req *req, int *perrno) { struct sendto_state *state = tevent_req_data(req, struct sendto_state); if (tevent_req_is_unix_error(req, perrno)) { return -1; } return state->sent; } struct recvfrom_state { int fd; void *buf; size_t len; int flags; struct sockaddr_storage *addr; socklen_t *addr_len; ssize_t received; }; static void recvfrom_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data); struct tevent_req *recvfrom_send(TALLOC_CTX *mem_ctx, struct tevent_context *ev, int fd, void *buf, size_t len, int flags, struct sockaddr_storage *addr, socklen_t *addr_len) { struct tevent_req *result; struct recvfrom_state *state; struct tevent_fd *fde; result = tevent_req_create(mem_ctx, &state, struct recvfrom_state); if (result == NULL) { return result; } state->fd = fd; state->buf = buf; state->len = len; state->flags = flags; state->addr = addr; state->addr_len = addr_len; fde = tevent_add_fd(ev, state, fd, TEVENT_FD_READ, recvfrom_handler, result); if (fde == NULL) { TALLOC_FREE(result); return NULL; } return result; } static void recvfrom_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct tevent_req *req = talloc_get_type_abort( private_data, struct tevent_req); struct recvfrom_state *state = tevent_req_data(req, struct recvfrom_state); state->received = recvfrom(state->fd, state->buf, state->len, state->flags, (struct sockaddr *)state->addr, state->addr_len); if ((state->received == -1) && (errno == EINTR)) { /* retry */ return; } if (state->received == 0) { tevent_req_error(req, EPIPE); return; } if (state->received == -1) { tevent_req_error(req, errno); return; } tevent_req_done(req); } ssize_t recvfrom_recv(struct tevent_req *req, int *perrno) { struct recvfrom_state *state = tevent_req_data(req, struct recvfrom_state); if (tevent_req_is_unix_error(req, perrno)) { return -1; } return state->received; } struct async_connect_state { int fd; int result; int sys_errno; long old_sockflags; socklen_t address_len; struct sockaddr_storage address; }; static void async_connect_connected(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *priv); /** * @brief async version of connect(2) * @param[in] mem_ctx The memory context to hang the result off * @param[in] ev The event context to work from * @param[in] fd The socket to recv from * @param[in] address Where to connect? * @param[in] address_len Length of *address * @retval The async request * * This function sets the socket into non-blocking state to be able to call * connect in an async state. This will be reset when the request is finished. */ struct tevent_req *async_connect_send(TALLOC_CTX *mem_ctx, struct tevent_context *ev, int fd, const struct sockaddr *address, socklen_t address_len) { struct tevent_req *result; struct async_connect_state *state; struct tevent_fd *fde; result = tevent_req_create( mem_ctx, &state, struct async_connect_state); if (result == NULL) { return NULL; } /** * We have to set the socket to nonblocking for async connect(2). Keep * the old sockflags around. */ state->fd = fd; state->sys_errno = 0; state->old_sockflags = fcntl(fd, F_GETFL, 0); if (state->old_sockflags == -1) { goto post_errno; } state->address_len = address_len; if (address_len > sizeof(state->address)) { errno = EINVAL; goto post_errno; } memcpy(&state->address, address, address_len); set_blocking(fd, false); state->result = connect(fd, address, address_len); if (state->result == 0) { tevent_req_done(result); goto done; } /** * A number of error messages show that something good is progressing * and that we have to wait for readability. * * If none of them are present, bail out. */ if (!(errno == EINPROGRESS || errno == EALREADY || #ifdef EISCONN errno == EISCONN || #endif errno == EAGAIN || errno == EINTR)) { state->sys_errno = errno; goto post_errno; } fde = tevent_add_fd(ev, state, fd, TEVENT_FD_READ | TEVENT_FD_WRITE, async_connect_connected, result); if (fde == NULL) { state->sys_errno = ENOMEM; goto post_errno; } return result; post_errno: tevent_req_error(result, state->sys_errno); done: fcntl(fd, F_SETFL, state->old_sockflags); return tevent_req_post(result, ev); } /** * fde event handler for connect(2) * @param[in] ev The event context that sent us here * @param[in] fde The file descriptor event associated with the connect * @param[in] flags Indicate read/writeability of the socket * @param[in] priv private data, "struct async_req *" in this case */ static void async_connect_connected(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *priv) { struct tevent_req *req = talloc_get_type_abort( priv, struct tevent_req); struct async_connect_state *state = tevent_req_data(req, struct async_connect_state); /* * Stevens, Network Programming says that if there's a * successful connect, the socket is only writable. Upon an * error, it's both readable and writable. */ if ((flags & (TEVENT_FD_READ|TEVENT_FD_WRITE)) == (TEVENT_FD_READ|TEVENT_FD_WRITE)) { int ret; ret = connect(state->fd, (struct sockaddr *)(void *)&state->address, state->address_len); if (ret == 0) { TALLOC_FREE(fde); tevent_req_done(req); return; } if (errno == EINPROGRESS) { /* Try again later, leave the fde around */ return; } TALLOC_FREE(fde); tevent_req_error(req, errno); return; } state->sys_errno = 0; tevent_req_done(req); } int async_connect_recv(struct tevent_req *req, int *perrno) { struct async_connect_state *state = tevent_req_data(req, struct async_connect_state); int err; fcntl(state->fd, F_SETFL, state->old_sockflags); if (tevent_req_is_unix_error(req, &err)) { *perrno = err; return -1; } if (state->sys_errno == 0) { return 0; } *perrno = state->sys_errno; return -1; } struct writev_state { struct tevent_context *ev; int fd; struct iovec *iov; int count; size_t total_size; uint16_t flags; }; static void writev_trigger(struct tevent_req *req, void *private_data); static void writev_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data); struct tevent_req *writev_send(TALLOC_CTX *mem_ctx, struct tevent_context *ev, struct tevent_queue *queue, int fd, bool err_on_readability, struct iovec *iov, int count) { struct tevent_req *req; struct writev_state *state; req = tevent_req_create(mem_ctx, &state, struct writev_state); if (req == NULL) { return NULL; } state->ev = ev; state->fd = fd; state->total_size = 0; state->count = count; state->iov = (struct iovec *)talloc_memdup( state, iov, sizeof(struct iovec) * count); if (state->iov == NULL) { goto fail; } state->flags = TEVENT_FD_WRITE; if (err_on_readability) { state->flags |= TEVENT_FD_READ; } if (queue == NULL) { struct tevent_fd *fde; fde = tevent_add_fd(state->ev, state, state->fd, state->flags, writev_handler, req); if (tevent_req_nomem(fde, req)) { return tevent_req_post(req, ev); } return req; } if (!tevent_queue_add(queue, ev, req, writev_trigger, NULL)) { goto fail; } return req; fail: TALLOC_FREE(req); return NULL; } static void writev_trigger(struct tevent_req *req, void *private_data) { struct writev_state *state = tevent_req_data(req, struct writev_state); struct tevent_fd *fde; fde = tevent_add_fd(state->ev, state, state->fd, state->flags, writev_handler, req); if (fde == NULL) { tevent_req_error(req, ENOMEM); } } static void writev_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct tevent_req *req = talloc_get_type_abort( private_data, struct tevent_req); struct writev_state *state = tevent_req_data(req, struct writev_state); size_t to_write, written; int i; to_write = 0; if ((state->flags & TEVENT_FD_READ) && (flags & TEVENT_FD_READ)) { tevent_req_error(req, EPIPE); return; } for (i=0; i<state->count; i++) { to_write += state->iov[i].iov_len; } written = writev(state->fd, state->iov, state->count); if ((written == -1) && (errno == EINTR)) { /* retry */ return; } if (written == -1) { tevent_req_error(req, errno); return; } if (written == 0) { tevent_req_error(req, EPIPE); return; } state->total_size += written; if (written == to_write) { tevent_req_done(req); return; } /* * We've written less than we were asked to, drop stuff from * state->iov. */ while (written > 0) { if (written < state->iov[0].iov_len) { state->iov[0].iov_base = (char *)state->iov[0].iov_base + written; state->iov[0].iov_len -= written; break; } written -= state->iov[0].iov_len; state->iov += 1; state->count -= 1; } } ssize_t writev_recv(struct tevent_req *req, int *perrno) { struct writev_state *state = tevent_req_data(req, struct writev_state); if (tevent_req_is_unix_error(req, perrno)) { return -1; } return state->total_size; } struct read_packet_state { int fd; uint8_t *buf; size_t nread; ssize_t (*more)(uint8_t *buf, size_t buflen, void *private_data); void *private_data; }; static void read_packet_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data); struct tevent_req *read_packet_send(TALLOC_CTX *mem_ctx, struct tevent_context *ev, int fd, size_t initial, ssize_t (*more)(uint8_t *buf, size_t buflen, void *private_data), void *private_data) { struct tevent_req *result; struct read_packet_state *state; struct tevent_fd *fde; result = tevent_req_create(mem_ctx, &state, struct read_packet_state); if (result == NULL) { return NULL; } state->fd = fd; state->nread = 0; state->more = more; state->private_data = private_data; state->buf = talloc_array(state, uint8_t, initial); if (state->buf == NULL) { goto fail; } fde = tevent_add_fd(ev, state, fd, TEVENT_FD_READ, read_packet_handler, result); if (fde == NULL) { goto fail; } return result; fail: TALLOC_FREE(result); return NULL; } static void read_packet_handler(struct tevent_context *ev, struct tevent_fd *fde, uint16_t flags, void *private_data) { struct tevent_req *req = talloc_get_type_abort( private_data, struct tevent_req); struct read_packet_state *state = tevent_req_data(req, struct read_packet_state); size_t total = talloc_get_size(state->buf); ssize_t nread, more; uint8_t *tmp; nread = recv(state->fd, state->buf+state->nread, total-state->nread, 0); if ((nread == -1) && (errno == EINTR)) { /* retry */ return; } if (nread == -1) { tevent_req_error(req, errno); return; } if (nread == 0) { tevent_req_error(req, EPIPE); return; } state->nread += nread; if (state->nread < total) { /* Come back later */ return; } /* * We got what was initially requested. See if "more" asks for -- more. */ if (state->more == NULL) { /* Nobody to ask, this is a async read_data */ tevent_req_done(req); return; } more = state->more(state->buf, total, state->private_data); if (more == -1) { /* We got an invalid packet, tell the caller */ tevent_req_error(req, EIO); return; } if (more == 0) { /* We're done, full packet received */ tevent_req_done(req); return; } tmp = talloc_realloc(state, state->buf, uint8_t, total+more); if (tevent_req_nomem(tmp, req)) { return; } state->buf = tmp; } ssize_t read_packet_recv(struct tevent_req *req, TALLOC_CTX *mem_ctx, uint8_t **pbuf, int *perrno) { struct read_packet_state *state = tevent_req_data(req, struct read_packet_state); if (tevent_req_is_unix_error(req, perrno)) { return -1; } *pbuf = talloc_move(mem_ctx, &state->buf); return talloc_get_size(*pbuf); }