/* Unix SMB/CIFS implementation. Infrastructure for async SMB client requests Copyright (C) Volker Lendecke 2008 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "includes.h" static void cli_state_handler(struct event_context *event_ctx, struct fd_event *event, uint16 flags, void *p); /** * Fetch an error out of a NBT packet * @param[in] buf The SMB packet * @retval The error, converted to NTSTATUS */ NTSTATUS cli_pull_error(char *buf) { uint32_t flags2 = SVAL(buf, smb_flg2); if (flags2 & FLAGS2_32_BIT_ERROR_CODES) { return NT_STATUS(IVAL(buf, smb_rcls)); } /* if the client uses dos errors, but there is no error, we should return no error here, otherwise it looks like an unknown bad NT_STATUS. jmcd */ if (CVAL(buf, smb_rcls) == 0) return NT_STATUS_OK; return NT_STATUS_DOS(CVAL(buf, smb_rcls), SVAL(buf,smb_err)); } /** * Compatibility helper for the sync APIs: Fake NTSTATUS in cli->inbuf * @param[in] cli The client connection that just received an error * @param[in] status The error to set on "cli" */ void cli_set_error(struct cli_state *cli, NTSTATUS status) { uint32_t flags2 = SVAL(cli->inbuf, smb_flg2); if (NT_STATUS_IS_DOS(status)) { SSVAL(cli->inbuf, smb_flg2, flags2 & ~FLAGS2_32_BIT_ERROR_CODES); SCVAL(cli->inbuf, smb_rcls, NT_STATUS_DOS_CLASS(status)); SSVAL(cli->inbuf, smb_err, NT_STATUS_DOS_CODE(status)); return; } SSVAL(cli->inbuf, smb_flg2, flags2 | FLAGS2_32_BIT_ERROR_CODES); SIVAL(cli->inbuf, smb_rcls, NT_STATUS_V(status)); return; } /** * Allocate a new mid * @param[in] cli The client connection * @retval The new, unused mid */ static uint16_t cli_new_mid(struct cli_state *cli) { uint16_t result; struct cli_request *req; while (true) { result = cli->mid++; if (result == 0) { continue; } for (req = cli->outstanding_requests; req; req = req->next) { if (result == req->mid) { break; } } if (req == NULL) { return result; } } } /** * Print an async req that happens to be a cli_request * @param[in] mem_ctx The TALLOC_CTX to put the result on * @param[in] req The request to print * @retval The string representation of "req" */ static char *cli_request_print(TALLOC_CTX *mem_ctx, struct async_req *req) { char *result = async_req_print(mem_ctx, req); struct cli_request *cli_req = talloc_get_type_abort( req->private_data, struct cli_request); if (result == NULL) { return NULL; } return talloc_asprintf_append_buffer( result, "mid=%d\n", cli_req->mid); } /** * Destroy a cli_request * @param[in] req The cli_request to kill * @retval Can't fail */ static int cli_request_destructor(struct cli_request *req) { if (req->enc_state != NULL) { common_free_enc_buffer(req->enc_state, (char *)req->outbuf); } DLIST_REMOVE(req->cli->outstanding_requests, req); if (req->cli->outstanding_requests == NULL) { TALLOC_FREE(req->cli->fd_event); } return 0; } /** * Are there already requests waiting in the chain_accumulator? * @param[in] cli The cli_state we want to check * @retval reply :-) */ bool cli_in_chain(struct cli_state *cli) { if (cli->chain_accumulator == NULL) { return false; } return (cli->chain_accumulator->num_async != 0); } /** * @brief Find the smb_cmd offset of the last command pushed * @param[in] buf The buffer we're building up * @retval Where can we put our next andx cmd? * * While chaining requests, the "next" request we're looking at needs to put * its SMB_Command before the data the previous request already built up added * to the chain. Find the offset to the place where we have to put our cmd. */ static bool find_andx_cmd_ofs(uint8_t *buf, size_t *pofs) { uint8_t cmd; size_t ofs; cmd = CVAL(buf, smb_com); SMB_ASSERT(is_andx_req(cmd)); ofs = smb_vwv0; while (CVAL(buf, ofs) != 0xff) { if (!is_andx_req(CVAL(buf, ofs))) { return false; } /* * ofs is from start of smb header, so add the 4 length * bytes. The next cmd is right after the wct field. */ ofs = SVAL(buf, ofs+2) + 4 + 1; SMB_ASSERT(ofs+4 < talloc_get_size(buf)); } *pofs = ofs; return true; } /** * @brief Do the smb chaining at a buffer level * @param[in] poutbuf Pointer to the talloc'ed buffer to be modified * @param[in] smb_command The command that we want to issue * @param[in] wct How many words? * @param[in] vwv The words, already in network order * @param[in] bytes_alignment How shall we align "bytes"? * @param[in] num_bytes How many bytes? * @param[in] bytes The data the request ships * * smb_splice_chain() adds the vwv and bytes to the request already present in * *poutbuf. */ bool smb_splice_chain(uint8_t **poutbuf, uint8_t smb_command, uint8_t wct, const uint16_t *vwv, size_t bytes_alignment, uint32_t num_bytes, const uint8_t *bytes) { uint8_t *outbuf; size_t old_size, new_size; size_t ofs; size_t chain_padding = 0; size_t bytes_padding = 0; bool first_request; old_size = talloc_get_size(*poutbuf); /* * old_size == smb_wct means we're pushing the first request in for * libsmb/ */ first_request = (old_size == smb_wct); if (!first_request && ((old_size % 4) != 0)) { /* * Align the wct field of subsequent requests to a 4-byte * boundary */ chain_padding = 4 - (old_size % 4); } /* * After the old request comes the new wct field (1 byte), the vwv's * and the num_bytes field. After at we might need to align the bytes * given to us to "bytes_alignment", increasing the num_bytes value. */ new_size = old_size + chain_padding + 1 + wct * sizeof(uint16_t) + 2; if ((bytes_alignment != 0) && ((new_size % bytes_alignment) != 0)) { bytes_padding = bytes_alignment - (new_size % bytes_alignment); } new_size += bytes_padding + num_bytes; if ((smb_command != SMBwriteX) && (new_size > 0xffff)) { DEBUG(1, ("splice_chain: %u bytes won't fit\n", (unsigned)new_size)); return false; } outbuf = TALLOC_REALLOC_ARRAY(NULL, *poutbuf, uint8_t, new_size); if (outbuf == NULL) { DEBUG(0, ("talloc failed\n")); return false; } *poutbuf = outbuf; if (first_request) { SCVAL(outbuf, smb_com, smb_command); } else { size_t andx_cmd_ofs; if (!find_andx_cmd_ofs(outbuf, &andx_cmd_ofs)) { DEBUG(1, ("invalid command chain\n")); *poutbuf = TALLOC_REALLOC_ARRAY( NULL, *poutbuf, uint8_t, old_size); return false; } if (chain_padding != 0) { memset(outbuf + old_size, 0, chain_padding); old_size += chain_padding; } SCVAL(outbuf, andx_cmd_ofs, smb_command); SSVAL(outbuf, andx_cmd_ofs + 2, old_size - 4); } ofs = old_size; /* * Push the chained request: * * wct field */ SCVAL(outbuf, ofs, wct); ofs += 1; /* * vwv array */ memcpy(outbuf + ofs, vwv, sizeof(uint16_t) * wct); ofs += sizeof(uint16_t) * wct; /* * bcc (byte count) */ SSVAL(outbuf, ofs, num_bytes + bytes_padding); ofs += sizeof(uint16_t); /* * padding */ if (bytes_padding != 0) { memset(outbuf + ofs, 0, bytes_padding); ofs += bytes_padding; } /* * The bytes field */ memcpy(outbuf + ofs, bytes, num_bytes); return true; } /** * @brief Destroy an async_req that is the visible part of a cli_request * @param[in] req The request to kill * @retval Return 0 to make talloc happy * * This destructor is a bit tricky: Because a cli_request can host more than * one async_req for chained requests, we need to make sure that the * "cli_request" that we were part of is correctly destroyed at the right * time. This is done by NULLing out ourself from the "async" member of our * "cli_request". If there is none left, then also TALLOC_FREE() the * cli_request, which was a talloc child of the client connection cli_state. */ static int cli_async_req_destructor(struct async_req *req) { struct cli_request *cli_req = talloc_get_type_abort( req->private_data, struct cli_request); int i, pending; bool found = false; pending = 0; for (i=0; inum_async; i++) { if (cli_req->async[i] == req) { cli_req->async[i] = NULL; found = true; } if (cli_req->async[i] != NULL) { pending += 1; } } SMB_ASSERT(found); if (pending == 0) { TALLOC_FREE(cli_req); } return 0; } /** * @brief Chain up a request * @param[in] mem_ctx The TALLOC_CTX for the result * @param[in] ev The event context that will call us back * @param[in] cli The cli_state we queue the request up for * @param[in] smb_command The command that we want to issue * @param[in] additional_flags open_and_x wants to add oplock header flags * @param[in] wct How many words? * @param[in] vwv The words, already in network order * @param[in] bytes_alignment How shall we align "bytes"? * @param[in] num_bytes How many bytes? * @param[in] bytes The data the request ships * * cli_request_chain() is the core of the SMB request marshalling routine. It * will create a new async_req structure in the cli->chain_accumulator->async * array and marshall the smb_cmd, the vwv array and the bytes into * cli->chain_accumulator->outbuf. */ static struct async_req *cli_request_chain(TALLOC_CTX *mem_ctx, struct event_context *ev, struct cli_state *cli, uint8_t smb_command, uint8_t additional_flags, uint8_t wct, const uint16_t *vwv, size_t bytes_alignment, uint32_t num_bytes, const uint8_t *bytes) { struct async_req **tmp_reqs; struct cli_request *req; req = cli->chain_accumulator; tmp_reqs = TALLOC_REALLOC_ARRAY(req, req->async, struct async_req *, req->num_async + 1); if (tmp_reqs == NULL) { DEBUG(0, ("talloc failed\n")); return NULL; } req->async = tmp_reqs; req->num_async += 1; req->async[req->num_async-1] = async_req_new(mem_ctx); if (req->async[req->num_async-1] == NULL) { DEBUG(0, ("async_req_new failed\n")); req->num_async -= 1; return NULL; } req->async[req->num_async-1]->private_data = req; req->async[req->num_async-1]->print = cli_request_print; talloc_set_destructor(req->async[req->num_async-1], cli_async_req_destructor); if (!smb_splice_chain(&req->outbuf, smb_command, wct, vwv, bytes_alignment, num_bytes, bytes)) { goto fail; } return req->async[req->num_async-1]; fail: TALLOC_FREE(req->async[req->num_async-1]); req->num_async -= 1; return NULL; } /** * @brief prepare a cli_state to accept a chain of requests * @param[in] cli The cli_state we want to queue up in * @param[in] ev The event_context that will call us back for the socket * @param[in] size_hint How many bytes are expected, just an optimization * @retval Did we have enough memory? * * cli_chain_cork() sets up a new cli_request in cli->chain_accumulator. If * cli is used in an async fashion, i.e. if we have outstanding requests, then * we do not have to create a fd event. If cli is used only with the sync * helpers, we need to create the fd_event here. * * If you want to issue a chained request to the server, do a * cli_chain_cork(), then do you cli_open_send(), cli_read_and_x_send(), * cli_close_send() and so on. The async requests that come out of * cli_xxx_send() are normal async requests with the difference that they * won't be shipped individually. But the event_context will still trigger the * req->async.fn to be called on every single request. * * You have to take care yourself that you only issue chainable requests in * the middle of the chain. */ bool cli_chain_cork(struct cli_state *cli, struct event_context *ev, size_t size_hint) { struct cli_request *req = NULL; SMB_ASSERT(cli->chain_accumulator == NULL); if (cli->fd == -1) { DEBUG(10, ("cli->fd closed\n")); return false; } if (cli->fd_event == NULL) { SMB_ASSERT(cli->outstanding_requests == NULL); cli->fd_event = event_add_fd(ev, cli, cli->fd, EVENT_FD_READ, cli_state_handler, cli); if (cli->fd_event == NULL) { return false; } } req = talloc(cli, struct cli_request); if (req == NULL) { goto fail; } req->cli = cli; if (size_hint == 0) { size_hint = 100; } req->outbuf = talloc_array(req, uint8_t, smb_wct + size_hint); if (req->outbuf == NULL) { goto fail; } req->outbuf = TALLOC_REALLOC_ARRAY(NULL, req->outbuf, uint8_t, smb_wct); req->num_async = 0; req->async = NULL; req->enc_state = NULL; req->recv_helper.fn = NULL; SSVAL(req->outbuf, smb_tid, cli->cnum); cli_setup_packet_buf(cli, (char *)req->outbuf); req->mid = cli_new_mid(cli); cli->chain_accumulator = req; DEBUG(10, ("cli_chain_cork: mid=%d\n", req->mid)); return true; fail: TALLOC_FREE(req); if (cli->outstanding_requests == NULL) { TALLOC_FREE(cli->fd_event); } return false; } /** * Ship a request queued up via cli_request_chain() * @param[in] cl The connection */ void cli_chain_uncork(struct cli_state *cli) { struct cli_request *req = cli->chain_accumulator; size_t smblen; SMB_ASSERT(req != NULL); DLIST_ADD_END(cli->outstanding_requests, req, struct cli_request *); talloc_set_destructor(req, cli_request_destructor); cli->chain_accumulator = NULL; SSVAL(req->outbuf, smb_mid, req->mid); smblen = talloc_get_size(req->outbuf) - 4; smb_setlen((char *)req->outbuf, smblen); if (smblen > 0x1ffff) { /* * This is a POSIX 14 word large write. Overwrite just the * size field, the '0xFFSMB' has been set by smb_setlen which * _smb_setlen_large does not do. */ _smb_setlen_large(((char *)req->outbuf), smblen); } cli_calculate_sign_mac(cli, (char *)req->outbuf, &req->seqnum); if (cli_encryption_on(cli)) { NTSTATUS status; char *enc_buf; status = cli_encrypt_message(cli, (char *)req->outbuf, &enc_buf); if (!NT_STATUS_IS_OK(status)) { DEBUG(0, ("Error in encrypting client message. " "Error %s\n", nt_errstr(status))); TALLOC_FREE(req); return; } req->outbuf = (uint8_t *)enc_buf; req->enc_state = cli->trans_enc_state; } req->sent = 0; event_fd_set_writeable(cli->fd_event); } /** * @brief Send a request to the server * @param[in] mem_ctx The TALLOC_CTX for the result * @param[in] ev The event context that will call us back * @param[in] cli The cli_state we queue the request up for * @param[in] smb_command The command that we want to issue * @param[in] additional_flags open_and_x wants to add oplock header flags * @param[in] wct How many words? * @param[in] vwv The words, already in network order * @param[in] bytes_alignment How shall we align "bytes"? * @param[in] num_bytes How many bytes? * @param[in] bytes The data the request ships * * This is the generic routine to be used by the cli_xxx_send routines. */ struct async_req *cli_request_send(TALLOC_CTX *mem_ctx, struct event_context *ev, struct cli_state *cli, uint8_t smb_command, uint8_t additional_flags, uint8_t wct, const uint16_t *vwv, size_t bytes_alignment, uint32_t num_bytes, const uint8_t *bytes) { struct async_req *result; bool uncork = false; if (cli->chain_accumulator == NULL) { if (!cli_chain_cork(cli, ev, wct * sizeof(uint16_t) + num_bytes + 3)) { DEBUG(1, ("cli_chain_cork failed\n")); return NULL; } uncork = true; } result = cli_request_chain(mem_ctx, ev, cli, smb_command, additional_flags, wct, vwv, bytes_alignment, num_bytes, bytes); if (result == NULL) { DEBUG(1, ("cli_request_chain failed\n")); } if (uncork) { cli_chain_uncork(cli); } return result; } /** * Calculate the current ofs to wct for requests like write&x * @param[in] req The smb request we're currently building * @retval how many bytes offset have we accumulated? */ uint16_t cli_wct_ofs(const struct cli_state *cli) { size_t buf_size; if (cli->chain_accumulator == NULL) { return smb_wct - 4; } buf_size = talloc_get_size(cli->chain_accumulator->outbuf); if (buf_size == smb_wct) { return smb_wct - 4; } /* * Add alignment for subsequent requests */ if ((buf_size % 4) != 0) { buf_size += (4 - (buf_size % 4)); } return buf_size - 4; } /** * Figure out if there is an andx command behind the current one * @param[in] buf The smb buffer to look at * @param[in] ofs The offset to the wct field that is followed by the cmd * @retval Is there a command following? */ static bool have_andx_command(const char *buf, uint16_t ofs) { uint8_t wct; size_t buflen = talloc_get_size(buf); if ((ofs == buflen-1) || (ofs == buflen)) { return false; } wct = CVAL(buf, ofs); if (wct < 2) { /* * Not enough space for the command and a following pointer */ return false; } return (CVAL(buf, ofs+1) != 0xff); } /** * @brief Pull reply data out of a request * @param[in] req The request that we just received a reply for * @param[out] pwct How many words did the server send? * @param[out] pvwv The words themselves * @param[out] pnum_bytes How many bytes did the server send? * @param[out] pbytes The bytes themselves * @retval Was the reply formally correct? */ NTSTATUS cli_pull_reply(struct async_req *req, uint8_t *pwct, uint16_t **pvwv, uint16_t *pnum_bytes, uint8_t **pbytes) { struct cli_request *cli_req = talloc_get_type_abort( req->private_data, struct cli_request); uint8_t wct, cmd; uint16_t num_bytes; size_t wct_ofs, bytes_offset; int i, j; NTSTATUS status; for (i = 0; i < cli_req->num_async; i++) { if (req == cli_req->async[i]) { break; } } if (i == cli_req->num_async) { cli_set_error(cli_req->cli, NT_STATUS_INVALID_PARAMETER); return NT_STATUS_INVALID_PARAMETER; } /** * The status we pull here is only relevant for the last reply in the * chain. */ status = cli_pull_error(cli_req->inbuf); if (i == 0) { if (NT_STATUS_IS_ERR(status) && !have_andx_command(cli_req->inbuf, smb_wct)) { cli_set_error(cli_req->cli, status); return status; } wct_ofs = smb_wct; goto done; } cmd = CVAL(cli_req->inbuf, smb_com); wct_ofs = smb_wct; for (j = 0; j < i; j++) { if (j < i-1) { if (cmd == 0xff) { return NT_STATUS_REQUEST_ABORTED; } if (!is_andx_req(cmd)) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } } if (!have_andx_command(cli_req->inbuf, wct_ofs)) { /* * This request was not completed because a previous * request in the chain had received an error. */ return NT_STATUS_REQUEST_ABORTED; } wct_ofs = SVAL(cli_req->inbuf, wct_ofs + 3); /* * Skip the all-present length field. No overflow, we've just * put a 16-bit value into a size_t. */ wct_ofs += 4; if (wct_ofs+2 > talloc_get_size(cli_req->inbuf)) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } cmd = CVAL(cli_req->inbuf, wct_ofs + 1); } if (!have_andx_command(cli_req->inbuf, wct_ofs) && NT_STATUS_IS_ERR(status)) { /* * The last command takes the error code. All further commands * down the requested chain will get a * NT_STATUS_REQUEST_ABORTED. */ return status; } done: wct = CVAL(cli_req->inbuf, wct_ofs); bytes_offset = wct_ofs + 1 + wct * sizeof(uint16_t); num_bytes = SVAL(cli_req->inbuf, bytes_offset); /* * wct_ofs is a 16-bit value plus 4, wct is a 8-bit value, num_bytes * is a 16-bit value. So bytes_offset being size_t should be far from * wrapping. */ if ((bytes_offset + 2 > talloc_get_size(cli_req->inbuf)) || (bytes_offset > 0xffff)) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } *pwct = wct; *pvwv = (uint16_t *)(cli_req->inbuf + wct_ofs + 1); *pnum_bytes = num_bytes; *pbytes = (uint8_t *)cli_req->inbuf + bytes_offset + 2; return NT_STATUS_OK; } /** * Decrypt a PDU, check the signature * @param[in] cli The cli_state that received something * @param[in] pdu The incoming bytes * @retval error code */ static NTSTATUS validate_smb_crypto(struct cli_state *cli, char *pdu, struct cli_request **_req, uint16_t *_mid) { NTSTATUS status; struct cli_request *req = NULL; uint16_t mid; *_req = NULL; *_mid = 0; if ((IVAL(pdu, 4) != 0x424d53ff) /* 0xFF"SMB" */ && (SVAL(pdu, 4) != 0x45ff)) /* 0xFF"E" */ { DEBUG(10, ("Got non-SMB PDU\n")); return NT_STATUS_INVALID_NETWORK_RESPONSE; } if (cli_encryption_on(cli) && CVAL(pdu, 0) == 0) { uint16_t enc_ctx_num; status = get_enc_ctx_num((uint8_t *)pdu, &enc_ctx_num); if (!NT_STATUS_IS_OK(status)) { DEBUG(10, ("get_enc_ctx_num returned %s\n", nt_errstr(status))); return status; } if (enc_ctx_num != cli->trans_enc_state->enc_ctx_num) { DEBUG(10, ("wrong enc_ctx %d, expected %d\n", enc_ctx_num, cli->trans_enc_state->enc_ctx_num)); return NT_STATUS_INVALID_HANDLE; } status = common_decrypt_buffer(cli->trans_enc_state, pdu); if (!NT_STATUS_IS_OK(status)) { DEBUG(10, ("common_decrypt_buffer returned %s\n", nt_errstr(status))); return status; } } mid = SVAL(pdu, smb_mid); for (req = cli->outstanding_requests; req; req = req->next) { if (req->mid == mid) { break; } } if (!req) { /* oplock breaks are not signed */ goto done; } if (!cli_check_sign_mac(cli, pdu, req->seqnum+1)) { DEBUG(10, ("cli_check_sign_mac failed\n")); return NT_STATUS_ACCESS_DENIED; } done: *_req = req; *_mid = mid; return NT_STATUS_OK; } /** * A PDU has arrived on cli->evt_inbuf * @param[in] cli The cli_state that received something */ static void handle_incoming_pdu(struct cli_state *cli) { struct cli_request *req, *next; uint16_t mid; size_t raw_pdu_len, buf_len, rest_len; char *pdu; int i; NTSTATUS status; int num_async; /* * The encrypted PDU len might differ from the unencrypted one */ raw_pdu_len = smb_len(cli->evt_inbuf) + 4; buf_len = talloc_get_size(cli->evt_inbuf); rest_len = buf_len - raw_pdu_len; if (buf_len == raw_pdu_len) { /* * Optimal case: Exactly one PDU was in the socket buffer */ pdu = cli->evt_inbuf; cli->evt_inbuf = NULL; } else { DEBUG(11, ("buf_len = %d, raw_pdu_len = %d, splitting " "buffer\n", (int)buf_len, (int)raw_pdu_len)); if (raw_pdu_len < rest_len) { /* * The PDU is shorter, talloc_memdup that one. */ pdu = (char *)talloc_memdup( cli, cli->evt_inbuf, raw_pdu_len); memmove(cli->evt_inbuf, cli->evt_inbuf + raw_pdu_len, buf_len - raw_pdu_len); cli->evt_inbuf = TALLOC_REALLOC_ARRAY( NULL, cli->evt_inbuf, char, rest_len); if (pdu == NULL) { status = NT_STATUS_NO_MEMORY; goto invalidate_requests; } } else { /* * The PDU is larger than the rest, talloc_memdup the * rest */ pdu = cli->evt_inbuf; cli->evt_inbuf = (char *)talloc_memdup( cli, pdu + raw_pdu_len, rest_len); if (cli->evt_inbuf == NULL) { status = NT_STATUS_NO_MEMORY; goto invalidate_requests; } } } status = validate_smb_crypto(cli, pdu, &req, &mid); if (!NT_STATUS_IS_OK(status)) { goto invalidate_requests; } DEBUG(10, ("handle_incoming_pdu: got mid %d\n", mid)); if (req == NULL) { DEBUG(3, ("Request for mid %d not found, dumping PDU\n", mid)); TALLOC_FREE(pdu); return; } req->inbuf = talloc_move(req, &pdu); /* * Freeing the last async_req will free the req (see * cli_async_req_destructor). So make a copy of req->num_async, we * can't reference it in the last round. */ num_async = req->num_async; for (i=0; iasync via its * destructor cli_async_req_destructor(). */ if (req->async[i] != NULL) { if (req->recv_helper.fn != NULL) { req->recv_helper.fn(req->async[i]); } else { async_req_done(req->async[i]); } } } return; invalidate_requests: DEBUG(10, ("handle_incoming_pdu: Aborting with %s\n", nt_errstr(status))); for (req = cli->outstanding_requests; req; req = next) { next = req->next; if (req->num_async) { async_req_nterror(req->async[0], status); } } return; } /** * fd event callback. This is the basic connection to the socket * @param[in] event_ctx The event context that called us * @param[in] event The event that fired * @param[in] flags EVENT_FD_READ | EVENT_FD_WRITE * @param[in] p private_data, in this case the cli_state */ static void cli_state_handler(struct event_context *event_ctx, struct fd_event *event, uint16 flags, void *p) { struct cli_state *cli = (struct cli_state *)p; struct cli_request *req, *next; NTSTATUS status; DEBUG(11, ("cli_state_handler called with flags %d\n", flags)); if (flags & EVENT_FD_WRITE) { size_t to_send; ssize_t sent; for (req = cli->outstanding_requests; req; req = req->next) { to_send = smb_len(req->outbuf)+4; if (to_send > req->sent) { break; } } if (req == NULL) { if (cli->fd_event != NULL) { event_fd_set_not_writeable(cli->fd_event); } return; } sent = sys_send(cli->fd, req->outbuf + req->sent, to_send - req->sent, 0); if (sent < 0) { status = map_nt_error_from_unix(errno); goto sock_error; } req->sent += sent; if (req->sent == to_send) { return; } } if (flags & EVENT_FD_READ) { int res, available; size_t old_size, new_size; char *tmp; res = ioctl(cli->fd, FIONREAD, &available); if (res == -1) { DEBUG(10, ("ioctl(FIONREAD) failed: %s\n", strerror(errno))); status = map_nt_error_from_unix(errno); goto sock_error; } if (available == 0) { /* EOF */ status = NT_STATUS_END_OF_FILE; goto sock_error; } old_size = talloc_get_size(cli->evt_inbuf); new_size = old_size + available; if (new_size < old_size) { /* wrap */ status = NT_STATUS_UNEXPECTED_IO_ERROR; goto sock_error; } tmp = TALLOC_REALLOC_ARRAY(cli, cli->evt_inbuf, char, new_size); if (tmp == NULL) { /* nomem */ status = NT_STATUS_NO_MEMORY; goto sock_error; } cli->evt_inbuf = tmp; res = sys_recv(cli->fd, cli->evt_inbuf + old_size, available, 0); if (res == -1) { DEBUG(10, ("recv failed: %s\n", strerror(errno))); status = map_nt_error_from_unix(errno); goto sock_error; } DEBUG(11, ("cli_state_handler: received %d bytes, " "smb_len(evt_inbuf) = %d\n", (int)res, smb_len(cli->evt_inbuf))); /* recv *might* have returned less than announced */ new_size = old_size + res; /* shrink, so I don't expect errors here */ cli->evt_inbuf = TALLOC_REALLOC_ARRAY(cli, cli->evt_inbuf, char, new_size); while ((cli->evt_inbuf != NULL) && ((smb_len(cli->evt_inbuf) + 4) <= new_size)) { /* * we've got a complete NBT level PDU in evt_inbuf */ handle_incoming_pdu(cli); new_size = talloc_get_size(cli->evt_inbuf); } } return; sock_error: for (req = cli->outstanding_requests; req; req = next) { int i, num_async; next = req->next; num_async = req->num_async; for (i=0; iasync[i], status); } } TALLOC_FREE(cli->fd_event); close(cli->fd); cli->fd = -1; } #define MAX_SMB_IOV 5 struct cli_smb_state { struct tevent_context *ev; struct cli_state *cli; uint8_t header[smb_wct+1]; /* Space for the header including the wct */ /* * For normal requests, cli_smb_req_send chooses a mid. Secondary * trans requests need to use the mid of the primary request, so we * need a place to store it. Assume it's set if != 0. */ uint16_t mid; uint16_t *vwv; uint8_t bytecount_buf[2]; struct iovec iov[MAX_SMB_IOV+3]; int iov_count; uint8_t *inbuf; uint32_t seqnum; int chain_num; struct tevent_req **chained_requests; }; static uint16_t cli_alloc_mid(struct cli_state *cli) { int num_pending = talloc_array_length(cli->pending); uint16_t result; while (true) { int i; result = cli->mid++; if (result == 0) { continue; } for (i=0; ipending[i])) { break; } } if (i == num_pending) { return result; } } } void cli_smb_req_unset_pending(struct tevent_req *req) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); struct cli_state *cli = state->cli; int num_pending = talloc_array_length(cli->pending); int i; if (num_pending == 1) { /* * The pending read_smb tevent_req is a child of * cli->pending. So if nothing is pending anymore, we need to * delete the socket read fde. */ TALLOC_FREE(cli->pending); return; } for (i=0; ipending[i]) { break; } } if (i == num_pending) { /* * Something's seriously broken. Just returning here is the * right thing nevertheless, the point of this routine is to * remove ourselves from cli->pending. */ return; } /* * Remove ourselves from the cli->pending array */ if (num_pending > 1) { cli->pending[i] = cli->pending[num_pending-1]; } /* * No NULL check here, we're shrinking by sizeof(void *), and * talloc_realloc just adjusts the size for this. */ cli->pending = talloc_realloc(NULL, cli->pending, struct tevent_req *, num_pending - 1); return; } static int cli_smb_req_destructor(struct tevent_req *req) { cli_smb_req_unset_pending(req); return 0; } static void cli_smb_received(struct tevent_req *subreq); bool cli_smb_req_set_pending(struct tevent_req *req) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); struct cli_state *cli; struct tevent_req **pending; int num_pending; struct tevent_req *subreq; cli = state->cli; num_pending = talloc_array_length(cli->pending); pending = talloc_realloc(cli, cli->pending, struct tevent_req *, num_pending+1); if (pending == NULL) { return false; } pending[num_pending] = req; cli->pending = pending; talloc_set_destructor(req, cli_smb_req_destructor); if (num_pending > 0) { return true; } /* * We're the first ones, add the read_smb request that waits for the * answer from the server */ subreq = read_smb_send(cli->pending, state->ev, cli->fd); if (subreq == NULL) { cli_smb_req_unset_pending(req); return false; } tevent_req_set_callback(subreq, cli_smb_received, cli); return true; } /* * Fetch a smb request's mid. Only valid after the request has been sent by * cli_smb_req_send(). */ uint16_t cli_smb_req_mid(struct tevent_req *req) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); return SVAL(state->header, smb_mid); } void cli_smb_req_set_mid(struct tevent_req *req, uint16_t mid) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); state->mid = mid; } static size_t iov_len(const struct iovec *iov, int count) { size_t result = 0; int i; for (i=0; i MAX_SMB_IOV) { /* * Should not happen :-) */ return NULL; } result = tevent_req_create(mem_ctx, &state, struct cli_smb_state); if (result == NULL) { return NULL; } state->ev = ev; state->cli = cli; state->mid = 0; /* Set to auto-choose in cli_smb_req_send */ state->chain_num = 0; state->chained_requests = NULL; cli_setup_packet_buf(cli, (char *)state->header); SCVAL(state->header, smb_com, smb_command); SSVAL(state->header, smb_tid, cli->cnum); SCVAL(state->header, smb_wct, wct); state->vwv = vwv; SSVAL(state->bytecount_buf, 0, iov_len(bytes_iov, iov_count)); state->iov[0].iov_base = state->header; state->iov[0].iov_len = sizeof(state->header); state->iov[1].iov_base = state->vwv; state->iov[1].iov_len = wct * sizeof(uint16_t); state->iov[2].iov_base = state->bytecount_buf; state->iov[2].iov_len = sizeof(uint16_t); if (iov_count != 0) { memcpy(&state->iov[3], bytes_iov, iov_count * sizeof(*bytes_iov)); } state->iov_count = iov_count + 3; return result; } static bool cli_signv(struct cli_state *cli, struct iovec *iov, int count, uint32_t *seqnum) { uint8_t *buf; /* * Obvious optimization: Make cli_calculate_sign_mac work with struct * iovec directly. MD5Update would do that just fine. */ if ((count <= 0) || (iov[0].iov_len < smb_wct)) { return false; } buf = iov_concat(talloc_tos(), iov, count); if (buf == NULL) { return false; } cli_calculate_sign_mac(cli, (char *)buf, seqnum); memcpy(iov[0].iov_base, buf, iov[0].iov_len); TALLOC_FREE(buf); return true; } static void cli_smb_sent(struct tevent_req *subreq); static bool cli_smb_req_iov_send(struct tevent_req *req, struct cli_smb_state *state, struct iovec *iov, int iov_count) { struct tevent_req *subreq; if (iov[0].iov_len < smb_wct) { return false; } if (state->mid != 0) { SSVAL(iov[0].iov_base, smb_mid, state->mid); } else { SSVAL(iov[0].iov_base, smb_mid, cli_alloc_mid(state->cli)); } smb_setlen((char *)iov[0].iov_base, iov_len(iov, iov_count) - 4); if (!cli_signv(state->cli, iov, iov_count, &state->seqnum)) { return false; } if (cli_encryption_on(state->cli)) { NTSTATUS status; char *buf, *enc_buf; buf = (char *)iov_concat(talloc_tos(), iov, iov_count); if (buf == NULL) { return false; } status = cli_encrypt_message(state->cli, (char *)buf, &enc_buf); TALLOC_FREE(buf); if (!NT_STATUS_IS_OK(status)) { DEBUG(0, ("Error in encrypting client message: %s\n", nt_errstr(status))); return false; } buf = (char *)talloc_memdup(state, enc_buf, smb_len(enc_buf)+4); SAFE_FREE(enc_buf); if (buf == NULL) { return false; } iov[0].iov_base = buf; iov[0].iov_len = talloc_get_size(buf); subreq = writev_send(state, state->ev, state->cli->outgoing, state->cli->fd, iov, 1); } else { subreq = writev_send(state, state->ev, state->cli->outgoing, state->cli->fd, iov, iov_count); } if (subreq == NULL) { return false; } tevent_req_set_callback(subreq, cli_smb_sent, req); return true; } bool cli_smb_req_send(struct tevent_req *req) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); return cli_smb_req_iov_send(req, state, state->iov, state->iov_count); } struct tevent_req *cli_smb_send(TALLOC_CTX *mem_ctx, struct event_context *ev, struct cli_state *cli, uint8_t smb_command, uint8_t additional_flags, uint8_t wct, uint16_t *vwv, uint32_t num_bytes, const uint8_t *bytes) { struct tevent_req *req; struct iovec iov; iov.iov_base = CONST_DISCARD(char *, bytes); iov.iov_len = num_bytes; req = cli_smb_req_create(mem_ctx, ev, cli, smb_command, additional_flags, wct, vwv, 1, &iov); if (req == NULL) { return NULL; } if (!cli_smb_req_send(req)) { TALLOC_FREE(req); } return req; } static void cli_smb_sent(struct tevent_req *subreq) { struct tevent_req *req = tevent_req_callback_data( subreq, struct tevent_req); struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); ssize_t nwritten; int err; nwritten = writev_recv(subreq, &err); TALLOC_FREE(subreq); if (nwritten == -1) { tevent_req_nterror(req, map_nt_error_from_unix(err)); return; } switch (CVAL(state->header, smb_com)) { case SMBtranss: case SMBtranss2: case SMBnttranss: case SMBntcancel: state->inbuf = NULL; tevent_req_done(req); return; case SMBlockingX: if ((CVAL(state->header, smb_wct) == 8) && (CVAL(state->vwv+3, 0) == LOCKING_ANDX_OPLOCK_RELEASE)) { state->inbuf = NULL; tevent_req_done(req); return; } } if (!cli_smb_req_set_pending(req)) { tevent_req_nterror(req, NT_STATUS_NO_MEMORY); return; } } static void cli_smb_received(struct tevent_req *subreq) { struct cli_state *cli = tevent_req_callback_data( subreq, struct cli_state); struct tevent_req *req; struct cli_smb_state *state; struct tevent_context *ev; NTSTATUS status; uint8_t *inbuf; ssize_t received; int num_pending; int i, err; uint16_t mid; received = read_smb_recv(subreq, talloc_tos(), &inbuf, &err); TALLOC_FREE(subreq); if (received == -1) { status = map_nt_error_from_unix(err); goto fail; } if ((IVAL(inbuf, 4) != 0x424d53ff) /* 0xFF"SMB" */ && (SVAL(inbuf, 4) != 0x45ff)) /* 0xFF"E" */ { DEBUG(10, ("Got non-SMB PDU\n")); status = NT_STATUS_INVALID_NETWORK_RESPONSE; goto fail; } if (cli_encryption_on(cli) && (CVAL(inbuf, 0) == 0)) { uint16_t enc_ctx_num; status = get_enc_ctx_num(inbuf, &enc_ctx_num); if (!NT_STATUS_IS_OK(status)) { DEBUG(10, ("get_enc_ctx_num returned %s\n", nt_errstr(status))); goto fail; } if (enc_ctx_num != cli->trans_enc_state->enc_ctx_num) { DEBUG(10, ("wrong enc_ctx %d, expected %d\n", enc_ctx_num, cli->trans_enc_state->enc_ctx_num)); status = NT_STATUS_INVALID_HANDLE; goto fail; } status = common_decrypt_buffer(cli->trans_enc_state, (char *)inbuf); if (!NT_STATUS_IS_OK(status)) { DEBUG(10, ("common_decrypt_buffer returned %s\n", nt_errstr(status))); goto fail; } } mid = SVAL(inbuf, smb_mid); num_pending = talloc_array_length(cli->pending); for (i=0; ipending[i])) { break; } } if (i == num_pending) { /* Dump unexpected reply */ TALLOC_FREE(inbuf); goto done; } req = cli->pending[i]; state = tevent_req_data(req, struct cli_smb_state); ev = state->ev; if (!cli_check_sign_mac(cli, (char *)inbuf, state->seqnum+1)) { DEBUG(10, ("cli_check_sign_mac failed\n")); TALLOC_FREE(inbuf); status = NT_STATUS_ACCESS_DENIED; goto fail; } if (state->chained_requests == NULL) { state->inbuf = talloc_move(state, &inbuf); talloc_set_destructor(req, NULL); cli_smb_req_destructor(req); tevent_req_done(req); } else { struct tevent_req **chain = talloc_move( talloc_tos(), &state->chained_requests); int num_chained = talloc_array_length(chain); for (i=0; iinbuf = inbuf; state->chain_num = i; tevent_req_done(chain[i]); } TALLOC_FREE(inbuf); TALLOC_FREE(chain); } done: if (talloc_array_length(cli->pending) > 0) { /* * Set up another read request for the other pending cli_smb * requests */ state = tevent_req_data(cli->pending[0], struct cli_smb_state); subreq = read_smb_send(cli->pending, state->ev, cli->fd); if (subreq == NULL) { status = NT_STATUS_NO_MEMORY; goto fail; } tevent_req_set_callback(subreq, cli_smb_received, cli); } return; fail: /* * Cancel all pending requests. We don't do a for-loop walking * cli->pending because that array changes in * cli_smb_req_destructor(). */ while (talloc_array_length(cli->pending) > 0) { req = cli->pending[0]; talloc_set_destructor(req, NULL); cli_smb_req_destructor(req); tevent_req_nterror(req, status); } } NTSTATUS cli_smb_recv(struct tevent_req *req, uint8_t min_wct, uint8_t *pwct, uint16_t **pvwv, uint32_t *pnum_bytes, uint8_t **pbytes) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); NTSTATUS status = NT_STATUS_OK; uint8_t cmd, wct; uint16_t num_bytes; size_t wct_ofs, bytes_offset; int i; if (tevent_req_is_nterror(req, &status)) { return status; } if (state->inbuf == NULL) { /* This was a request without a reply */ return NT_STATUS_OK; } wct_ofs = smb_wct; cmd = CVAL(state->inbuf, smb_com); for (i=0; ichain_num; i++) { if (i < state->chain_num-1) { if (cmd == 0xff) { return NT_STATUS_REQUEST_ABORTED; } if (!is_andx_req(cmd)) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } } if (!have_andx_command((char *)state->inbuf, wct_ofs)) { /* * This request was not completed because a previous * request in the chain had received an error. */ return NT_STATUS_REQUEST_ABORTED; } wct_ofs = SVAL(state->inbuf, wct_ofs + 3); /* * Skip the all-present length field. No overflow, we've just * put a 16-bit value into a size_t. */ wct_ofs += 4; if (wct_ofs+2 > talloc_get_size(state->inbuf)) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } cmd = CVAL(state->inbuf, wct_ofs + 1); } status = cli_pull_error((char *)state->inbuf); if (!have_andx_command((char *)state->inbuf, wct_ofs) && NT_STATUS_IS_ERR(status)) { /* * The last command takes the error code. All further commands * down the requested chain will get a * NT_STATUS_REQUEST_ABORTED. */ return status; } wct = CVAL(state->inbuf, wct_ofs); bytes_offset = wct_ofs + 1 + wct * sizeof(uint16_t); num_bytes = SVAL(state->inbuf, bytes_offset); if (wct < min_wct) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } /* * wct_ofs is a 16-bit value plus 4, wct is a 8-bit value, num_bytes * is a 16-bit value. So bytes_offset being size_t should be far from * wrapping. */ if ((bytes_offset + 2 > talloc_get_size(state->inbuf)) || (bytes_offset > 0xffff)) { return NT_STATUS_INVALID_NETWORK_RESPONSE; } if (pwct != NULL) { *pwct = wct; } if (pvwv != NULL) { *pvwv = (uint16_t *)(state->inbuf + wct_ofs + 1); } if (pnum_bytes != NULL) { *pnum_bytes = num_bytes; } if (pbytes != NULL) { *pbytes = (uint8_t *)state->inbuf + bytes_offset + 2; } return NT_STATUS_OK; } size_t cli_smb_wct_ofs(struct tevent_req **reqs, int num_reqs) { size_t wct_ofs; int i; wct_ofs = smb_wct - 4; for (i=0; iiov+1, state->iov_count-1); wct_ofs = (wct_ofs + 3) & ~3; } return wct_ofs; } bool cli_smb_chain_send(struct tevent_req **reqs, int num_reqs) { struct cli_smb_state *first_state = tevent_req_data( reqs[0], struct cli_smb_state); struct cli_smb_state *last_state = tevent_req_data( reqs[num_reqs-1], struct cli_smb_state); struct cli_smb_state *state; size_t wct_offset; size_t chain_padding = 0; int i, iovlen; struct iovec *iov = NULL; struct iovec *this_iov; iovlen = 0; for (i=0; iiov_count; } iov = talloc_array(last_state, struct iovec, iovlen); if (iov == NULL) { goto fail; } first_state->chained_requests = (struct tevent_req **)talloc_memdup( last_state, reqs, sizeof(*reqs) * num_reqs); if (first_state->chained_requests == NULL) { goto fail; } wct_offset = smb_wct - 4; this_iov = iov; for (i=0; iheader, smb_com)) || CVAL(state->header, smb_wct) < 2) { goto fail; } } wct_offset += iov_len(state->iov+1, state->iov_count-1) + 1; if ((wct_offset % 4) != 0) { next_padding = 4 - (wct_offset % 4); } wct_offset += next_padding; vwv = state->vwv; if (i < num_reqs-1) { struct cli_smb_state *next_state = tevent_req_data( reqs[i+1], struct cli_smb_state); SCVAL(vwv+0, 0, CVAL(next_state->header, smb_com)); SCVAL(vwv+0, 1, 0); SSVAL(vwv+1, 0, wct_offset); } else if (is_andx_req(CVAL(state->header, smb_com))) { /* properly end the chain */ SCVAL(vwv+0, 0, 0xff); SCVAL(vwv+0, 1, 0xff); SSVAL(vwv+1, 0, 0); } if (i == 0) { this_iov[0] = state->iov[0]; } else { /* * This one is a bit subtle. We have to add * chain_padding bytes between the requests, and we * have to also include the wct field of the * subsequent requests. We use the subsequent header * for the padding, it contains the wct field in its * last byte. */ this_iov[0].iov_len = chain_padding+1; this_iov[0].iov_base = &state->header[ sizeof(state->header) - this_iov[0].iov_len]; memset(this_iov[0].iov_base, 0, this_iov[0].iov_len-1); } memcpy(this_iov+1, state->iov+1, sizeof(struct iovec) * (state->iov_count-1)); this_iov += state->iov_count; chain_padding = next_padding; } if (!cli_smb_req_iov_send(reqs[0], last_state, iov, iovlen)) { goto fail; } return true; fail: TALLOC_FREE(iov); return false; } uint8_t *cli_smb_inbuf(struct tevent_req *req) { struct cli_smb_state *state = tevent_req_data( req, struct cli_smb_state); return state->inbuf; } bool cli_has_async_calls(struct cli_state *cli) { return ((tevent_queue_length(cli->outgoing) != 0) || (talloc_array_length(cli->pending) != 0)); }