#ifndef _TALLOC_H_ #define _TALLOC_H_ /* Unix SMB/CIFS implementation. Samba temporary memory allocation functions Copyright (C) Andrew Tridgell 2004-2005 Copyright (C) Stefan Metzmacher 2006 ** NOTE! The following LGPL license applies to the talloc ** library. This does NOT imply that all of Samba is released ** under the LGPL This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, see . */ #include #include #include /** \mainpage * * \section intro_sec Introduction * * Talloc is a hierarchical, reference counted memory pool system with * destructors. Quite a mouthful really, but not too bad once you get used to * it. * * Perhaps the biggest difference from other memory pool systems is that there * is no distinction between a "talloc context" and a "talloc pointer". Any * pointer returned from talloc() is itself a valid talloc context. This means * you can do this: * * \code * struct foo *X = talloc(mem_ctx, struct foo); * X->name = talloc_strdup(X, "foo"); * \endcode * * and the pointer X->name would be a "child" of the talloc context "X" which * is itself a child of mem_ctx. So if you do talloc_free(mem_ctx) then it is * all destroyed, whereas if you do talloc_free(X) then just X and X->name are * destroyed, and if you do talloc_free(X->name) then just the name element of * X is destroyed. * * If you think about this, then what this effectively gives you is an n-ary * tree, where you can free any part of the tree with talloc_free(). * * To start, you should probably first look at the definitions of * ::TALLOC_CTX, talloc_init(), talloc() and talloc_free(). * * \section named_blocks Named blocks * * Every talloc chunk has a name that can be used as a dynamic type-checking * system. If for some reason like a callback function you had to cast a * "struct foo *" to a "void *" variable, later you can safely reassign the * "void *" pointer to a "struct foo *" by using the talloc_get_type() or * talloc_get_type_abort() macros. * * \code * struct foo *X = talloc_get_type_abort(ptr, struct foo); * \endcode * * This will abort if "ptr" does not contain a pointer that has been created * with talloc(mem_ctx, struct foo). * * \section multi_threading Multi-Threading * * talloc itself does not deal with threads. It is thread-safe (assuming the * underlying "malloc" is), as long as each thread uses different memory * contexts. * * If two threads uses the same context then they need to synchronize in order * to be safe. In particular: * * * - when using talloc_enable_leak_report(), giving directly NULL as a * parent context implicitly refers to a hidden "null context" global * variable, so this should not be used in a multi-threaded environment * without proper synchronization * - the context returned by talloc_autofree_context() is also global so * shouldn't be used by several threads simultaneously without * synchronization. */ /** \defgroup talloc_basic Basic Talloc Routines * * This module contains the basic talloc routines that are used in everyday * programming. */ /** * \defgroup talloc_ref Talloc References * * This module contains the definitions around talloc references */ /** * \defgroup talloc_array Array routines * * Talloc contains some handy helpers for handling Arrays conveniently */ /** * \defgroup talloc_string String handling routines * * Talloc contains some handy string handling functions */ /** * \defgroup talloc_debug Debugging support routines * * To aid memory debugging, talloc contains routines to inspect the currently * allocated memory hierarchy. */ /** * \defgroup talloc_undoc Default group of undocumented stuff * * This should be empty... */ /*\{*/ /** * \typedef TALLOC_CTX * \brief Define a talloc parent type * \ingroup talloc_basic * * As talloc is a hierarchial memory allocator, every talloc chunk is a * potential parent to other talloc chunks. So defining a separate type for a * talloc chunk is not strictly necessary. TALLOC_CTX is defined nevertheless, * as it provides an indicator for function arguments. You will frequently * write code like * * \code * struct foo *foo_create(TALLOC_CTX *mem_ctx) * { * struct foo *result; * result = talloc(mem_ctx, struct foo); * if (result == NULL) return NULL; * ... initialize foo ... * return result; * } * \endcode * * In this type of allocating functions it is handy to have a general * TALLOC_CTX type to indicate which parent to put allocated structures on. */ typedef void TALLOC_CTX; /* this uses a little trick to allow __LINE__ to be stringified */ #ifndef __location__ #define __TALLOC_STRING_LINE1__(s) #s #define __TALLOC_STRING_LINE2__(s) __TALLOC_STRING_LINE1__(s) #define __TALLOC_STRING_LINE3__ __TALLOC_STRING_LINE2__(__LINE__) #define __location__ __FILE__ ":" __TALLOC_STRING_LINE3__ #endif #ifndef TALLOC_DEPRECATED #define TALLOC_DEPRECATED 0 #endif #ifndef PRINTF_ATTRIBUTE #if (__GNUC__ >= 3) /** Use gcc attribute to check printf fns. a1 is the 1-based index of * the parameter containing the format, and a2 the index of the first * argument. Note that some gcc 2.x versions don't handle this * properly **/ #define PRINTF_ATTRIBUTE(a1, a2) __attribute__ ((format (__printf__, a1, a2))) #else #define PRINTF_ATTRIBUTE(a1, a2) #endif #endif /** * \def talloc_set_destructor * \brief Assign a function to be called when a chunk is freed * \param ptr The talloc chunk to add a destructor to * \param function The destructor function to be called * \ingroup talloc_basic * * The function talloc_set_destructor() sets the "destructor" for the pointer * "ptr". A destructor is a function that is called when the memory used by a * pointer is about to be released. The destructor receives the pointer as an * argument, and should return 0 for success and -1 for failure. * * The destructor can do anything it wants to, including freeing other pieces * of memory. A common use for destructors is to clean up operating system * resources (such as open file descriptors) contained in the structure the * destructor is placed on. * * You can only place one destructor on a pointer. If you need more than one * destructor then you can create a zero-length child of the pointer and place * an additional destructor on that. * * To remove a destructor call talloc_set_destructor() with NULL for the * destructor. * * If your destructor attempts to talloc_free() the pointer that it is the * destructor for then talloc_free() will return -1 and the free will be * ignored. This would be a pointless operation anyway, as the destructor is * only called when the memory is just about to go away. */ /** * \def talloc_steal(ctx, ptr) * \brief Change a talloc chunk's parent * \param ctx The new parent context * \param ptr The talloc chunk to move * \return ptr * \ingroup talloc_basic * * The talloc_steal() function changes the parent context of a talloc * pointer. It is typically used when the context that the pointer is * currently a child of is going to be freed and you wish to keep the * memory for a longer time. * * The talloc_steal() function returns the pointer that you pass it. It * does not have any failure modes. * * NOTE: It is possible to produce loops in the parent/child relationship * if you are not careful with talloc_steal(). No guarantees are provided * as to your sanity or the safety of your data if you do this. * * To make the changed hierarchy less error-prone, you might consider to use * talloc_move(). * * talloc_steal (ctx, NULL) will return NULL with no sideeffects. */ /* try to make talloc_set_destructor() and talloc_steal() type safe, if we have a recent gcc */ #if (__GNUC__ >= 3) #define _TALLOC_TYPEOF(ptr) __typeof__(ptr) #define talloc_set_destructor(ptr, function) \ do { \ int (*_talloc_destructor_fn)(_TALLOC_TYPEOF(ptr)) = (function); \ _talloc_set_destructor((ptr), (int (*)(void *))_talloc_destructor_fn); \ } while(0) /* this extremely strange macro is to avoid some braindamaged warning stupidity in gcc 4.1.x */ #define talloc_steal(ctx, ptr) ({ _TALLOC_TYPEOF(ptr) __talloc_steal_ret = (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)); __talloc_steal_ret; }) #else #define talloc_set_destructor(ptr, function) \ _talloc_set_destructor((ptr), (int (*)(void *))(function)) #define _TALLOC_TYPEOF(ptr) void * #define talloc_steal(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_steal((ctx),(ptr)) #endif /** * \def talloc_reference(ctx, ptr) * \brief Create an additional talloc parent to a pointer * \param ctx The additional parent * \param ptr The pointer you want to create an additional parent for * \return ptr * \ingroup talloc_ref * * The talloc_reference() function makes "context" an additional parent of * "ptr". * * The return value of talloc_reference() is always the original pointer * "ptr", unless talloc ran out of memory in creating the reference in which * case it will return NULL (each additional reference consumes around 48 * bytes of memory on intel x86 platforms). * * If "ptr" is NULL, then the function is a no-op, and simply returns NULL. * * After creating a reference you can free it in one of the following ways: * * - you can talloc_free() any parent of the original pointer. That * will reduce the number of parents of this pointer by 1, and will * cause this pointer to be freed if it runs out of parents. * * - you can talloc_free() the pointer itself. That will destroy the * most recently established parent to the pointer and leave the * pointer as a child of its current parent. * * For more control on which parent to remove, see talloc_unlink() */ #define talloc_reference(ctx, ptr) (_TALLOC_TYPEOF(ptr))_talloc_reference((ctx),(ptr)) /** * \def talloc_move(ctx, ptr) * \brief Change a talloc chunk's parent * \param ctx The new parent context * \param ptr Pointer to the talloc chunk to move * \return ptr * \ingroup talloc_basic * * talloc_move() has the same effect as talloc_steal(), and additionally sets * the source pointer to NULL. You would use it like this: * * \code * struct foo *X = talloc(tmp_ctx, struct foo); * struct foo *Y; * Y = talloc_move(new_ctx, &X); * \endcode */ #define talloc_move(ctx, ptr) (_TALLOC_TYPEOF(*(ptr)))_talloc_move((ctx),(void *)(ptr)) /* useful macros for creating type checked pointers */ /** * \def talloc(ctx, type) * \brief Main entry point to allocate structures * \param ctx The talloc context to hang the result off * \param type The type that we want to allocate * \return Pointer to a piece of memory, properly cast to "type *" * \ingroup talloc_basic * * The talloc() macro is the core of the talloc library. It takes a memory * context and a type, and returns a pointer to a new area of memory of the * given type. * * The returned pointer is itself a talloc context, so you can use it as the * context argument to more calls to talloc if you wish. * * The returned pointer is a "child" of the supplied context. This means that * if you talloc_free() the context then the new child disappears as * well. Alternatively you can free just the child. * * The context argument to talloc() can be NULL, in which case a new top * level context is created. */ #define talloc(ctx, type) (type *)talloc_named_const(ctx, sizeof(type), #type) /** * \def talloc_size(ctx, size) * \brief Untyped allocation * \param ctx The talloc context to hang the result off * \param size Number of char's that you want to allocate * \return The allocated memory chunk * \ingroup talloc_basic * * The function talloc_size() should be used when you don't have a convenient * type to pass to talloc(). Unlike talloc(), it is not type safe (as it * returns a void *), so you are on your own for type checking. */ #define talloc_size(ctx, size) talloc_named_const(ctx, size, __location__) /** * \def talloc_ptrtype(ctx, ptr) * \brief Allocate into a typed pointer * \param ctx The talloc context to hang the result off * \param ptr The pointer you want to assign the result to * \result The allocated memory chunk, properly cast * \ingroup talloc_basic * * The talloc_ptrtype() macro should be used when you have a pointer and * want to allocate memory to point at with this pointer. When compiling * with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size() * and talloc_get_name() will return the current location in the source file. * and not the type. */ #define talloc_ptrtype(ctx, ptr) (_TALLOC_TYPEOF(ptr))talloc_size(ctx, sizeof(*(ptr))) /** * \def talloc_new(ctx) * \brief Allocate a new 0-sized talloc chunk * \param ctx The talloc parent context * \return A new talloc chunk * \ingroup talloc_basic * * This is a utility macro that creates a new memory context hanging off an * exiting context, automatically naming it "talloc_new: __location__" where * __location__ is the source line it is called from. It is particularly * useful for creating a new temporary working context. */ #define talloc_new(ctx) talloc_named_const(ctx, 0, "talloc_new: " __location__) /** * \def talloc_zero(ctx, type) * \brief Allocate a 0-initizialized structure * \param ctx The talloc context to hang the result off * \param type The type that we want to allocate * \return Pointer to a piece of memory, properly cast to "type *" * \ingroup talloc_basic * * The talloc_zero() macro is equivalent to: * * \code * ptr = talloc(ctx, type); * if (ptr) memset(ptr, 0, sizeof(type)); * \endcode */ #define talloc_zero(ctx, type) (type *)_talloc_zero(ctx, sizeof(type), #type) /** * \def talloc_zero_size(ctx, size) * \brief Untyped, 0-initialized allocation * \param ctx The talloc context to hang the result off * \param size Number of char's that you want to allocate * \return The allocated memory chunk * \ingroup talloc_basic * * The talloc_zero_size() macro is equivalent to: * * \code * ptr = talloc_size(ctx, size); * if (ptr) memset(ptr, 0, size); * \endcode */ #define talloc_zero_size(ctx, size) _talloc_zero(ctx, size, __location__) #define talloc_zero_array(ctx, type, count) (type *)_talloc_zero_array(ctx, sizeof(type), count, #type) /** * \def talloc_array(ctx, type, count) * \brief Allocate an array * \param ctx The talloc context to hang the result off * \param type The type that we want to allocate * \param count The number of "type" elements you want to allocate * \return The allocated result, properly cast to "type *" * \ingroup talloc_array * * The talloc_array() macro is equivalent to:: * * \code * (type *)talloc_size(ctx, sizeof(type) * count); * \endcode * * except that it provides integer overflow protection for the multiply, * returning NULL if the multiply overflows. */ #define talloc_array(ctx, type, count) (type *)_talloc_array(ctx, sizeof(type), count, #type) /** * \def talloc_array_size(ctx, size, count) * \brief Allocate an array * \param ctx The talloc context to hang the result off * \param size The size of an array element * \param count The number of "type" elements you want to allocate * \return The allocated result, properly cast to "type *" * \ingroup talloc_array * * The talloc_array_size() function is useful when the type is not * known. It operates in the same way as talloc_array(), but takes a size * instead of a type. */ #define talloc_array_size(ctx, size, count) _talloc_array(ctx, size, count, __location__) /** * \def talloc_array_ptrtype(ctx, ptr, count) * \brief Allocate an array into a typed pointer * \param ctx The talloc context to hang the result off * \param ptr The pointer you want to assign the result to * \param count The number of elements you want to allocate * \result The allocated memory chunk, properly cast * \ingroup talloc_array * * The talloc_array_ptrtype() macro should be used when you have a pointer to * an array and want to allocate memory of an array to point at with this * pointer. When compiling with gcc >= 3 it is typesafe. Note this is a * wrapper of talloc_array_size() and talloc_get_name() will return the * current location in the source file. and not the type. */ #define talloc_array_ptrtype(ctx, ptr, count) (_TALLOC_TYPEOF(ptr))talloc_array_size(ctx, sizeof(*(ptr)), count) /** * \def talloc_array_length(ctx) * \brief Return the number of elements in a talloc'ed array * \param ctx The talloc'ed array * \return The number of elements in ctx * \ingroup talloc_array * * A talloc chunk carries its own size, so for talloc'ed arrays it is not * necessary to store the number of elements explicitly. */ #define talloc_array_length(ctx) ((ctx) ? talloc_get_size(ctx)/sizeof(*ctx) : 0) /** * \def talloc_realloc(ctx, p, type, count) * \brief Change the size of a talloc array * \param ctx The parent context used if "p" is NULL * \param p The chunk to be resized * \param type The type of the array element inside p * \param count The intended number of array elements * \return The new array * \ingroup talloc_array * * The talloc_realloc() macro changes the size of a talloc * pointer. The "count" argument is the number of elements of type "type" * that you want the resulting pointer to hold. * * talloc_realloc() has the following equivalences:: * * \code * talloc_realloc(context, NULL, type, 1) ==> talloc(context, type); * talloc_realloc(context, NULL, type, N) ==> talloc_array(context, type, N); * talloc_realloc(context, ptr, type, 0) ==> talloc_free(ptr); * \endcode * * The "context" argument is only used if "ptr" is NULL, otherwise it is * ignored. * * talloc_realloc() returns the new pointer, or NULL on failure. The call * will fail either due to a lack of memory, or because the pointer has * more than one parent (see talloc_reference()). */ #define talloc_realloc(ctx, p, type, count) (type *)_talloc_realloc_array(ctx, p, sizeof(type), count, #type) /** * \def talloc_realloc_size(ctx, ptr, size) * \brief Untyped realloc * \param ctx The parent context used if "ptr" is NULL * \param ptr The chunk to be resized * \param size The new chunk size * \return The new chunk * \ingroup talloc_array * * The talloc_realloc_size() function is useful when the type is not known so * the typesafe talloc_realloc() cannot be used. */ #define talloc_realloc_size(ctx, ptr, size) _talloc_realloc(ctx, ptr, size, __location__) /** * \def talloc_memdup(t, p, size) * \brief Duplicate a memory area into a talloc chunk * \param t The talloc context to hang the result off * \param p The memory chunk you want to duplicate * \param size Number of char's that you want copy * \return The allocated memory chunk * \ingroup talloc_basic * * The talloc_memdup() function is equivalent to:: * * \code * ptr = talloc_size(ctx, size); * if (ptr) memcpy(ptr, p, size); * \endcode */ #define talloc_memdup(t, p, size) _talloc_memdup(t, p, size, __location__) /** * \def talloc_set_type(ptr, type) * \brief Assign a type to a talloc chunk * \param ptr The talloc chunk to assign the type to * \param type The type to assign * \ingroup talloc_basic * * This macro allows you to force the name of a pointer to be a * particular type. This can be used in conjunction with * talloc_get_type() to do type checking on void* pointers. * * It is equivalent to this:: * * \code * talloc_set_name_const(ptr, #type) * \endcode */ #define talloc_set_type(ptr, type) talloc_set_name_const(ptr, #type) /** * \def talloc_get_type(ptr, type) * \brief Get a typed pointer out of a talloc pointer * \param ptr The talloc pointer to check * \param type The type to check against * \return ptr, properly cast, or NULL * \ingroup talloc_basic * * This macro allows you to do type checking on talloc pointers. It is * particularly useful for void* private pointers. It is equivalent to * this: * * \code * (type *)talloc_check_name(ptr, #type) * \endcode */ #define talloc_get_type(ptr, type) (type *)talloc_check_name(ptr, #type) /** * \def talloc_get_type_abort(ptr, type) * \brief Helper macro to safely turn a void * into a typed pointer * \param ptr The void * to convert * \param type The type that this chunk contains * \return Same value as ptr, type-checked and properly cast * \ingroup talloc_basic * * This macro is used together with talloc(mem_ctx, struct foo). If you had to * assing the talloc chunk pointer to some void * variable, * talloc_get_type_abort() is the recommended way to get the convert the void * pointer back to a typed pointer. */ #define talloc_get_type_abort(ptr, type) (type *)_talloc_get_type_abort(ptr, #type, __location__) /** * \def talloc_find_parent_bytype(ptr, type) * \brief Find a parent context by type * \param ptr The talloc chunk to start from * \param type The type of the parent to look for * \ingroup talloc_basic * * Find a parent memory context of the current context that has the given * name. This can be very useful in complex programs where it may be * difficult to pass all information down to the level you need, but you * know the structure you want is a parent of another context. * * Like talloc_find_parent_byname() but takes a type, making it typesafe. */ #define talloc_find_parent_bytype(ptr, type) (type *)talloc_find_parent_byname(ptr, #type) #if TALLOC_DEPRECATED #define talloc_zero_p(ctx, type) talloc_zero(ctx, type) #define talloc_p(ctx, type) talloc(ctx, type) #define talloc_array_p(ctx, type, count) talloc_array(ctx, type, count) #define talloc_realloc_p(ctx, p, type, count) talloc_realloc(ctx, p, type, count) #define talloc_destroy(ctx) talloc_free(ctx) #define talloc_append_string(c, s, a) (s?talloc_strdup_append(s,a):talloc_strdup(c, a)) #endif #define TALLOC_FREE(ctx) do { talloc_free(ctx); ctx=NULL; } while(0) /* The following definitions come from talloc.c */ void *_talloc(const void *context, size_t size); void *talloc_pool(const void *context, size_t size); void _talloc_set_destructor(const void *ptr, int (*destructor)(void *)); /** * \brief Increase the reference count of a talloc chunk * \param ptr * \return success? * \ingroup talloc_ref * * The talloc_increase_ref_count(ptr) function is exactly equivalent to: * * \code * talloc_reference(NULL, ptr); * \endcode * * You can use either syntax, depending on which you think is clearer in * your code. * * It returns 0 on success and -1 on failure. */ int talloc_increase_ref_count(const void *ptr); /** * \brief Return the number of references to a talloc chunk * \param ptr The chunk you are interested in * \return Number of refs * \ingroup talloc_ref */ size_t talloc_reference_count(const void *ptr); void *_talloc_reference(const void *context, const void *ptr); /** * \brief Remove a specific parent from a talloc chunk * \param context The talloc parent to remove * \param ptr The talloc ptr you want to remove the parent from * \ingroup talloc_ref * * The talloc_unlink() function removes a specific parent from ptr. The * context passed must either be a context used in talloc_reference() with * this pointer, or must be a direct parent of ptr. * * Note that if the parent has already been removed using talloc_free() then * this function will fail and will return -1. Likewise, if "ptr" is NULL, * then the function will make no modifications and return -1. * * Usually you can just use talloc_free() instead of talloc_unlink(), but * sometimes it is useful to have the additional control on which parent is * removed. */ int talloc_unlink(const void *context, void *ptr); /** * \brief Assign a name to a talloc chunk * \param ptr The talloc chunk to assign a name to * \param fmt Format string for the name * \param ... printf-style additional arguments * \return The assigned name * \ingroup talloc_basic * * Each talloc pointer has a "name". The name is used principally for * debugging purposes, although it is also possible to set and get the name on * a pointer in as a way of "marking" pointers in your code. * * The main use for names on pointer is for "talloc reports". See * talloc_report() and talloc_report_full() for details. Also see * talloc_enable_leak_report() and talloc_enable_leak_report_full(). * * The talloc_set_name() function allocates memory as a child of the * pointer. It is logically equivalent to: * * \code * talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...)); * \endcode * * Note that multiple calls to talloc_set_name() will allocate more memory * without releasing the name. All of the memory is released when the ptr is * freed using talloc_free(). */ const char *talloc_set_name(const void *ptr, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3); /** * \brief Assign a name to a talloc chunk * \param ptr The talloc chunk to assign a name to * \param name Format string for the name * \ingroup talloc_basic * * The function talloc_set_name_const() is just like talloc_set_name(), but it * takes a string constant, and is much faster. It is extensively used by the * "auto naming" macros, such as talloc_p(). * * This function does not allocate any memory. It just copies the supplied * pointer into the internal representation of the talloc ptr. This means you * must not pass a name pointer to memory that will disappear before the ptr * is freed with talloc_free(). */ void talloc_set_name_const(const void *ptr, const char *name); /** * \brief Create a named talloc chunk * \param context The talloc context to hang the result off * \param size Number of char's that you want to allocate * \param fmt Format string for the name * \param ... printf-style additional arguments * \return The allocated memory chunk * \ingroup talloc_basic * * The talloc_named() function creates a named talloc pointer. It is * equivalent to: * * \code * ptr = talloc_size(context, size); * talloc_set_name(ptr, fmt, ....); * \endcode * */ void *talloc_named(const void *context, size_t size, const char *fmt, ...) PRINTF_ATTRIBUTE(3,4); /** * \brief Basic routine to allocate a chunk of memory * \param context The parent context * \param size The number of char's that we want to allocate * \param name The name the talloc block has * \return The allocated chunk * \ingroup talloc_basic * * This is equivalent to: * * \code * ptr = talloc_size(context, size); * talloc_set_name_const(ptr, name); * \endcode */ void *talloc_named_const(const void *context, size_t size, const char *name); /** * \brief Return the name of a talloc chunk * \param ptr The talloc chunk * \return The name * \ingroup talloc_basic * * This returns the current name for the given talloc pointer. See * talloc_set_name() for details. */ const char *talloc_get_name(const void *ptr); /** * \brief Verify that a talloc chunk carries a specified name * \param ptr The talloc chunk to check * \param name The name to check agains * \ingroup talloc_basic * * This function checks if a pointer has the specified name. If it does * then the pointer is returned. It it doesn't then NULL is returned. */ void *talloc_check_name(const void *ptr, const char *name); void *_talloc_get_type_abort(const void *ptr, const char *name, const char *location); void *talloc_parent(const void *ptr); const char *talloc_parent_name(const void *ptr); /** * \brief Create a new top level talloc context * \param fmt Format string for the name * \param ... printf-style additional arguments * \return The allocated memory chunk * \ingroup talloc_basic * * This function creates a zero length named talloc context as a top level * context. It is equivalent to: * * \code * talloc_named(NULL, 0, fmt, ...); * \endcode */ void *talloc_init(const char *fmt, ...) PRINTF_ATTRIBUTE(1,2); /** * \brief Free a chunk of talloc memory * \param ptr The chunk to be freed * \return success? * \ingroup talloc_basic * * The talloc_free() function frees a piece of talloc memory, and all its * children. You can call talloc_free() on any pointer returned by talloc(). * * The return value of talloc_free() indicates success or failure, with 0 * returned for success and -1 for failure. The only possible failure * condition is if the pointer had a destructor attached to it and the * destructor returned -1. See talloc_set_destructor() for details on * destructors. * * If this pointer has an additional parent when talloc_free() is called * then the memory is not actually released, but instead the most * recently established parent is destroyed. See talloc_reference() for * details on establishing additional parents. * * For more control on which parent is removed, see talloc_unlink() * * talloc_free() operates recursively on its children. */ int talloc_free(void *ptr); /** * \brief Free a talloc chunk's children * \param ptr The chunk that you want to free the children of * \return success? * \ingroup talloc_basic * * The talloc_free_children() walks along the list of all children of a talloc * context and talloc_free()s only the children, not the context itself. */ void talloc_free_children(void *ptr); void *_talloc_realloc(const void *context, void *ptr, size_t size, const char *name); void *_talloc_steal(const void *new_ctx, const void *ptr); void *_talloc_move(const void *new_ctx, const void *pptr); /** * \brief Return the total size of a talloc chunk including its children * \param ptr The talloc chunk * \return The total size * \ingroup talloc_basic * * The talloc_total_size() function returns the total size in bytes used * by this pointer and all child pointers. Mostly useful for debugging. * * Passing NULL is allowed, but it will only give a meaningful result if * talloc_enable_leak_report() or talloc_enable_leak_report_full() has * been called. */ size_t talloc_total_size(const void *ptr); /** * \brief Return the number of talloc chunks hanging off a chunk * \param ptr The talloc chunk * \return The total size * \ingroup talloc_basic * * The talloc_total_blocks() function returns the total memory block * count used by this pointer and all child pointers. Mostly useful for * debugging. * * Passing NULL is allowed, but it will only give a meaningful result if * talloc_enable_leak_report() or talloc_enable_leak_report_full() has * been called. */ size_t talloc_total_blocks(const void *ptr); /** * \brief Walk a complete talloc hierarchy * \param ptr The talloc chunk * \param depth Internal parameter to control recursion. Call with 0. * \param max_depth Maximum recursion level. * \param callback Function to be called on every chunk * \param private_data Private pointer passed to callback * \ingroup talloc_debug * * This provides a more flexible reports than talloc_report(). It * will recursively call the callback for the entire tree of memory * referenced by the pointer. References in the tree are passed with * is_ref = 1 and the pointer that is referenced. * * You can pass NULL for the pointer, in which case a report is * printed for the top level memory context, but only if * talloc_enable_leak_report() or talloc_enable_leak_report_full() * has been called. * * The recursion is stopped when depth >= max_depth. * max_depth = -1 means only stop at leaf nodes. */ void talloc_report_depth_cb(const void *ptr, int depth, int max_depth, void (*callback)(const void *ptr, int depth, int max_depth, int is_ref, void *private_data), void *private_data); /** * \brief Print a talloc hierarchy * \param ptr The talloc chunk * \param depth Internal parameter to control recursion. Call with 0. * \param max_depth Maximum recursion level. * \param f The file handle to print to * \ingroup talloc_debug * * This provides a more flexible reports than talloc_report(). It * will let you specify the depth and max_depth. */ void talloc_report_depth_file(const void *ptr, int depth, int max_depth, FILE *f); /** * \brief Print a summary report of all memory used by ptr * \param ptr The talloc chunk * \param f The file handle to print to * \ingroup talloc_debug * * This provides a more detailed report than talloc_report(). It will * recursively print the ensire tree of memory referenced by the * pointer. References in the tree are shown by giving the name of the * pointer that is referenced. * * You can pass NULL for the pointer, in which case a report is printed * for the top level memory context, but only if * talloc_enable_leak_report() or talloc_enable_leak_report_full() has * been called. */ void talloc_report_full(const void *ptr, FILE *f); /** * \brief Print a summary report of all memory used by ptr * \param ptr The talloc chunk * \param f The file handle to print to * \ingroup talloc_debug * * The talloc_report() function prints a summary report of all memory * used by ptr. One line of report is printed for each immediate child of * ptr, showing the total memory and number of blocks used by that child. * * You can pass NULL for the pointer, in which case a report is printed * for the top level memory context, but only if * talloc_enable_leak_report() or talloc_enable_leak_report_full() has * been called. */ void talloc_report(const void *ptr, FILE *f); /** * \brief Enable tracking the use of NULL memory contexts * \ingroup talloc_debug * * This enables tracking of the NULL memory context without enabling leak * reporting on exit. Useful for when you want to do your own leak * reporting call via talloc_report_null_full(); */ void talloc_enable_null_tracking(void); /** * \brief Disable tracking of the NULL memory context * \ingroup talloc_debug * * This disables tracking of the NULL memory context. */ void talloc_disable_null_tracking(void); /** * \brief Enable calling of talloc_report(NULL, stderr) when a program exits * \ingroup talloc_debug * * This enables calling of talloc_report(NULL, stderr) when the program * exits. In Samba4 this is enabled by using the --leak-report command * line option. * * For it to be useful, this function must be called before any other * talloc function as it establishes a "null context" that acts as the * top of the tree. If you don't call this function first then passing * NULL to talloc_report() or talloc_report_full() won't give you the * full tree printout. * * Here is a typical talloc report: * \verbatim talloc report on 'null_context' (total 267 bytes in 15 blocks) libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks iconv(UTF8,CP850) contains 42 bytes in 2 blocks libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks iconv(CP850,UTF8) contains 42 bytes in 2 blocks iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks \endverbatim */ void talloc_enable_leak_report(void); /** * \brief Enable calling of talloc_report(NULL, stderr) when a program exits * \ingroup talloc_debug * * This enables calling of talloc_report_full(NULL, stderr) when the * program exits. In Samba4 this is enabled by using the * --leak-report-full command line option. * * For it to be useful, this function must be called before any other * talloc function as it establishes a "null context" that acts as the * top of the tree. If you don't call this function first then passing * NULL to talloc_report() or talloc_report_full() won't give you the * full tree printout. * * Here is a typical full report: \verbatim full talloc report on 'root' (total 18 bytes in 8 blocks) p1 contains 18 bytes in 7 blocks (ref 0) r1 contains 13 bytes in 2 blocks (ref 0) reference to: p2 p2 contains 1 bytes in 1 blocks (ref 1) x3 contains 1 bytes in 1 blocks (ref 0) x2 contains 1 bytes in 1 blocks (ref 0) x1 contains 1 bytes in 1 blocks (ref 0) \endverbatim */ void talloc_enable_leak_report_full(void); void *_talloc_zero(const void *ctx, size_t size, const char *name); void *_talloc_memdup(const void *t, const void *p, size_t size, const char *name); void *_talloc_array(const void *ctx, size_t el_size, unsigned count, const char *name); void *_talloc_zero_array(const void *ctx, size_t el_size, unsigned count, const char *name); void *_talloc_realloc_array(const void *ctx, void *ptr, size_t el_size, unsigned count, const char *name); /** * \brief Provide a function version of talloc_realloc_size * \param context The parent context used if "ptr" is NULL * \param ptr The chunk to be resized * \param size The new chunk size * \return The new chunk * \ingroup talloc_array * * This is a non-macro version of talloc_realloc(), which is useful as * libraries sometimes want a ralloc function pointer. A realloc() * implementation encapsulates the functionality of malloc(), free() and * realloc() in one call, which is why it is useful to be able to pass around * a single function pointer. */ void *talloc_realloc_fn(const void *context, void *ptr, size_t size); /** * \brief Provide a talloc context that is freed at program exit * \return A talloc context * \ingroup talloc_basic * * This is a handy utility function that returns a talloc context * which will be automatically freed on program exit. This can be used * to reduce the noise in memory leak reports. */ void *talloc_autofree_context(void); /** * \brief Get the size of a talloc chunk * \param ctx The talloc chunk * \return The size * \ingroup talloc_basic * * This function lets you know the amount of memory alloced so far by * this context. It does NOT account for subcontext memory. * This can be used to calculate the size of an array. */ size_t talloc_get_size(const void *ctx); /** * \brief Find a parent context by name * \param ctx The talloc chunk to start from * \param name The name of the parent we look for * \ingroup talloc_basic * * Find a parent memory context of the current context that has the given * name. This can be very useful in complex programs where it may be * difficult to pass all information down to the level you need, but you * know the structure you want is a parent of another context. */ void *talloc_find_parent_byname(const void *ctx, const char *name); void talloc_show_parents(const void *context, FILE *file); int talloc_is_parent(const void *context, const void *ptr); /** * \brief Duplicate a string into a talloc chunk * \param t The talloc context to hang the result off * \param p The string you want to duplicate * \return The duplicated string * \ingroup talloc_string * * The talloc_strdup() function is equivalent to: * * \code * ptr = talloc_size(ctx, strlen(p)+1); * if (ptr) memcpy(ptr, p, strlen(p)+1); * \endcode * * This functions sets the name of the new pointer to the passed * string. This is equivalent to: * * \code * talloc_set_name_const(ptr, ptr) * \endcode */ char *talloc_strdup(const void *t, const char *p); char *talloc_strdup_append(char *s, const char *a); char *talloc_strdup_append_buffer(char *s, const char *a); /** * \brief Duplicate a length-limited string into a talloc chunk * \param t The talloc context to hang the result off * \param p The string you want to duplicate * \param n The maximum string length to duplicate * \return The duplicated string * \ingroup talloc_string * * The talloc_strndup() function is the talloc equivalent of the C * library function strndup() * * This functions sets the name of the new pointer to the passed * string. This is equivalent to: * * \code * talloc_set_name_const(ptr, ptr) * \endcode */ char *talloc_strndup(const void *t, const char *p, size_t n); char *talloc_strndup_append(char *s, const char *a, size_t n); char *talloc_strndup_append_buffer(char *s, const char *a, size_t n); /** * \brief Format a string given a va_list * \param t The talloc context to hang the result off * \param fmt The format string * \param ap The parameters used to fill fmt * \return The formatted string * \ingroup talloc_string * * The talloc_vasprintf() function is the talloc equivalent of the C * library function vasprintf() * * This functions sets the name of the new pointer to the new * string. This is equivalent to: * * \code * talloc_set_name_const(ptr, ptr) * \endcode */ char *talloc_vasprintf(const void *t, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0); char *talloc_vasprintf_append(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0); char *talloc_vasprintf_append_buffer(char *s, const char *fmt, va_list ap) PRINTF_ATTRIBUTE(2,0); /** * \brief Format a string * \param t The talloc context to hang the result off * \param fmt The format string * \param ... The parameters used to fill fmt * \return The formatted string * \ingroup talloc_string * * The talloc_asprintf() function is the talloc equivalent of the C * library function asprintf() * * This functions sets the name of the new pointer to the new * string. This is equivalent to: * * \code * talloc_set_name_const(ptr, ptr) * \endcode */ char *talloc_asprintf(const void *t, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3); /** * \brief Append a formatted string to another string * \param s The string to append to * \param fmt The format string * \param ... The parameters used to fill fmt * \return The formatted string * \ingroup talloc_string * * The talloc_asprintf_append() function appends the given formatted string to * the given string. Use this varient when the string in the current talloc * buffer may have been truncated in length. * * This functions sets the name of the new pointer to the new * string. This is equivalent to: * * \code * talloc_set_name_const(ptr, ptr) * \endcode */ char *talloc_asprintf_append(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3); /** * \brief Append a formatted string to another string * \param s The string to append to * \param fmt The format string * \param ... The parameters used to fill fmt * \return The formatted string * \ingroup talloc_string * * The talloc_asprintf_append() function appends the given formatted string to * the end of the currently allocated talloc buffer. This routine should be * used if you create a large string step by step. talloc_asprintf() or * talloc_asprintf_append() call strlen() at every * step. talloc_asprintf_append_buffer() uses the existing buffer size of the * talloc chunk to calculate where to append the string. * * This functions sets the name of the new pointer to the new * string. This is equivalent to: * * \code * talloc_set_name_const(ptr, ptr) * \endcode */ char *talloc_asprintf_append_buffer(char *s, const char *fmt, ...) PRINTF_ATTRIBUTE(2,3); void talloc_set_abort_fn(void (*abort_fn)(const char *reason)); #endif /*\}*/