################################################### # Samba4 NDR info tree generator # Copyright tridge@samba.org 2000-2003 # Copyright tpot@samba.org 2001 # Copyright jelmer@samba.org 2004-2005 # released under the GNU GPL package Ndr; use strict; use typelist; ##################################################################### # return a table describing the order in which the parts of an element # should be parsed # Possible level types: # - POINTER # - ARRAY # - SUBCONTEXT # - SWITCH # - DATA sub GetElementLevelTable($) { my $e = shift; return ($e->{NDR_ORDER_TABLE}) if (defined $e->{NDR_ORDER_TABLE}); my $order = []; my $is_deferred = 0; # FIXME: Process {ARRAY_SIZE} kinds of arrays # First, all the pointers foreach my $i (1..need_wire_pointer($e)) { push (@$order, { TYPE => "POINTER", # for now, there can only be one pointer type per element POINTER_TYPE => pointer_type($e), IS_DEFERRED => "$is_deferred" }); # everything that follows will be deferred $is_deferred = 1; # FIXME: Process array here possibly (in case of multi-dimensional arrays, etc) } if (defined($e->{ARRAY_LEN})) { push (@$order, { TYPE => "ARRAY", ARRAY_TYPE => array_type($e), SIZE_IS => util::has_property($e, "size_is"), LENGTH_IS => util::has_property($e, "length_is"), IS_DEFERRED => "$is_deferred" }); } if (my $sub_size = util::has_property($e, "subcontext")) { push (@$order, { TYPE => "SUBCONTEXT", SUBCONTEXT_SIZE => $sub_size, IS_DEFERRED => $is_deferred, COMPRESSION => util::has_property($e, "compression") }); } if (my $switch = util::has_property($e, "switch_is")) { push (@$order, { TYPE => "SWITCH", SWITCH_IS => $switch, IS_DEFERRED => $is_deferred }); } push (@$order, { TYPE => "DATA", DATA_TYPE => $e->{TYPE}, NAME => $e->{NAME}, IS_DEFERRED => $is_deferred, CONTAINS_DEFERRED => can_contain_deferred($e) }); $e->{NDR_ORDER_TABLE} = $order; return $order; } ##################################################################### # see if a type contains any deferred data sub can_contain_deferred { my $e = shift; return 1 if ($e->{POINTERS}); return 0 if (is_scalar_type($e->{TYPE})); return 0 if (util::has_property($e, "subcontext")); return 1 unless (typelist::hasType($e->{TYPE})); # assume the worst my $type = typelist::getType($e->{TYPE}); foreach my $x (@{$type->{DATA}->{ELEMENTS}}) { return 1 if (can_contain_deferred ($x)); } return 0; } sub is_scalar_type($) { my $type = shift; return 0 unless typelist::hasType($type); if (my $dt = typelist::getType($type)->{DATA}->{TYPE}) { return 1 if ($dt eq "SCALAR" or $dt eq "ENUM" or $dt eq "BITMAP"); } return 0; } sub pointer_type($) { my $e = shift; return undef unless $e->{POINTERS}; return "ref" if (util::has_property($e, "ref")); return "ptr" if (util::has_property($e, "ptr")); return "unique" if (util::has_property($e, "unique")); return "relative" if (util::has_property($e, "relative")); return "ignore" if (util::has_property($e, "ignore")); return undef; } # return 1 if this is a fixed array sub is_fixed_array($) { my $e = shift; my $len = $e->{"ARRAY_LEN"}; return 1 if (defined $len && util::is_constant($len)); return 0; } # return 1 if this is a conformant array sub is_conformant_array($) { my $e = shift; return 1 if (util::has_property($e, "size_is")); return 0; } # return 1 if this is a inline array sub is_inline_array($) { my $e = shift; my $len = $e->{"ARRAY_LEN"}; if (is_fixed_array($e) || defined $len && $len ne "*") { return 1; } return 0; } # return 1 if this is a varying array sub is_varying_array($) { my $e = shift; return util::has_property($e, "length_is"); } # return 1 if this is a surrounding array (sometimes # referred to as an embedded array). Can only occur as # the last element in a struct and can not contain any pointers. sub is_surrounding_array($) { my $e = shift; return ($e->{POINTERS} == 0 and defined $e->{ARRAY_LEN} and $e->{ARRAY_LEN} eq "*" and $e == $e->{PARENT}->{ELEMENTS}[-1] and $e->{PARENT}->{TYPE} ne "FUNCTION"); } sub array_type($) { my $e = shift; return "conformant-varying" if (is_varying_array($e) and is_conformant_array($e)); return "conformant" if (is_varying_array($e)); return "varying" if (is_varying_array($e)); return "inline" if (is_inline_array($e)); return "fixed" if (is_fixed_array($e)); return undef; } ##################################################################### # work out the correct alignment for a structure or union sub find_largest_alignment($) { my $s = shift; my $align = 1; for my $e (@{$s->{ELEMENTS}}) { my $a = 1; if (Ndr::need_wire_pointer($e)) { $a = 4; } else { $a = align_type($e->{TYPE}); } $align = $a if ($align < $a); } return $align; } ##################################################################### # align a type sub align_type { my $e = shift; unless (typelist::hasType($e)) { # it must be an external type - all we can do is guess # print "Warning: assuming alignment of unknown type '$e' is 4\n"; return 4; } my $dt = typelist::getType($e)->{DATA}; if ($dt->{TYPE} eq "ENUM") { return align_type(typelist::enum_type_fn($dt)); } elsif ($dt->{TYPE} eq "BITMAP") { return align_type(typelist::bitmap_type_fn($dt)); } elsif (($dt->{TYPE} eq "STRUCT") or ($dt->{TYPE} eq "UNION")) { return find_largest_alignment($dt); } elsif ($dt->{TYPE} eq "SCALAR") { return typelist::getScalarAlignment($dt->{NAME}); } die("Unknown data type type $dt->{TYPE}"); } # determine if an element needs a reference pointer on the wire # in its NDR representation sub need_wire_pointer($) { my $e = shift; my $n = $e->{POINTERS}; my $pt = pointer_type($e); # Top level "ref" pointers do not have a referrent identifier if ( defined($pt) and $pt eq "ref" and $e->{PARENT}->{TYPE} eq "FUNCTION") { $n--; } return $n; } sub ParseElement($) { my $e = shift; return { NAME => $e->{NAME}, PROPERTIES => $e->{PROPERTIES}, LEVELS => GetElementLevelTable($e) }; } sub ParseStruct($) { my $e = shift; my @elements = (); foreach my $x (@{$e->{ELEMENTS}}) { push @elements, ParseElement($x); } return { TYPE => "STRUCT", ELEMENTS => \@elements, PROPERTIES => $e->{PROPERTIES} }; } sub ParseUnion($) { my $e = shift; my @elements = (); foreach my $x (@{$e->{ELEMENTS}}) { my $t; if ($x->{TYPE} eq "EMPTY") { $t = { TYPE => "EMPTY" }; } else { $t = ParseElement($x); if (util::has_property($t, "default")) { $t->{DEFAULT} = "default"; } else { $t->{CASE} = $t->{PROPERTIES}->{CASE}; } } push @elements, $t; } return { TYPE => "UNION", ELEMENTS => \@elements, PROPERTIES => $e->{PROPERTIES} }; } sub ParseEnum($) { my $e = shift; return { TYPE => "ENUM", ELEMENTS => $e->{ELEMENTS}, PROPERTIES => $e->{PROPERTIES} }; } sub ParseBitmap($) { my $e = shift; return { TYPE => "BITMAP", ELEMENTS => $e->{ELEMENTS}, PROPERTIES => $e->{PROPERTIES} }; } sub ParseTypedef($$) { my $ndr = shift; my $d = shift; my $data; if ($d->{DATA}->{TYPE} eq "STRUCT" or $d->{DATA}->{TYPE} eq "UNION") { CheckPointerTypes($d->{DATA}, $ndr->{PROPERTIES}->{pointer_default}); } if (defined($d->{PROPERTIES}) && !defined($d->{DATA}->{PROPERTIES})) { $d->{DATA}->{PROPERTIES} = $d->{PROPERTIES}; } if ($d->{DATA}->{TYPE} eq "STRUCT") { $data = ParseStruct($d->{DATA}); } elsif ($d->{DATA}->{TYPE} eq "UNION") { $data = ParseUnion($d->{DATA}); } elsif ($d->{DATA}->{TYPE} eq "ENUM") { $data = ParseEnum($d->{DATA}); } elsif ($d->{DATA}->{TYPE} eq "BITMAP") { $data = ParseBitmap($d->{DATA}); } else { die("Unknown data type '$d->{DATA}->{TYPE}'"); } $data->{ALIGN} = align_type($d->{NAME}); return { NAME => $d->{NAME}, TYPE => "TYPEDEF", PROPERTIES => $d->{PROPERTIES}, DATA => $data }; } sub ParseFunction($$) { my $ndr = shift; my $d = shift; my @in = (); my @out = (); CheckPointerTypes($d, $ndr->{PROPERTIES}->{pointer_default} # MIDL defaults to "ref" ); foreach my $x (@{$d->{ELEMENTS}}) { if (util::has_property($x, "in")) { push (@in, ParseElement($x)); } if (util::has_property($x, "out")) { push (@out, ParseElement($x)); } } return { NAME => $d->{NAME}, TYPE => "FUNCTION", RETURN_TYPE => $d->{RETURN_TYPE}, PROPERTIES => $d->{PROPERTIES}, ELEMENTS => { IN => \@in, OUT => \@out } }; } sub CheckPointerTypes($$) { my $s = shift; my $default = shift; foreach my $e (@{$s->{ELEMENTS}}) { if ($e->{POINTERS}) { if (not defined(Ndr::pointer_type($e))) { $e->{PROPERTIES}->{$default} = 1; } if (Ndr::pointer_type($e) eq "ptr") { print "Warning: ptr is not supported by pidl yet\n"; } } } } sub ParseInterface($) { my $idl = shift; my @functions = (); my @typedefs = (); my $version; if (not util::has_property($idl, "pointer_default")) { # MIDL defaults to "ptr" in DCE compatible mode (/osf) # and "unique" in Microsoft Extensions mode (default) $idl->{PROPERTIES}->{pointer_default} = "unique"; } foreach my $d (@{$idl->{DATA}}) { if ($d->{TYPE} eq "DECLARE" or $d->{TYPE} eq "TYPEDEF") { push (@typedefs, ParseTypedef($idl, $d)); } if ($d->{TYPE} eq "FUNCTION") { push (@functions, ParseFunction($idl, $d)); } } $version = "0.0"; if(defined $idl->{PROPERTIES}->{version}) { $version = $idl->{PROPERTIES}->{version}; } return { NAME => $idl->{NAME}, UUID => util::has_property($idl, "uuid"), VERSION => $version, TYPE => "INTERFACE", PROPERTIES => $idl->{PROPERTIES}, FUNCTIONS => \@functions, TYPEDEFS => \@typedefs }; } # Convert a IDL tree to a NDR tree # Gives a result tree describing all that's necessary for easily generating # NDR parsers # - list of interfaces # - list with functions # - list with in elements # - list with out elements # - list of typedefs # - list with structs # - alignment of structure # - list with elements # - list with unions # - alignment of union # - list with elements # - list with enums # - base type # - list with bitmaps # - base type # per element: # - alignment # - "level" table # properties are saved # pointer types explicitly specified sub Parse($) { my $idl = shift; my @ndr = (); foreach my $x (@{$idl}) { push @ndr, ParseInterface($x); } return \@ndr; } 1;