/*
Trivial Database 2: hash handling
Copyright (C) Rusty Russell 2010
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see .
*/
#include "private.h"
#include
#include
/* Default hash function. */
uint64_t tdb_jenkins_hash(const void *key, size_t length, uint64_t seed,
void *unused)
{
uint64_t ret;
/* hash64_stable assumes lower bits are more important; they are a
* slightly better hash. We use the upper bits first, so swap them. */
ret = hash64_stable((const unsigned char *)key, length, seed);
return (ret >> 32) | (ret << 32);
}
uint64_t tdb_hash(struct tdb_context *tdb, const void *ptr, size_t len)
{
return tdb->hash_fn(ptr, len, tdb->hash_seed, tdb->hash_data);
}
uint64_t hash_record(struct tdb_context *tdb, tdb_off_t off)
{
const struct tdb_used_record *r;
const void *key;
uint64_t klen, hash;
r = tdb_access_read(tdb, off, sizeof(*r), true);
if (TDB_PTR_IS_ERR(r)) {
/* FIXME */
return 0;
}
klen = rec_key_length(r);
tdb_access_release(tdb, r);
key = tdb_access_read(tdb, off + sizeof(*r), klen, false);
if (TDB_PTR_IS_ERR(key)) {
return 0;
}
hash = tdb_hash(tdb, key, klen);
tdb_access_release(tdb, key);
return hash;
}
/* Get bits from a value. */
static uint32_t bits_from(uint64_t val, unsigned start, unsigned num)
{
assert(num <= 32);
return (val >> start) & ((1U << num) - 1);
}
/* We take bits from the top: that way we can lock whole sections of the hash
* by using lock ranges. */
static uint32_t use_bits(struct hash_info *h, unsigned num)
{
h->hash_used += num;
return bits_from(h->h, 64 - h->hash_used, num);
}
static tdb_bool_err key_matches(struct tdb_context *tdb,
const struct tdb_used_record *rec,
tdb_off_t off,
const struct tdb_data *key)
{
tdb_bool_err ret = false;
const char *rkey;
if (rec_key_length(rec) != key->dsize) {
tdb->stats.compare_wrong_keylen++;
return ret;
}
rkey = tdb_access_read(tdb, off + sizeof(*rec), key->dsize, false);
if (TDB_PTR_IS_ERR(rkey)) {
return (tdb_bool_err)TDB_PTR_ERR(rkey);
}
if (memcmp(rkey, key->dptr, key->dsize) == 0)
ret = true;
else
tdb->stats.compare_wrong_keycmp++;
tdb_access_release(tdb, rkey);
return ret;
}
/* Does entry match? */
static tdb_bool_err match(struct tdb_context *tdb,
struct hash_info *h,
const struct tdb_data *key,
tdb_off_t val,
struct tdb_used_record *rec)
{
tdb_off_t off;
enum TDB_ERROR ecode;
tdb->stats.compares++;
/* Desired bucket must match. */
if (h->home_bucket != (val & TDB_OFF_HASH_GROUP_MASK)) {
tdb->stats.compare_wrong_bucket++;
return false;
}
/* Top bits of offset == next bits of hash. */
if (bits_from(val, TDB_OFF_HASH_EXTRA_BIT, TDB_OFF_UPPER_STEAL_EXTRA)
!= bits_from(h->h, 64 - h->hash_used - TDB_OFF_UPPER_STEAL_EXTRA,
TDB_OFF_UPPER_STEAL_EXTRA)) {
tdb->stats.compare_wrong_offsetbits++;
return false;
}
off = val & TDB_OFF_MASK;
ecode = tdb_read_convert(tdb, off, rec, sizeof(*rec));
if (ecode != TDB_SUCCESS) {
return (tdb_bool_err)ecode;
}
if ((h->h & ((1 << 11)-1)) != rec_hash(rec)) {
tdb->stats.compare_wrong_rechash++;
return false;
}
return key_matches(tdb, rec, off, key);
}
static tdb_off_t hbucket_off(tdb_off_t group_start, unsigned bucket)
{
return group_start
+ (bucket % (1 << TDB_HASH_GROUP_BITS)) * sizeof(tdb_off_t);
}
bool is_subhash(tdb_off_t val)
{
return (val >> TDB_OFF_UPPER_STEAL_SUBHASH_BIT) & 1;
}
/* FIXME: Guess the depth, don't over-lock! */
static tdb_off_t hlock_range(tdb_off_t group, tdb_off_t *size)
{
*size = 1ULL << (64 - (TDB_TOPLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS));
return group << (64 - (TDB_TOPLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS));
}
static tdb_off_t COLD find_in_chain(struct tdb_context *tdb,
struct tdb_data key,
tdb_off_t chain,
struct hash_info *h,
struct tdb_used_record *rec,
struct traverse_info *tinfo)
{
tdb_off_t off, next;
enum TDB_ERROR ecode;
/* In case nothing is free, we set these to zero. */
h->home_bucket = h->found_bucket = 0;
for (off = chain; off; off = next) {
unsigned int i;
h->group_start = off;
ecode = tdb_read_convert(tdb, off, h->group, sizeof(h->group));
if (ecode != TDB_SUCCESS) {
return TDB_ERR_TO_OFF(ecode);
}
for (i = 0; i < (1 << TDB_HASH_GROUP_BITS); i++) {
tdb_off_t recoff;
if (!h->group[i]) {
/* Remember this empty bucket. */
h->home_bucket = h->found_bucket = i;
continue;
}
/* We can insert extra bits via add_to_hash
* empty bucket logic. */
recoff = h->group[i] & TDB_OFF_MASK;
ecode = tdb_read_convert(tdb, recoff, rec,
sizeof(*rec));
if (ecode != TDB_SUCCESS) {
return TDB_ERR_TO_OFF(ecode);
}
ecode = TDB_OFF_TO_ERR(key_matches(tdb, rec, recoff,
&key));
if (ecode < 0) {
return TDB_ERR_TO_OFF(ecode);
}
if (ecode == (enum TDB_ERROR)1) {
h->home_bucket = h->found_bucket = i;
if (tinfo) {
tinfo->levels[tinfo->num_levels]
.hashtable = off;
tinfo->levels[tinfo->num_levels]
.total_buckets
= 1 << TDB_HASH_GROUP_BITS;
tinfo->levels[tinfo->num_levels].entry
= i;
tinfo->num_levels++;
}
return recoff;
}
}
next = tdb_read_off(tdb, off
+ offsetof(struct tdb_chain, next));
if (TDB_OFF_IS_ERR(next)) {
return next;
}
if (next)
next += sizeof(struct tdb_used_record);
}
return 0;
}
/* This is the core routine which searches the hashtable for an entry.
* On error, no locks are held and -ve is returned.
* Otherwise, hinfo is filled in (and the optional tinfo).
* If not found, the return value is 0.
* If found, the return value is the offset, and *rec is the record. */
tdb_off_t find_and_lock(struct tdb_context *tdb,
struct tdb_data key,
int ltype,
struct hash_info *h,
struct tdb_used_record *rec,
struct traverse_info *tinfo)
{
uint32_t i, group;
tdb_off_t hashtable;
enum TDB_ERROR ecode;
h->h = tdb_hash(tdb, key.dptr, key.dsize);
h->hash_used = 0;
group = use_bits(h, TDB_TOPLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS);
h->home_bucket = use_bits(h, TDB_HASH_GROUP_BITS);
h->hlock_start = hlock_range(group, &h->hlock_range);
ecode = tdb_lock_hashes(tdb, h->hlock_start, h->hlock_range, ltype,
TDB_LOCK_WAIT);
if (ecode != TDB_SUCCESS) {
return TDB_ERR_TO_OFF(ecode);
}
hashtable = offsetof(struct tdb_header, hashtable);
if (tinfo) {
tinfo->toplevel_group = group;
tinfo->num_levels = 1;
tinfo->levels[0].entry = 0;
tinfo->levels[0].hashtable = hashtable
+ (group << TDB_HASH_GROUP_BITS) * sizeof(tdb_off_t);
tinfo->levels[0].total_buckets = 1 << TDB_HASH_GROUP_BITS;
}
while (h->hash_used <= 64) {
/* Read in the hash group. */
h->group_start = hashtable
+ group * (sizeof(tdb_off_t) << TDB_HASH_GROUP_BITS);
ecode = tdb_read_convert(tdb, h->group_start, &h->group,
sizeof(h->group));
if (ecode != TDB_SUCCESS) {
goto fail;
}
/* Pointer to another hash table? Go down... */
if (is_subhash(h->group[h->home_bucket])) {
hashtable = (h->group[h->home_bucket] & TDB_OFF_MASK)
+ sizeof(struct tdb_used_record);
if (tinfo) {
/* When we come back, use *next* bucket */
tinfo->levels[tinfo->num_levels-1].entry
+= h->home_bucket + 1;
}
group = use_bits(h, TDB_SUBLEVEL_HASH_BITS
- TDB_HASH_GROUP_BITS);
h->home_bucket = use_bits(h, TDB_HASH_GROUP_BITS);
if (tinfo) {
tinfo->levels[tinfo->num_levels].hashtable
= hashtable;
tinfo->levels[tinfo->num_levels].total_buckets
= 1 << TDB_SUBLEVEL_HASH_BITS;
tinfo->levels[tinfo->num_levels].entry
= group << TDB_HASH_GROUP_BITS;
tinfo->num_levels++;
}
continue;
}
/* It's in this group: search (until 0 or all searched) */
for (i = 0, h->found_bucket = h->home_bucket;
i < (1 << TDB_HASH_GROUP_BITS);
i++, h->found_bucket = ((h->found_bucket+1)
% (1 << TDB_HASH_GROUP_BITS))) {
tdb_bool_err berr;
if (is_subhash(h->group[h->found_bucket]))
continue;
if (!h->group[h->found_bucket])
break;
berr = match(tdb, h, &key, h->group[h->found_bucket],
rec);
if (berr < 0) {
ecode = TDB_OFF_TO_ERR(berr);
goto fail;
}
if (berr) {
if (tinfo) {
tinfo->levels[tinfo->num_levels-1].entry
+= h->found_bucket;
}
return h->group[h->found_bucket] & TDB_OFF_MASK;
}
}
/* Didn't find it: h indicates where it would go. */
return 0;
}
return find_in_chain(tdb, key, hashtable, h, rec, tinfo);
fail:
tdb_unlock_hashes(tdb, h->hlock_start, h->hlock_range, ltype);
return TDB_ERR_TO_OFF(ecode);
}
/* I wrote a simple test, expanding a hash to 2GB, for the following
* cases:
* 1) Expanding all the buckets at once,
* 2) Expanding the bucket we wanted to place the new entry into.
* 3) Expanding the most-populated bucket,
*
* I measured the worst/average/best density during this process.
* 1) 3%/16%/30%
* 2) 4%/20%/38%
* 3) 6%/22%/41%
*
* So we figure out the busiest bucket for the moment.
*/
static unsigned fullest_bucket(struct tdb_context *tdb,
const tdb_off_t *group,
unsigned new_bucket)
{
unsigned counts[1 << TDB_HASH_GROUP_BITS] = { 0 };
unsigned int i, best_bucket;
/* Count the new entry. */
counts[new_bucket]++;
best_bucket = new_bucket;
for (i = 0; i < (1 << TDB_HASH_GROUP_BITS); i++) {
unsigned this_bucket;
if (is_subhash(group[i]))
continue;
this_bucket = group[i] & TDB_OFF_HASH_GROUP_MASK;
if (++counts[this_bucket] > counts[best_bucket])
best_bucket = this_bucket;
}
return best_bucket;
}
static bool put_into_group(tdb_off_t *group,
unsigned bucket, tdb_off_t encoded)
{
unsigned int i;
for (i = 0; i < (1 << TDB_HASH_GROUP_BITS); i++) {
unsigned b = (bucket + i) % (1 << TDB_HASH_GROUP_BITS);
if (group[b] == 0) {
group[b] = encoded;
return true;
}
}
return false;
}
static void force_into_group(tdb_off_t *group,
unsigned bucket, tdb_off_t encoded)
{
if (!put_into_group(group, bucket, encoded))
abort();
}
static tdb_off_t encode_offset(tdb_off_t new_off, struct hash_info *h)
{
return h->home_bucket
| new_off
| ((uint64_t)bits_from(h->h,
64 - h->hash_used - TDB_OFF_UPPER_STEAL_EXTRA,
TDB_OFF_UPPER_STEAL_EXTRA)
<< TDB_OFF_HASH_EXTRA_BIT);
}
/* Simply overwrite the hash entry we found before. */
enum TDB_ERROR replace_in_hash(struct tdb_context *tdb,
struct hash_info *h,
tdb_off_t new_off)
{
return tdb_write_off(tdb, hbucket_off(h->group_start, h->found_bucket),
encode_offset(new_off, h));
}
/* We slot in anywhere that's empty in the chain. */
static enum TDB_ERROR COLD add_to_chain(struct tdb_context *tdb,
tdb_off_t subhash,
tdb_off_t new_off)
{
tdb_off_t entry;
enum TDB_ERROR ecode;
entry = tdb_find_zero_off(tdb, subhash, 1< 64)
return add_to_chain(tdb, subhash, off);
h.h = hash_record(tdb, off);
gnum = use_bits(&h, TDB_SUBLEVEL_HASH_BITS-TDB_HASH_GROUP_BITS);
h.group_start = subhash
+ gnum * (sizeof(tdb_off_t) << TDB_HASH_GROUP_BITS);
h.home_bucket = use_bits(&h, TDB_HASH_GROUP_BITS);
group = tdb_access_write(tdb, h.group_start,
sizeof(*group) << TDB_HASH_GROUP_BITS, true);
if (TDB_PTR_IS_ERR(group)) {
return TDB_PTR_ERR(group);
}
force_into_group(group, h.home_bucket, encode_offset(off, &h));
return tdb_access_commit(tdb, group);
}
static enum TDB_ERROR expand_group(struct tdb_context *tdb, struct hash_info *h)
{
unsigned bucket, num_vals, i, magic;
size_t subsize;
tdb_off_t subhash;
tdb_off_t vals[1 << TDB_HASH_GROUP_BITS];
enum TDB_ERROR ecode;
/* Attach new empty subhash under fullest bucket. */
bucket = fullest_bucket(tdb, h->group, h->home_bucket);
if (h->hash_used == 64) {
tdb->stats.alloc_chain++;
subsize = sizeof(struct tdb_chain);
magic = TDB_CHAIN_MAGIC;
} else {
tdb->stats.alloc_subhash++;
subsize = (sizeof(tdb_off_t) << TDB_SUBLEVEL_HASH_BITS);
magic = TDB_HTABLE_MAGIC;
}
subhash = alloc(tdb, 0, subsize, 0, magic, false);
if (TDB_OFF_IS_ERR(subhash)) {
return TDB_OFF_TO_ERR(subhash);
}
ecode = zero_out(tdb, subhash + sizeof(struct tdb_used_record),
subsize);
if (ecode != TDB_SUCCESS) {
return ecode;
}
/* Remove any which are destined for bucket or are in wrong place. */
num_vals = 0;
for (i = 0; i < (1 << TDB_HASH_GROUP_BITS); i++) {
unsigned home_bucket = h->group[i] & TDB_OFF_HASH_GROUP_MASK;
if (!h->group[i] || is_subhash(h->group[i]))
continue;
if (home_bucket == bucket || home_bucket != i) {
vals[num_vals++] = h->group[i];
h->group[i] = 0;
}
}
/* FIXME: This assert is valid, but we do this during unit test :( */
/* assert(num_vals); */
/* Overwrite expanded bucket with subhash pointer. */
h->group[bucket] = subhash | (1ULL << TDB_OFF_UPPER_STEAL_SUBHASH_BIT);
/* Point to actual contents of record. */
subhash += sizeof(struct tdb_used_record);
/* Put values back. */
for (i = 0; i < num_vals; i++) {
unsigned this_bucket = vals[i] & TDB_OFF_HASH_GROUP_MASK;
if (this_bucket == bucket) {
ecode = add_to_subhash(tdb, subhash, h->hash_used,
vals[i]);
if (ecode != TDB_SUCCESS)
return ecode;
} else {
/* There should be room to put this back. */
force_into_group(h->group, this_bucket, vals[i]);
}
}
return TDB_SUCCESS;
}
enum TDB_ERROR delete_from_hash(struct tdb_context *tdb, struct hash_info *h)
{
unsigned int i, num_movers = 0;
tdb_off_t movers[1 << TDB_HASH_GROUP_BITS];
h->group[h->found_bucket] = 0;
for (i = 1; i < (1 << TDB_HASH_GROUP_BITS); i++) {
unsigned this_bucket;
this_bucket = (h->found_bucket+i) % (1 << TDB_HASH_GROUP_BITS);
/* Empty bucket? We're done. */
if (!h->group[this_bucket])
break;
/* Ignore subhashes. */
if (is_subhash(h->group[this_bucket]))
continue;
/* If this one is not happy where it is, we'll move it. */
if ((h->group[this_bucket] & TDB_OFF_HASH_GROUP_MASK)
!= this_bucket) {
movers[num_movers++] = h->group[this_bucket];
h->group[this_bucket] = 0;
}
}
/* Put back the ones we erased. */
for (i = 0; i < num_movers; i++) {
force_into_group(h->group, movers[i] & TDB_OFF_HASH_GROUP_MASK,
movers[i]);
}
/* Now we write back the hash group */
return tdb_write_convert(tdb, h->group_start,
h->group, sizeof(h->group));
}
enum TDB_ERROR add_to_hash(struct tdb_context *tdb, struct hash_info *h,
tdb_off_t new_off)
{
enum TDB_ERROR ecode;
/* We hit an empty bucket during search? That's where it goes. */
if (!h->group[h->found_bucket]) {
h->group[h->found_bucket] = encode_offset(new_off, h);
/* Write back the modified group. */
return tdb_write_convert(tdb, h->group_start,
h->group, sizeof(h->group));
}
if (h->hash_used > 64)
return add_to_chain(tdb, h->group_start, new_off);
/* We're full. Expand. */
ecode = expand_group(tdb, h);
if (ecode != TDB_SUCCESS) {
return ecode;
}
if (is_subhash(h->group[h->home_bucket])) {
/* We were expanded! */
tdb_off_t hashtable;
unsigned int gnum;
/* Write back the modified group. */
ecode = tdb_write_convert(tdb, h->group_start, h->group,
sizeof(h->group));
if (ecode != TDB_SUCCESS) {
return ecode;
}
/* Move hashinfo down a level. */
hashtable = (h->group[h->home_bucket] & TDB_OFF_MASK)
+ sizeof(struct tdb_used_record);
gnum = use_bits(h,TDB_SUBLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS);
h->home_bucket = use_bits(h, TDB_HASH_GROUP_BITS);
h->group_start = hashtable
+ gnum * (sizeof(tdb_off_t) << TDB_HASH_GROUP_BITS);
ecode = tdb_read_convert(tdb, h->group_start, &h->group,
sizeof(h->group));
if (ecode != TDB_SUCCESS) {
return ecode;
}
}
/* Expanding the group must have made room if it didn't choose this
* bucket. */
if (put_into_group(h->group, h->home_bucket, encode_offset(new_off,h))){
return tdb_write_convert(tdb, h->group_start,
h->group, sizeof(h->group));
}
/* This can happen if all hashes in group (and us) dropped into same
* group in subhash. */
return add_to_hash(tdb, h, new_off);
}
/* Traverse support: returns offset of record, or 0 or -ve error. */
static tdb_off_t iterate_hash(struct tdb_context *tdb,
struct traverse_info *tinfo)
{
tdb_off_t off, val, i;
struct traverse_level *tlevel;
tlevel = &tinfo->levels[tinfo->num_levels-1];
again:
for (i = tdb_find_nonzero_off(tdb, tlevel->hashtable,
tlevel->entry, tlevel->total_buckets);
i != tlevel->total_buckets;
i = tdb_find_nonzero_off(tdb, tlevel->hashtable,
i+1, tlevel->total_buckets)) {
if (TDB_OFF_IS_ERR(i)) {
return i;
}
val = tdb_read_off(tdb, tlevel->hashtable+sizeof(tdb_off_t)*i);
if (TDB_OFF_IS_ERR(val)) {
return val;
}
off = val & TDB_OFF_MASK;
/* This makes the delete-all-in-traverse case work
* (and simplifies our logic a little). */
if (off == tinfo->prev)
continue;
tlevel->entry = i;
if (!is_subhash(val)) {
/* Found one. */
tinfo->prev = off;
return off;
}
/* When we come back, we want the next one */
tlevel->entry++;
tinfo->num_levels++;
tlevel++;
tlevel->hashtable = off + sizeof(struct tdb_used_record);
tlevel->entry = 0;
/* Next level is a chain? */
if (unlikely(tinfo->num_levels == TDB_MAX_LEVELS + 1))
tlevel->total_buckets = (1 << TDB_HASH_GROUP_BITS);
else
tlevel->total_buckets = (1 << TDB_SUBLEVEL_HASH_BITS);
goto again;
}
/* Nothing there? */
if (tinfo->num_levels == 1)
return 0;
/* Handle chained entries. */
if (unlikely(tinfo->num_levels == TDB_MAX_LEVELS + 1)) {
tlevel->hashtable = tdb_read_off(tdb, tlevel->hashtable
+ offsetof(struct tdb_chain,
next));
if (TDB_OFF_IS_ERR(tlevel->hashtable)) {
return tlevel->hashtable;
}
if (tlevel->hashtable) {
tlevel->hashtable += sizeof(struct tdb_used_record);
tlevel->entry = 0;
goto again;
}
}
/* Go back up and keep searching. */
tinfo->num_levels--;
tlevel--;
goto again;
}
/* Return success if we find something, TDB_ERR_NOEXIST if none. */
enum TDB_ERROR next_in_hash(struct tdb_context *tdb,
struct traverse_info *tinfo,
TDB_DATA *kbuf, size_t *dlen)
{
const unsigned group_bits = TDB_TOPLEVEL_HASH_BITS-TDB_HASH_GROUP_BITS;
tdb_off_t hl_start, hl_range, off;
enum TDB_ERROR ecode;
while (tinfo->toplevel_group < (1 << group_bits)) {
hl_start = (tdb_off_t)tinfo->toplevel_group
<< (64 - group_bits);
hl_range = 1ULL << group_bits;
ecode = tdb_lock_hashes(tdb, hl_start, hl_range, F_RDLCK,
TDB_LOCK_WAIT);
if (ecode != TDB_SUCCESS) {
return ecode;
}
off = iterate_hash(tdb, tinfo);
if (off) {
struct tdb_used_record rec;
if (TDB_OFF_IS_ERR(off)) {
ecode = TDB_OFF_TO_ERR(off);
goto fail;
}
ecode = tdb_read_convert(tdb, off, &rec, sizeof(rec));
if (ecode != TDB_SUCCESS) {
goto fail;
}
if (rec_magic(&rec) != TDB_USED_MAGIC) {
ecode = tdb_logerr(tdb, TDB_ERR_CORRUPT,
TDB_LOG_ERROR,
"next_in_hash:"
" corrupt record at %llu",
(long long)off);
goto fail;
}
kbuf->dsize = rec_key_length(&rec);
/* They want data as well? */
if (dlen) {
*dlen = rec_data_length(&rec);
kbuf->dptr = tdb_alloc_read(tdb,
off + sizeof(rec),
kbuf->dsize
+ *dlen);
} else {
kbuf->dptr = tdb_alloc_read(tdb,
off + sizeof(rec),
kbuf->dsize);
}
tdb_unlock_hashes(tdb, hl_start, hl_range, F_RDLCK);
if (TDB_PTR_IS_ERR(kbuf->dptr)) {
return TDB_PTR_ERR(kbuf->dptr);
}
return TDB_SUCCESS;
}
tdb_unlock_hashes(tdb, hl_start, hl_range, F_RDLCK);
tinfo->toplevel_group++;
tinfo->levels[0].hashtable
+= (sizeof(tdb_off_t) << TDB_HASH_GROUP_BITS);
tinfo->levels[0].entry = 0;
}
return TDB_ERR_NOEXIST;
fail:
tdb_unlock_hashes(tdb, hl_start, hl_range, F_RDLCK);
return ecode;
}
enum TDB_ERROR first_in_hash(struct tdb_context *tdb,
struct traverse_info *tinfo,
TDB_DATA *kbuf, size_t *dlen)
{
tinfo->prev = 0;
tinfo->toplevel_group = 0;
tinfo->num_levels = 1;
tinfo->levels[0].hashtable = offsetof(struct tdb_header, hashtable);
tinfo->levels[0].entry = 0;
tinfo->levels[0].total_buckets = (1 << TDB_HASH_GROUP_BITS);
return next_in_hash(tdb, tinfo, kbuf, dlen);
}
/* Even if the entry isn't in this hash bucket, you'd have to lock this
* bucket to find it. */
static enum TDB_ERROR chainlock(struct tdb_context *tdb, const TDB_DATA *key,
int ltype, enum tdb_lock_flags waitflag,
const char *func)
{
enum TDB_ERROR ecode;
uint64_t h = tdb_hash(tdb, key->dptr, key->dsize);
tdb_off_t lockstart, locksize;
unsigned int group, gbits;
gbits = TDB_TOPLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS;
group = bits_from(h, 64 - gbits, gbits);
lockstart = hlock_range(group, &locksize);
ecode = tdb_lock_hashes(tdb, lockstart, locksize, ltype, waitflag);
tdb_trace_1rec(tdb, func, *key);
return ecode;
}
/* lock/unlock one hash chain. This is meant to be used to reduce
contention - it cannot guarantee how many records will be locked */
enum TDB_ERROR tdb_chainlock(struct tdb_context *tdb, TDB_DATA key)
{
if (tdb->flags & TDB_VERSION1) {
if (tdb1_chainlock(tdb, key) == -1)
return tdb->last_error;
return TDB_SUCCESS;
}
return tdb->last_error = chainlock(tdb, &key, F_WRLCK, TDB_LOCK_WAIT,
"tdb_chainlock");
}
void tdb_chainunlock(struct tdb_context *tdb, TDB_DATA key)
{
uint64_t h = tdb_hash(tdb, key.dptr, key.dsize);
tdb_off_t lockstart, locksize;
unsigned int group, gbits;
if (tdb->flags & TDB_VERSION1) {
tdb1_chainunlock(tdb, key);
return;
}
gbits = TDB_TOPLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS;
group = bits_from(h, 64 - gbits, gbits);
lockstart = hlock_range(group, &locksize);
tdb_trace_1rec(tdb, "tdb_chainunlock", key);
tdb_unlock_hashes(tdb, lockstart, locksize, F_WRLCK);
}
enum TDB_ERROR tdb_chainlock_read(struct tdb_context *tdb, TDB_DATA key)
{
if (tdb->flags & TDB_VERSION1) {
if (tdb1_chainlock_read(tdb, key) == -1)
return tdb->last_error;
return TDB_SUCCESS;
}
return tdb->last_error = chainlock(tdb, &key, F_RDLCK, TDB_LOCK_WAIT,
"tdb_chainlock_read");
}
void tdb_chainunlock_read(struct tdb_context *tdb, TDB_DATA key)
{
uint64_t h = tdb_hash(tdb, key.dptr, key.dsize);
tdb_off_t lockstart, locksize;
unsigned int group, gbits;
if (tdb->flags & TDB_VERSION1) {
tdb1_chainunlock_read(tdb, key);
return;
}
gbits = TDB_TOPLEVEL_HASH_BITS - TDB_HASH_GROUP_BITS;
group = bits_from(h, 64 - gbits, gbits);
lockstart = hlock_range(group, &locksize);
tdb_trace_1rec(tdb, "tdb_chainunlock_read", key);
tdb_unlock_hashes(tdb, lockstart, locksize, F_RDLCK);
}