/* Unix SMB/CIFS implementation. In-memory cache Copyright (C) Volker Lendecke 2007 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "memcache.h" #include "../lib/util/rbtree.h" static struct memcache *global_cache; struct memcache_element { struct rb_node rb_node; struct memcache_element *prev, *next; size_t keylength, valuelength; uint8 n; /* This is really an enum, but save memory */ char data[1]; /* placeholder for offsetof */ }; struct memcache { struct memcache_element *mru, *lru; struct rb_root tree; size_t size; size_t max_size; }; static void memcache_element_parse(struct memcache_element *e, DATA_BLOB *key, DATA_BLOB *value); static bool memcache_is_talloc(enum memcache_number n) { bool result; switch (n) { case GETPWNAM_CACHE: case PDB_GETPWSID_CACHE: case SINGLETON_CACHE_TALLOC: result = true; break; default: result = false; break; } return result; } static int memcache_destructor(struct memcache *cache) { struct memcache_element *e, *next; for (e = cache->mru; e != NULL; e = next) { next = e->next; if (memcache_is_talloc((enum memcache_number)e->n) && (e->valuelength == sizeof(void *))) { DATA_BLOB key, value; void *ptr; memcache_element_parse(e, &key, &value); memcpy(&ptr, value.data, sizeof(ptr)); TALLOC_FREE(ptr); } SAFE_FREE(e); } return 0; } struct memcache *memcache_init(TALLOC_CTX *mem_ctx, size_t max_size) { struct memcache *result; result = TALLOC_ZERO_P(mem_ctx, struct memcache); if (result == NULL) { return NULL; } result->max_size = max_size; talloc_set_destructor(result, memcache_destructor); return result; } void memcache_set_global(struct memcache *cache) { TALLOC_FREE(global_cache); global_cache = cache; } static struct memcache_element *memcache_node2elem(struct rb_node *node) { return (struct memcache_element *) ((char *)node - offsetof(struct memcache_element, rb_node)); } static void memcache_element_parse(struct memcache_element *e, DATA_BLOB *key, DATA_BLOB *value) { key->data = ((uint8 *)e) + offsetof(struct memcache_element, data); key->length = e->keylength; value->data = key->data + e->keylength; value->length = e->valuelength; } static size_t memcache_element_size(size_t key_length, size_t value_length) { return sizeof(struct memcache_element) - 1 + key_length + value_length; } static int memcache_compare(struct memcache_element *e, enum memcache_number n, DATA_BLOB key) { DATA_BLOB this_key, this_value; if ((int)e->n < (int)n) return 1; if ((int)e->n > (int)n) return -1; if (e->keylength < key.length) return 1; if (e->keylength > key.length) return -1; memcache_element_parse(e, &this_key, &this_value); return memcmp(this_key.data, key.data, key.length); } static struct memcache_element *memcache_find( struct memcache *cache, enum memcache_number n, DATA_BLOB key) { struct rb_node *node; node = cache->tree.rb_node; while (node != NULL) { struct memcache_element *elem = memcache_node2elem(node); int cmp; cmp = memcache_compare(elem, n, key); if (cmp == 0) { return elem; } node = (cmp < 0) ? node->rb_left : node->rb_right; } return NULL; } bool memcache_lookup(struct memcache *cache, enum memcache_number n, DATA_BLOB key, DATA_BLOB *value) { struct memcache_element *e; if (cache == NULL) { cache = global_cache; } if (cache == NULL) { return false; } e = memcache_find(cache, n, key); if (e == NULL) { return false; } if (cache->size != 0) { /* * Do LRU promotion only when we will ever shrink */ if (e == cache->lru) { cache->lru = e->prev; } DLIST_PROMOTE(cache->mru, e); if (cache->mru == NULL) { cache->mru = e; } } memcache_element_parse(e, &key, value); return true; } void *memcache_lookup_talloc(struct memcache *cache, enum memcache_number n, DATA_BLOB key) { DATA_BLOB value; void *result; if (!memcache_lookup(cache, n, key, &value)) { return NULL; } if (value.length != sizeof(result)) { return NULL; } memcpy(&result, value.data, sizeof(result)); return result; } static void memcache_delete_element(struct memcache *cache, struct memcache_element *e) { rb_erase(&e->rb_node, &cache->tree); if (e == cache->lru) { cache->lru = e->prev; } DLIST_REMOVE(cache->mru, e); cache->size -= memcache_element_size(e->keylength, e->valuelength); SAFE_FREE(e); } static void memcache_trim(struct memcache *cache) { if (cache->max_size == 0) { return; } while ((cache->size > cache->max_size) && (cache->lru != NULL)) { memcache_delete_element(cache, cache->lru); } } void memcache_delete(struct memcache *cache, enum memcache_number n, DATA_BLOB key) { struct memcache_element *e; if (cache == NULL) { cache = global_cache; } if (cache == NULL) { return; } e = memcache_find(cache, n, key); if (e == NULL) { return; } memcache_delete_element(cache, e); } void memcache_add(struct memcache *cache, enum memcache_number n, DATA_BLOB key, DATA_BLOB value) { struct memcache_element *e; struct rb_node **p; struct rb_node *parent; DATA_BLOB cache_key, cache_value; size_t element_size; if (cache == NULL) { cache = global_cache; } if (cache == NULL) { return; } if (key.length == 0) { return; } e = memcache_find(cache, n, key); if (e != NULL) { memcache_element_parse(e, &cache_key, &cache_value); if (value.length <= cache_value.length) { /* * We can reuse the existing record */ memcpy(cache_value.data, value.data, value.length); e->valuelength = value.length; return; } memcache_delete_element(cache, e); } element_size = memcache_element_size(key.length, value.length); e = (struct memcache_element *)SMB_MALLOC(element_size); if (e == NULL) { DEBUG(0, ("malloc failed\n")); return; } e->n = n; e->keylength = key.length; e->valuelength = value.length; memcache_element_parse(e, &cache_key, &cache_value); memcpy(cache_key.data, key.data, key.length); memcpy(cache_value.data, value.data, value.length); parent = NULL; p = &cache->tree.rb_node; while (*p) { struct memcache_element *elem = memcache_node2elem(*p); int cmp; parent = (*p); cmp = memcache_compare(elem, n, key); p = (cmp < 0) ? &(*p)->rb_left : &(*p)->rb_right; } rb_link_node(&e->rb_node, parent, p); rb_insert_color(&e->rb_node, &cache->tree); DLIST_ADD(cache->mru, e); if (cache->lru == NULL) { cache->lru = e; } cache->size += element_size; memcache_trim(cache); } void memcache_add_talloc(struct memcache *cache, enum memcache_number n, DATA_BLOB key, void *ptr) { memcache_add(cache, n, key, data_blob_const(&ptr, sizeof(ptr))); } void memcache_flush(struct memcache *cache, enum memcache_number n) { struct rb_node *node; if (cache == NULL) { cache = global_cache; } if (cache == NULL) { return; } /* * Find the smallest element of number n */ node = cache->tree.rb_node; if (node == NULL) { return; } /* * First, find *any* element of number n */ while (true) { struct memcache_element *elem = memcache_node2elem(node); struct rb_node *next; if ((int)elem->n == (int)n) { break; } if ((int)elem->n < (int)n) { next = node->rb_right; } else { next = node->rb_left; } if (next == NULL) { break; } node = next; } if (node == NULL) { return; } /* * Then, find the leftmost element with number n */ while (true) { struct rb_node *prev = rb_prev(node); struct memcache_element *elem; if (prev == NULL) { break; } elem = memcache_node2elem(prev); if ((int)elem->n != (int)n) { break; } node = prev; } while (node != NULL) { struct memcache_element *e = memcache_node2elem(node); struct rb_node *next = rb_next(node); if (e->n != n) { break; } memcache_delete_element(cache, e); node = next; } }