/* 
   Unix SMB/Netbios implementation.
   Version 1.9.
   Copyright (C) Andrew Tridgell 1992-1999
   
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.
   
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/* This code has been heavily hacked by Tatu Ylonen <ylo@cs.hut.fi> to
   make it compile on machines like Cray that don't have a 32 bit integer
   type. */
/*
 * This code implements the MD5 message-digest algorithm.
 * The algorithm is due to Ron Rivest.  This code was
 * written by Colin Plumb in 1993, no copyright is claimed.
 * This code is in the public domain; do with it what you wish.
 *
 * Equivalent code is available from RSA Data Security, Inc.
 * This code has been tested against that, and is equivalent,
 * except that you don't need to include two pages of legalese
 * with every copy.
 *
 * To compute the message digest of a chunk of bytes, declare an
 * MD5Context structure, pass it to MD5Init, call MD5Update as
 * needed on buffers full of bytes, and then call MD5Final, which
 * will fill a supplied 16-byte array with the digest.
 */

#include "includes.h"

#ifndef _GETPUT_H
/*

getput.h

Author: Tatu Ylonen <ylo@cs.hut.fi>

Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland
                   All rights reserved

Created: Wed Jun 28 22:36:30 1995 ylo

Macros for storing and retrieving data in msb first and lsb first order.

*/

/*------------ macros for storing/extracting msb first words -------------*/

#define GET_32BIT(cp) (((uint32)(uchar)(cp)[0] << 24) | \
  		       ((uint32)(uchar)(cp)[1] << 16) | \
		       ((uint32)(uchar)(cp)[2] << 8) | \
		       ((uint32)(uchar)(cp)[3]))

#define GET_16BIT(cp) (((uint32)(uchar)(cp)[0] << 8) | \
		       ((uint32)(uchar)(cp)[1]))

#define PUT_32BIT(cp, value) do { \
  (cp)[0] = (value) >> 24; \
  (cp)[1] = (value) >> 16; \
  (cp)[2] = (value) >> 8; \
  (cp)[3] = (value); } while (0)

#define PUT_16BIT(cp, value) do { \
  (cp)[0] = (value) >> 8; \
  (cp)[1] = (value); } while (0)

/*------------ macros for storing/extracting lsb first words -------------*/

#define GET_32BIT_LSB_FIRST(cp) \
  (((uint32)(uchar)(cp)[0]) | \
  ((uint32)(uchar)(cp)[1] << 8) | \
  ((uint32)(uchar)(cp)[2] << 16) | \
  ((uint32)(uchar)(cp)[3] << 24))

#define GET_16BIT_LSB_FIRST(cp) \
  (((uint32)(uchar)(cp)[0]) | \
  ((uint32)(uchar)(cp)[1] << 8))

#define PUT_32BIT_LSB_FIRST(cp, value) do { \
  (cp)[0] = (value); \
  (cp)[1] = (value) >> 8; \
  (cp)[2] = (value) >> 16; \
  (cp)[3] = (value) >> 24; } while (0)

#define PUT_16BIT_LSB_FIRST(cp, value) do { \
  (cp)[0] = (value); \
  (cp)[1] = (value) >> 8; } while (0)

#endif /* _GETPUT_H */

/*
 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
 * initialization constants.
 */
void MD5Init(struct MD5Context *ctx)
{
    ctx->buf[0] = 0x67452301;
    ctx->buf[1] = 0xefcdab89;
    ctx->buf[2] = 0x98badcfe;
    ctx->buf[3] = 0x10325476;

    ctx->bits[0] = 0;
    ctx->bits[1] = 0;
}

/*
 * Update context to reflect the concatenation of another buffer full
 * of bytes.
 */
void MD5Update(struct MD5Context *ctx, uchar const *buf, unsigned len)
{
    uint32 t;

    /* Update bitcount */

    t = ctx->bits[0];
    if ((ctx->bits[0] = (t + ((uint32)len << 3)) & 0xffffffff) < t)
	ctx->bits[1]++;		/* Carry from low to high */
    ctx->bits[1] += len >> 29;

    t = (t >> 3) & 0x3f;	/* Bytes already in shsInfo->data */

    /* Handle any leading odd-sized chunks */

    if (t) {
	uchar *p = ctx->in + t;

	t = 64 - t;
	if (len < t) {
	    memcpy(p, buf, len);
	    return;
	}
	memcpy(p, buf, t);
	MD5Transform(ctx->buf, ctx->in);
	buf += t;
	len -= t;
    }
    /* Process data in 64-byte chunks */

    while (len >= 64) {
	memcpy(ctx->in, buf, 64);
	MD5Transform(ctx->buf, ctx->in);
	buf += 64;
	len -= 64;
    }

    /* Handle any remaining bytes of data. */

    memcpy(ctx->in, buf, len);
}

/*
 * Final wrapup - pad to 64-byte boundary with the bit pattern 
 * 1 0* (64-bit count of bits processed, MSB-first)
 */
void MD5Final(uchar digest[16], struct MD5Context *ctx)
{
    unsigned count;
    uchar *p;

    /* Compute number of bytes mod 64 */
    count = (ctx->bits[0] >> 3) & 0x3F;

    /* Set the first char of padding to 0x80.  This is safe since there is
       always at least one byte free */
    p = ctx->in + count;
    *p++ = 0x80;

    /* Bytes of padding needed to make 64 bytes */
    count = 64 - 1 - count;

    /* Pad out to 56 mod 64 */
    if (count < 8) {
	/* Two lots of padding:  Pad the first block to 64 bytes */
	memset(p, 0, count);
	MD5Transform(ctx->buf, ctx->in);

	/* Now fill the next block with 56 bytes */
	memset(ctx->in, 0, 56);
    } else {
	/* Pad block to 56 bytes */
	memset(p, 0, count - 8);
    }

    /* Append length in bits and transform */
    PUT_32BIT_LSB_FIRST(ctx->in + 56, ctx->bits[0]);
    PUT_32BIT_LSB_FIRST(ctx->in + 60, ctx->bits[1]);

    MD5Transform(ctx->buf, ctx->in);
    PUT_32BIT_LSB_FIRST(digest, ctx->buf[0]);
    PUT_32BIT_LSB_FIRST(digest + 4, ctx->buf[1]);
    PUT_32BIT_LSB_FIRST(digest + 8, ctx->buf[2]);
    PUT_32BIT_LSB_FIRST(digest + 12, ctx->buf[3]);
    memset(ctx, 0, sizeof(ctx));	/* In case it's sensitive */
}

#ifndef ASM_MD5

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
void MD5Transform(uint32 buf[4], const uchar inext[64])
{
    register uint32 a, b, c, d, i;
    uint32 in[16];
    
    for (i = 0; i < 16; i++)
      in[i] = GET_32BIT_LSB_FIRST(inext + 4 * i);

    a = buf[0];
    b = buf[1];
    c = buf[2];
    d = buf[3];

    MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);

    MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);

    MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);

    MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);

    buf[0] += a;
    buf[1] += b;
    buf[2] += c;
    buf[3] += d;
}

#endif