/* * Copyright (c) 1997 - 2008 Kungliga Tekniska Högskolan * (Royal Institute of Technology, Stockholm, Sweden). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. Neither the name of the Institute nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #define KRB5_DEPRECATED #include "krb5_locl.h" #include #define WEAK_ENCTYPES 1 #ifndef HEIMDAL_SMALLER #define DES3_OLD_ENCTYPE 1 #endif #ifdef HAVE_OPENSSL /* XXX forward decl for hcrypto glue */ const EVP_CIPHER * _krb5_EVP_hcrypto_aes_128_cts(void); const EVP_CIPHER * _krb5_EVP_hcrypto_aes_256_cts(void); #define EVP_hcrypto_aes_128_cts _krb5_EVP_hcrypto_aes_128_cts #define EVP_hcrypto_aes_256_cts _krb5_EVP_hcrypto_aes_256_cts #endif struct key_data { krb5_keyblock *key; krb5_data *schedule; }; struct key_usage { unsigned usage; struct key_data key; }; struct krb5_crypto_data { struct encryption_type *et; struct key_data key; int num_key_usage; struct key_usage *key_usage; }; #define CRYPTO_ETYPE(C) ((C)->et->type) /* bits for `flags' below */ #define F_KEYED 1 /* checksum is keyed */ #define F_CPROOF 2 /* checksum is collision proof */ #define F_DERIVED 4 /* uses derived keys */ #define F_VARIANT 8 /* uses `variant' keys (6.4.3) */ #define F_PSEUDO 16 /* not a real protocol type */ #define F_SPECIAL 32 /* backwards */ #define F_DISABLED 64 /* enctype/checksum disabled */ struct salt_type { krb5_salttype type; const char *name; krb5_error_code (*string_to_key)(krb5_context, krb5_enctype, krb5_data, krb5_salt, krb5_data, krb5_keyblock*); }; struct key_type { krb5_keytype type; /* XXX */ const char *name; size_t bits; size_t size; size_t schedule_size; void (*random_key)(krb5_context, krb5_keyblock*); void (*schedule)(krb5_context, struct key_type *, struct key_data *); struct salt_type *string_to_key; void (*random_to_key)(krb5_context, krb5_keyblock*, const void*, size_t); void (*cleanup)(krb5_context, struct key_data *); const EVP_CIPHER *(*evp)(void); }; struct checksum_type { krb5_cksumtype type; const char *name; size_t blocksize; size_t checksumsize; unsigned flags; krb5_enctype (*checksum)(krb5_context context, struct key_data *key, const void *buf, size_t len, unsigned usage, Checksum *csum); krb5_error_code (*verify)(krb5_context context, struct key_data *key, const void *buf, size_t len, unsigned usage, Checksum *csum); }; struct encryption_type { krb5_enctype type; const char *name; size_t blocksize; size_t padsize; size_t confoundersize; struct key_type *keytype; struct checksum_type *checksum; struct checksum_type *keyed_checksum; unsigned flags; krb5_error_code (*encrypt)(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec); size_t prf_length; krb5_error_code (*prf)(krb5_context, krb5_crypto, const krb5_data *, krb5_data *); }; #define ENCRYPTION_USAGE(U) (((U) << 8) | 0xAA) #define INTEGRITY_USAGE(U) (((U) << 8) | 0x55) #define CHECKSUM_USAGE(U) (((U) << 8) | 0x99) static struct checksum_type *_find_checksum(krb5_cksumtype type); static struct encryption_type *_find_enctype(krb5_enctype type); static krb5_error_code _get_derived_key(krb5_context, krb5_crypto, unsigned, struct key_data**); static struct key_data *_new_derived_key(krb5_crypto crypto, unsigned usage); static krb5_error_code derive_key(krb5_context context, struct encryption_type *et, struct key_data *key, const void *constant, size_t len); static krb5_error_code hmac(krb5_context context, struct checksum_type *cm, const void *data, size_t len, unsigned usage, struct key_data *keyblock, Checksum *result); static void free_key_data(krb5_context, struct key_data *, struct encryption_type *); static void free_key_schedule(krb5_context, struct key_data *, struct encryption_type *); static krb5_error_code usage2arcfour (krb5_context, unsigned *); static void xor (DES_cblock *, const unsigned char *); /************************************************************ * * ************************************************************/ struct evp_schedule { EVP_CIPHER_CTX ectx; EVP_CIPHER_CTX dctx; }; static HEIMDAL_MUTEX crypto_mutex = HEIMDAL_MUTEX_INITIALIZER; #ifdef WEAK_ENCTYPES static void krb5_DES_random_key(krb5_context context, krb5_keyblock *key) { DES_cblock *k = key->keyvalue.data; do { krb5_generate_random_block(k, sizeof(DES_cblock)); DES_set_odd_parity(k); } while(DES_is_weak_key(k)); } static void krb5_DES_schedule_old(krb5_context context, struct key_type *kt, struct key_data *key) { DES_set_key_unchecked(key->key->keyvalue.data, key->schedule->data); } #ifdef ENABLE_AFS_STRING_TO_KEY /* This defines the Andrew string_to_key function. It accepts a password * string as input and converts it via a one-way encryption algorithm to a DES * encryption key. It is compatible with the original Andrew authentication * service password database. */ /* * Short passwords, i.e 8 characters or less. */ static void krb5_DES_AFS3_CMU_string_to_key (krb5_data pw, krb5_data cell, DES_cblock *key) { char password[8+1]; /* crypt is limited to 8 chars anyway */ int i; for(i = 0; i < 8; i++) { char c = ((i < pw.length) ? ((char*)pw.data)[i] : 0) ^ ((i < cell.length) ? tolower(((unsigned char*)cell.data)[i]) : 0); password[i] = c ? c : 'X'; } password[8] = '\0'; memcpy(key, crypt(password, "p1") + 2, sizeof(DES_cblock)); /* parity is inserted into the LSB so left shift each byte up one bit. This allows ascii characters with a zero MSB to retain as much significance as possible. */ for (i = 0; i < sizeof(DES_cblock); i++) ((unsigned char*)key)[i] <<= 1; DES_set_odd_parity (key); } /* * Long passwords, i.e 9 characters or more. */ static void krb5_DES_AFS3_Transarc_string_to_key (krb5_data pw, krb5_data cell, DES_cblock *key) { DES_key_schedule schedule; DES_cblock temp_key; DES_cblock ivec; char password[512]; size_t passlen; memcpy(password, pw.data, min(pw.length, sizeof(password))); if(pw.length < sizeof(password)) { int len = min(cell.length, sizeof(password) - pw.length); int i; memcpy(password + pw.length, cell.data, len); for (i = pw.length; i < pw.length + len; ++i) password[i] = tolower((unsigned char)password[i]); } passlen = min(sizeof(password), pw.length + cell.length); memcpy(&ivec, "kerberos", 8); memcpy(&temp_key, "kerberos", 8); DES_set_odd_parity (&temp_key); DES_set_key_unchecked (&temp_key, &schedule); DES_cbc_cksum ((void*)password, &ivec, passlen, &schedule, &ivec); memcpy(&temp_key, &ivec, 8); DES_set_odd_parity (&temp_key); DES_set_key_unchecked (&temp_key, &schedule); DES_cbc_cksum ((void*)password, key, passlen, &schedule, &ivec); memset(&schedule, 0, sizeof(schedule)); memset(&temp_key, 0, sizeof(temp_key)); memset(&ivec, 0, sizeof(ivec)); memset(password, 0, sizeof(password)); DES_set_odd_parity (key); } static krb5_error_code DES_AFS3_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { DES_cblock tmp; if(password.length > 8) krb5_DES_AFS3_Transarc_string_to_key(password, salt.saltvalue, &tmp); else krb5_DES_AFS3_CMU_string_to_key(password, salt.saltvalue, &tmp); key->keytype = enctype; krb5_data_copy(&key->keyvalue, tmp, sizeof(tmp)); memset(&key, 0, sizeof(key)); return 0; } #endif /* ENABLE_AFS_STRING_TO_KEY */ static void DES_string_to_key_int(unsigned char *data, size_t length, DES_cblock *key) { DES_key_schedule schedule; int i; int reverse = 0; unsigned char *p; unsigned char swap[] = { 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf }; memset(key, 0, 8); p = (unsigned char*)key; for (i = 0; i < length; i++) { unsigned char tmp = data[i]; if (!reverse) *p++ ^= (tmp << 1); else *--p ^= (swap[tmp & 0xf] << 4) | swap[(tmp & 0xf0) >> 4]; if((i % 8) == 7) reverse = !reverse; } DES_set_odd_parity(key); if(DES_is_weak_key(key)) (*key)[7] ^= 0xF0; DES_set_key_unchecked(key, &schedule); DES_cbc_cksum((void*)data, key, length, &schedule, key); memset(&schedule, 0, sizeof(schedule)); DES_set_odd_parity(key); if(DES_is_weak_key(key)) (*key)[7] ^= 0xF0; } static krb5_error_code krb5_DES_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { unsigned char *s; size_t len; DES_cblock tmp; #ifdef ENABLE_AFS_STRING_TO_KEY if (opaque.length == 1) { unsigned long v; _krb5_get_int(opaque.data, &v, 1); if (v == 1) return DES_AFS3_string_to_key(context, enctype, password, salt, opaque, key); } #endif len = password.length + salt.saltvalue.length; s = malloc(len); if(len > 0 && s == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memcpy(s, password.data, password.length); memcpy(s + password.length, salt.saltvalue.data, salt.saltvalue.length); DES_string_to_key_int(s, len, &tmp); key->keytype = enctype; krb5_data_copy(&key->keyvalue, tmp, sizeof(tmp)); memset(&tmp, 0, sizeof(tmp)); memset(s, 0, len); free(s); return 0; } static void krb5_DES_random_to_key(krb5_context context, krb5_keyblock *key, const void *data, size_t size) { DES_cblock *k = key->keyvalue.data; memcpy(k, data, key->keyvalue.length); DES_set_odd_parity(k); if(DES_is_weak_key(k)) xor(k, (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); } #endif /* * */ static void DES3_random_key(krb5_context context, krb5_keyblock *key) { DES_cblock *k = key->keyvalue.data; do { krb5_generate_random_block(k, 3 * sizeof(DES_cblock)); DES_set_odd_parity(&k[0]); DES_set_odd_parity(&k[1]); DES_set_odd_parity(&k[2]); } while(DES_is_weak_key(&k[0]) || DES_is_weak_key(&k[1]) || DES_is_weak_key(&k[2])); } /* * A = A xor B. A & B are 8 bytes. */ static void xor (DES_cblock *key, const unsigned char *b) { unsigned char *a = (unsigned char*)key; a[0] ^= b[0]; a[1] ^= b[1]; a[2] ^= b[2]; a[3] ^= b[3]; a[4] ^= b[4]; a[5] ^= b[5]; a[6] ^= b[6]; a[7] ^= b[7]; } #ifdef DES3_OLD_ENCTYPE static krb5_error_code DES3_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { char *str; size_t len; unsigned char tmp[24]; DES_cblock keys[3]; krb5_error_code ret; len = password.length + salt.saltvalue.length; str = malloc(len); if(len != 0 && str == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memcpy(str, password.data, password.length); memcpy(str + password.length, salt.saltvalue.data, salt.saltvalue.length); { DES_cblock ivec; DES_key_schedule s[3]; int i; ret = _krb5_n_fold(str, len, tmp, 24); if (ret) { memset(str, 0, len); free(str); krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); return ret; } for(i = 0; i < 3; i++){ memcpy(keys + i, tmp + i * 8, sizeof(keys[i])); DES_set_odd_parity(keys + i); if(DES_is_weak_key(keys + i)) xor(keys + i, (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); DES_set_key_unchecked(keys + i, &s[i]); } memset(&ivec, 0, sizeof(ivec)); DES_ede3_cbc_encrypt(tmp, tmp, sizeof(tmp), &s[0], &s[1], &s[2], &ivec, DES_ENCRYPT); memset(s, 0, sizeof(s)); memset(&ivec, 0, sizeof(ivec)); for(i = 0; i < 3; i++){ memcpy(keys + i, tmp + i * 8, sizeof(keys[i])); DES_set_odd_parity(keys + i); if(DES_is_weak_key(keys + i)) xor(keys + i, (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); } memset(tmp, 0, sizeof(tmp)); } key->keytype = enctype; krb5_data_copy(&key->keyvalue, keys, sizeof(keys)); memset(keys, 0, sizeof(keys)); memset(str, 0, len); free(str); return 0; } #endif static krb5_error_code DES3_string_to_key_derived(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_error_code ret; size_t len = password.length + salt.saltvalue.length; char *s; s = malloc(len); if(len != 0 && s == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memcpy(s, password.data, password.length); memcpy(s + password.length, salt.saltvalue.data, salt.saltvalue.length); ret = krb5_string_to_key_derived(context, s, len, enctype, key); memset(s, 0, len); free(s); return ret; } static void DES3_random_to_key(krb5_context context, krb5_keyblock *key, const void *data, size_t size) { unsigned char *x = key->keyvalue.data; const u_char *q = data; DES_cblock *k; int i, j; memset(x, 0, sizeof(x)); for (i = 0; i < 3; ++i) { unsigned char foo; for (j = 0; j < 7; ++j) { unsigned char b = q[7 * i + j]; x[8 * i + j] = b; } foo = 0; for (j = 6; j >= 0; --j) { foo |= q[7 * i + j] & 1; foo <<= 1; } x[8 * i + 7] = foo; } k = key->keyvalue.data; for (i = 0; i < 3; i++) { DES_set_odd_parity(&k[i]); if(DES_is_weak_key(&k[i])) xor(&k[i], (const unsigned char*)"\0\0\0\0\0\0\0\xf0"); } } /* * ARCFOUR */ static void ARCFOUR_schedule(krb5_context context, struct key_type *kt, struct key_data *kd) { RC4_set_key (kd->schedule->data, kd->key->keyvalue.length, kd->key->keyvalue.data); } static krb5_error_code ARCFOUR_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_error_code ret; uint16_t *s = NULL; size_t len, i; EVP_MD_CTX *m; m = EVP_MD_CTX_create(); if (m == NULL) { ret = ENOMEM; krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); goto out; } EVP_DigestInit_ex(m, EVP_md4(), NULL); ret = wind_utf8ucs2_length(password.data, &len); if (ret) { krb5_set_error_message (context, ret, N_("Password not an UCS2 string", "")); goto out; } s = malloc (len * sizeof(s[0])); if (len != 0 && s == NULL) { krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); ret = ENOMEM; goto out; } ret = wind_utf8ucs2(password.data, s, &len); if (ret) { krb5_set_error_message (context, ret, N_("Password not an UCS2 string", "")); goto out; } /* LE encoding */ for (i = 0; i < len; i++) { unsigned char p; p = (s[i] & 0xff); EVP_DigestUpdate (m, &p, 1); p = (s[i] >> 8) & 0xff; EVP_DigestUpdate (m, &p, 1); } key->keytype = enctype; ret = krb5_data_alloc (&key->keyvalue, 16); if (ret) { krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); goto out; } EVP_DigestFinal_ex (m, key->keyvalue.data, NULL); out: EVP_MD_CTX_destroy(m); if (s) memset (s, 0, len); free (s); return ret; } /* * AES */ int _krb5_AES_string_to_default_iterator = 4096; static krb5_error_code AES_string_to_key(krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_error_code ret; uint32_t iter; struct encryption_type *et; struct key_data kd; if (opaque.length == 0) iter = _krb5_AES_string_to_default_iterator; else if (opaque.length == 4) { unsigned long v; _krb5_get_int(opaque.data, &v, 4); iter = ((uint32_t)v); } else return KRB5_PROG_KEYTYPE_NOSUPP; /* XXX */ et = _find_enctype(enctype); if (et == NULL) return KRB5_PROG_KEYTYPE_NOSUPP; kd.schedule = NULL; ALLOC(kd.key, 1); if(kd.key == NULL) { krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } kd.key->keytype = enctype; ret = krb5_data_alloc(&kd.key->keyvalue, et->keytype->size); if (ret) { krb5_set_error_message (context, ret, N_("malloc: out of memory", "")); return ret; } ret = PKCS5_PBKDF2_HMAC_SHA1(password.data, password.length, salt.saltvalue.data, salt.saltvalue.length, iter, et->keytype->size, kd.key->keyvalue.data); if (ret != 1) { free_key_data(context, &kd, et); krb5_set_error_message(context, KRB5_PROG_KEYTYPE_NOSUPP, "Error calculating s2k"); return KRB5_PROG_KEYTYPE_NOSUPP; } ret = derive_key(context, et, &kd, "kerberos", strlen("kerberos")); if (ret == 0) ret = krb5_copy_keyblock_contents(context, kd.key, key); free_key_data(context, &kd, et); return ret; } static void evp_schedule(krb5_context context, struct key_type *kt, struct key_data *kd) { struct evp_schedule *key = kd->schedule->data; const EVP_CIPHER *c = (*kt->evp)(); EVP_CIPHER_CTX_init(&key->ectx); EVP_CIPHER_CTX_init(&key->dctx); EVP_CipherInit_ex(&key->ectx, c, NULL, kd->key->keyvalue.data, NULL, 1); EVP_CipherInit_ex(&key->dctx, c, NULL, kd->key->keyvalue.data, NULL, 0); } static void evp_cleanup(krb5_context context, struct key_data *kd) { struct evp_schedule *key = kd->schedule->data; EVP_CIPHER_CTX_cleanup(&key->ectx); EVP_CIPHER_CTX_cleanup(&key->dctx); } /* * */ #ifdef WEAK_ENCTYPES static struct salt_type des_salt[] = { { KRB5_PW_SALT, "pw-salt", krb5_DES_string_to_key }, #ifdef ENABLE_AFS_STRING_TO_KEY { KRB5_AFS3_SALT, "afs3-salt", DES_AFS3_string_to_key }, #endif { 0 } }; #endif #ifdef DES3_OLD_ENCTYPE static struct salt_type des3_salt[] = { { KRB5_PW_SALT, "pw-salt", DES3_string_to_key }, { 0 } }; #endif static struct salt_type des3_salt_derived[] = { { KRB5_PW_SALT, "pw-salt", DES3_string_to_key_derived }, { 0 } }; static struct salt_type AES_salt[] = { { KRB5_PW_SALT, "pw-salt", AES_string_to_key }, { 0 } }; static struct salt_type arcfour_salt[] = { { KRB5_PW_SALT, "pw-salt", ARCFOUR_string_to_key }, { 0 } }; /* * */ static struct key_type keytype_null = { KEYTYPE_NULL, "null", 0, 0, 0, NULL, NULL, NULL }; #ifdef WEAK_ENCTYPES static struct key_type keytype_des_old = { KEYTYPE_DES, "des-old", 56, 8, sizeof(DES_key_schedule), krb5_DES_random_key, krb5_DES_schedule_old, des_salt, krb5_DES_random_to_key }; static struct key_type keytype_des = { KEYTYPE_DES, "des", 56, 8, sizeof(struct evp_schedule), krb5_DES_random_key, evp_schedule, des_salt, krb5_DES_random_to_key, evp_cleanup, EVP_des_cbc }; #endif /* WEAK_ENCTYPES */ #ifdef DES3_OLD_ENCTYPE static struct key_type keytype_des3 = { KEYTYPE_DES3, "des3", 168, 24, sizeof(struct evp_schedule), DES3_random_key, evp_schedule, des3_salt, DES3_random_to_key, evp_cleanup, EVP_des_ede3_cbc }; #endif static struct key_type keytype_des3_derived = { KEYTYPE_DES3, "des3", 168, 24, sizeof(struct evp_schedule), DES3_random_key, evp_schedule, des3_salt_derived, DES3_random_to_key, evp_cleanup, EVP_des_ede3_cbc }; static struct key_type keytype_aes128 = { KEYTYPE_AES128, "aes-128", 128, 16, sizeof(struct evp_schedule), NULL, evp_schedule, AES_salt, NULL, evp_cleanup, EVP_hcrypto_aes_128_cts }; static struct key_type keytype_aes256 = { KEYTYPE_AES256, "aes-256", 256, 32, sizeof(struct evp_schedule), NULL, evp_schedule, AES_salt, NULL, evp_cleanup, EVP_hcrypto_aes_256_cts }; static struct key_type keytype_arcfour = { KEYTYPE_ARCFOUR, "arcfour", 128, 16, sizeof(RC4_KEY), NULL, ARCFOUR_schedule, arcfour_salt }; krb5_error_code KRB5_LIB_FUNCTION krb5_salttype_to_string (krb5_context context, krb5_enctype etype, krb5_salttype stype, char **string) { struct encryption_type *e; struct salt_type *st; e = _find_enctype (etype); if (e == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, "encryption type %d not supported", etype); return KRB5_PROG_ETYPE_NOSUPP; } for (st = e->keytype->string_to_key; st && st->type; st++) { if (st->type == stype) { *string = strdup (st->name); if (*string == NULL) { krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } return 0; } } krb5_set_error_message (context, HEIM_ERR_SALTTYPE_NOSUPP, "salttype %d not supported", stype); return HEIM_ERR_SALTTYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_salttype (krb5_context context, krb5_enctype etype, const char *string, krb5_salttype *salttype) { struct encryption_type *e; struct salt_type *st; e = _find_enctype (etype); if (e == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); return KRB5_PROG_ETYPE_NOSUPP; } for (st = e->keytype->string_to_key; st && st->type; st++) { if (strcasecmp (st->name, string) == 0) { *salttype = st->type; return 0; } } krb5_set_error_message(context, HEIM_ERR_SALTTYPE_NOSUPP, N_("salttype %s not supported", ""), string); return HEIM_ERR_SALTTYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_get_pw_salt(krb5_context context, krb5_const_principal principal, krb5_salt *salt) { size_t len; int i; krb5_error_code ret; char *p; salt->salttype = KRB5_PW_SALT; len = strlen(principal->realm); for (i = 0; i < principal->name.name_string.len; ++i) len += strlen(principal->name.name_string.val[i]); ret = krb5_data_alloc (&salt->saltvalue, len); if (ret) return ret; p = salt->saltvalue.data; memcpy (p, principal->realm, strlen(principal->realm)); p += strlen(principal->realm); for (i = 0; i < principal->name.name_string.len; ++i) { memcpy (p, principal->name.name_string.val[i], strlen(principal->name.name_string.val[i])); p += strlen(principal->name.name_string.val[i]); } return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_free_salt(krb5_context context, krb5_salt salt) { krb5_data_free(&salt.saltvalue); return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_data (krb5_context context, krb5_enctype enctype, krb5_data password, krb5_principal principal, krb5_keyblock *key) { krb5_error_code ret; krb5_salt salt; ret = krb5_get_pw_salt(context, principal, &salt); if(ret) return ret; ret = krb5_string_to_key_data_salt(context, enctype, password, salt, key); krb5_free_salt(context, salt); return ret; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key (krb5_context context, krb5_enctype enctype, const char *password, krb5_principal principal, krb5_keyblock *key) { krb5_data pw; pw.data = rk_UNCONST(password); pw.length = strlen(password); return krb5_string_to_key_data(context, enctype, pw, principal, key); } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_data_salt (krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_keyblock *key) { krb5_data opaque; krb5_data_zero(&opaque); return krb5_string_to_key_data_salt_opaque(context, enctype, password, salt, opaque, key); } /* * Do a string -> key for encryption type `enctype' operation on * `password' (with salt `salt' and the enctype specific data string * `opaque'), returning the resulting key in `key' */ krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_data_salt_opaque (krb5_context context, krb5_enctype enctype, krb5_data password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { struct encryption_type *et =_find_enctype(enctype); struct salt_type *st; if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), enctype); return KRB5_PROG_ETYPE_NOSUPP; } for(st = et->keytype->string_to_key; st && st->type; st++) if(st->type == salt.salttype) return (*st->string_to_key)(context, enctype, password, salt, opaque, key); krb5_set_error_message(context, HEIM_ERR_SALTTYPE_NOSUPP, N_("salt type %d not supported", ""), salt.salttype); return HEIM_ERR_SALTTYPE_NOSUPP; } /* * Do a string -> key for encryption type `enctype' operation on the * string `password' (with salt `salt'), returning the resulting key * in `key' */ krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_salt (krb5_context context, krb5_enctype enctype, const char *password, krb5_salt salt, krb5_keyblock *key) { krb5_data pw; pw.data = rk_UNCONST(password); pw.length = strlen(password); return krb5_string_to_key_data_salt(context, enctype, pw, salt, key); } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_salt_opaque (krb5_context context, krb5_enctype enctype, const char *password, krb5_salt salt, krb5_data opaque, krb5_keyblock *key) { krb5_data pw; pw.data = rk_UNCONST(password); pw.length = strlen(password); return krb5_string_to_key_data_salt_opaque(context, enctype, pw, salt, opaque, key); } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_keysize(krb5_context context, krb5_enctype type, size_t *keysize) { struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), type); return KRB5_PROG_ETYPE_NOSUPP; } *keysize = et->keytype->size; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_keybits(krb5_context context, krb5_enctype type, size_t *keybits) { struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, "encryption type %d not supported", type); return KRB5_PROG_ETYPE_NOSUPP; } *keybits = et->keytype->bits; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_generate_random_keyblock(krb5_context context, krb5_enctype type, krb5_keyblock *key) { krb5_error_code ret; struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), type); return KRB5_PROG_ETYPE_NOSUPP; } ret = krb5_data_alloc(&key->keyvalue, et->keytype->size); if(ret) return ret; key->keytype = type; if(et->keytype->random_key) (*et->keytype->random_key)(context, key); else krb5_generate_random_block(key->keyvalue.data, key->keyvalue.length); return 0; } static krb5_error_code _key_schedule(krb5_context context, struct key_data *key) { krb5_error_code ret; struct encryption_type *et = _find_enctype(key->key->keytype); struct key_type *kt; if (et == NULL) { krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), key->key->keytype); return KRB5_PROG_ETYPE_NOSUPP; } kt = et->keytype; if(kt->schedule == NULL) return 0; if (key->schedule != NULL) return 0; ALLOC(key->schedule, 1); if(key->schedule == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } ret = krb5_data_alloc(key->schedule, kt->schedule_size); if(ret) { free(key->schedule); key->schedule = NULL; return ret; } (*kt->schedule)(context, kt, key); return 0; } /************************************************************ * * ************************************************************/ static krb5_error_code NONE_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { return 0; } static krb5_error_code CRC32_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { uint32_t crc; unsigned char *r = C->checksum.data; _krb5_crc_init_table (); crc = _krb5_crc_update (data, len, 0); r[0] = crc & 0xff; r[1] = (crc >> 8) & 0xff; r[2] = (crc >> 16) & 0xff; r[3] = (crc >> 24) & 0xff; return 0; } static krb5_error_code RSA_MD4_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { if (EVP_Digest(data, len, C->checksum.data, NULL, EVP_md4(), NULL) != 1) krb5_abortx(context, "md4 checksum failed"); return 0; } static krb5_error_code des_checksum(krb5_context context, const EVP_MD *evp_md, struct key_data *key, const void *data, size_t len, Checksum *cksum) { struct evp_schedule *ctx = key->schedule->data; EVP_MD_CTX *m; DES_cblock ivec; unsigned char *p = cksum->checksum.data; krb5_generate_random_block(p, 8); m = EVP_MD_CTX_create(); if (m == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } EVP_DigestInit_ex(m, evp_md, NULL); EVP_DigestUpdate(m, p, 8); EVP_DigestUpdate(m, data, len); EVP_DigestFinal_ex (m, p + 8, NULL); EVP_MD_CTX_destroy(m); memset (&ivec, 0, sizeof(ivec)); EVP_CipherInit_ex(&ctx->ectx, NULL, NULL, NULL, (void *)&ivec, -1); EVP_Cipher(&ctx->ectx, p, p, 24); return 0; } static krb5_error_code des_verify(krb5_context context, const EVP_MD *evp_md, struct key_data *key, const void *data, size_t len, Checksum *C) { struct evp_schedule *ctx = key->schedule->data; EVP_MD_CTX *m; unsigned char tmp[24]; unsigned char res[16]; DES_cblock ivec; krb5_error_code ret = 0; m = EVP_MD_CTX_create(); if (m == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memset(&ivec, 0, sizeof(ivec)); EVP_CipherInit_ex(&ctx->dctx, NULL, NULL, NULL, (void *)&ivec, -1); EVP_Cipher(&ctx->dctx, tmp, C->checksum.data, 24); EVP_DigestInit_ex(m, evp_md, NULL); EVP_DigestUpdate(m, tmp, 8); /* confounder */ EVP_DigestUpdate(m, data, len); EVP_DigestFinal_ex (m, res, NULL); EVP_MD_CTX_destroy(m); if(memcmp(res, tmp + 8, sizeof(res)) != 0) { krb5_clear_error_message (context); ret = KRB5KRB_AP_ERR_BAD_INTEGRITY; } memset(tmp, 0, sizeof(tmp)); memset(res, 0, sizeof(res)); return ret; } static krb5_error_code RSA_MD4_DES_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *cksum) { return des_checksum(context, EVP_md4(), key, data, len, cksum); } static krb5_error_code RSA_MD4_DES_verify(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { return des_verify(context, EVP_md5(), key, data, len, C); } static krb5_error_code RSA_MD5_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { if (EVP_Digest(data, len, C->checksum.data, NULL, EVP_md5(), NULL) != 1) krb5_abortx(context, "md5 checksum failed"); return 0; } static krb5_error_code RSA_MD5_DES_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { return des_checksum(context, EVP_md5(), key, data, len, C); } static krb5_error_code RSA_MD5_DES_verify(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { return des_verify(context, EVP_md5(), key, data, len, C); } #ifdef DES3_OLD_ENCTYPE static krb5_error_code RSA_MD5_DES3_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { return des_checksum(context, EVP_md5(), key, data, len, C); } static krb5_error_code RSA_MD5_DES3_verify(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { return des_verify(context, EVP_md5(), key, data, len, C); } #endif static krb5_error_code SHA1_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *C) { if (EVP_Digest(data, len, C->checksum.data, NULL, EVP_sha1(), NULL) != 1) krb5_abortx(context, "sha1 checksum failed"); return 0; } /* HMAC according to RFC2104 */ static krb5_error_code hmac(krb5_context context, struct checksum_type *cm, const void *data, size_t len, unsigned usage, struct key_data *keyblock, Checksum *result) { unsigned char *ipad, *opad; unsigned char *key; size_t key_len; int i; ipad = malloc(cm->blocksize + len); if (ipad == NULL) return ENOMEM; opad = malloc(cm->blocksize + cm->checksumsize); if (opad == NULL) { free(ipad); return ENOMEM; } memset(ipad, 0x36, cm->blocksize); memset(opad, 0x5c, cm->blocksize); if(keyblock->key->keyvalue.length > cm->blocksize){ (*cm->checksum)(context, keyblock, keyblock->key->keyvalue.data, keyblock->key->keyvalue.length, usage, result); key = result->checksum.data; key_len = result->checksum.length; } else { key = keyblock->key->keyvalue.data; key_len = keyblock->key->keyvalue.length; } for(i = 0; i < key_len; i++){ ipad[i] ^= key[i]; opad[i] ^= key[i]; } memcpy(ipad + cm->blocksize, data, len); (*cm->checksum)(context, keyblock, ipad, cm->blocksize + len, usage, result); memcpy(opad + cm->blocksize, result->checksum.data, result->checksum.length); (*cm->checksum)(context, keyblock, opad, cm->blocksize + cm->checksumsize, usage, result); memset(ipad, 0, cm->blocksize + len); free(ipad); memset(opad, 0, cm->blocksize + cm->checksumsize); free(opad); return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_hmac(krb5_context context, krb5_cksumtype cktype, const void *data, size_t len, unsigned usage, krb5_keyblock *key, Checksum *result) { struct checksum_type *c = _find_checksum(cktype); struct key_data kd; krb5_error_code ret; if (c == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), cktype); return KRB5_PROG_SUMTYPE_NOSUPP; } kd.key = key; kd.schedule = NULL; ret = hmac(context, c, data, len, usage, &kd, result); if (kd.schedule) krb5_free_data(context, kd.schedule); return ret; } static krb5_error_code SP_HMAC_SHA1_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *result) { struct checksum_type *c = _find_checksum(CKSUMTYPE_SHA1); Checksum res; char sha1_data[20]; krb5_error_code ret; res.checksum.data = sha1_data; res.checksum.length = sizeof(sha1_data); ret = hmac(context, c, data, len, usage, key, &res); if (ret) krb5_abortx(context, "hmac failed"); memcpy(result->checksum.data, res.checksum.data, result->checksum.length); return 0; } /* * checksum according to section 5. of draft-brezak-win2k-krb-rc4-hmac-03.txt */ static krb5_error_code HMAC_MD5_checksum(krb5_context context, struct key_data *key, const void *data, size_t len, unsigned usage, Checksum *result) { EVP_MD_CTX *m; struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); const char signature[] = "signaturekey"; Checksum ksign_c; struct key_data ksign; krb5_keyblock kb; unsigned char t[4]; unsigned char tmp[16]; unsigned char ksign_c_data[16]; krb5_error_code ret; m = EVP_MD_CTX_create(); if (m == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } ksign_c.checksum.length = sizeof(ksign_c_data); ksign_c.checksum.data = ksign_c_data; ret = hmac(context, c, signature, sizeof(signature), 0, key, &ksign_c); if (ret) { EVP_MD_CTX_destroy(m); return ret; } ksign.key = &kb; kb.keyvalue = ksign_c.checksum; EVP_DigestInit_ex(m, EVP_md5(), NULL); t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; EVP_DigestUpdate(m, t, 4); EVP_DigestUpdate(m, data, len); EVP_DigestFinal_ex (m, tmp, NULL); EVP_MD_CTX_destroy(m); ret = hmac(context, c, tmp, sizeof(tmp), 0, &ksign, result); if (ret) return ret; return 0; } static struct checksum_type checksum_none = { CKSUMTYPE_NONE, "none", 1, 0, 0, NONE_checksum, NULL }; static struct checksum_type checksum_crc32 = { CKSUMTYPE_CRC32, "crc32", 1, 4, 0, CRC32_checksum, NULL }; static struct checksum_type checksum_rsa_md4 = { CKSUMTYPE_RSA_MD4, "rsa-md4", 64, 16, F_CPROOF, RSA_MD4_checksum, NULL }; static struct checksum_type checksum_rsa_md4_des = { CKSUMTYPE_RSA_MD4_DES, "rsa-md4-des", 64, 24, F_KEYED | F_CPROOF | F_VARIANT, RSA_MD4_DES_checksum, RSA_MD4_DES_verify }; static struct checksum_type checksum_rsa_md5 = { CKSUMTYPE_RSA_MD5, "rsa-md5", 64, 16, F_CPROOF, RSA_MD5_checksum, NULL }; static struct checksum_type checksum_rsa_md5_des = { CKSUMTYPE_RSA_MD5_DES, "rsa-md5-des", 64, 24, F_KEYED | F_CPROOF | F_VARIANT, RSA_MD5_DES_checksum, RSA_MD5_DES_verify }; #ifdef DES3_OLD_ENCTYPE static struct checksum_type checksum_rsa_md5_des3 = { CKSUMTYPE_RSA_MD5_DES3, "rsa-md5-des3", 64, 24, F_KEYED | F_CPROOF | F_VARIANT, RSA_MD5_DES3_checksum, RSA_MD5_DES3_verify }; #endif static struct checksum_type checksum_sha1 = { CKSUMTYPE_SHA1, "sha1", 64, 20, F_CPROOF, SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_sha1_des3 = { CKSUMTYPE_HMAC_SHA1_DES3, "hmac-sha1-des3", 64, 20, F_KEYED | F_CPROOF | F_DERIVED, SP_HMAC_SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_sha1_aes128 = { CKSUMTYPE_HMAC_SHA1_96_AES_128, "hmac-sha1-96-aes128", 64, 12, F_KEYED | F_CPROOF | F_DERIVED, SP_HMAC_SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_sha1_aes256 = { CKSUMTYPE_HMAC_SHA1_96_AES_256, "hmac-sha1-96-aes256", 64, 12, F_KEYED | F_CPROOF | F_DERIVED, SP_HMAC_SHA1_checksum, NULL }; static struct checksum_type checksum_hmac_md5 = { CKSUMTYPE_HMAC_MD5, "hmac-md5", 64, 16, F_KEYED | F_CPROOF, HMAC_MD5_checksum, NULL }; static struct checksum_type *checksum_types[] = { &checksum_none, &checksum_crc32, &checksum_rsa_md4, &checksum_rsa_md4_des, &checksum_rsa_md5, &checksum_rsa_md5_des, #ifdef DES3_OLD_ENCTYPE &checksum_rsa_md5_des3, #endif &checksum_sha1, &checksum_hmac_sha1_des3, &checksum_hmac_sha1_aes128, &checksum_hmac_sha1_aes256, &checksum_hmac_md5 }; static int num_checksums = sizeof(checksum_types) / sizeof(checksum_types[0]); static struct checksum_type * _find_checksum(krb5_cksumtype type) { int i; for(i = 0; i < num_checksums; i++) if(checksum_types[i]->type == type) return checksum_types[i]; return NULL; } static krb5_error_code get_checksum_key(krb5_context context, krb5_crypto crypto, unsigned usage, /* not krb5_key_usage */ struct checksum_type *ct, struct key_data **key) { krb5_error_code ret = 0; if(ct->flags & F_DERIVED) ret = _get_derived_key(context, crypto, usage, key); else if(ct->flags & F_VARIANT) { int i; *key = _new_derived_key(crypto, 0xff/* KRB5_KU_RFC1510_VARIANT */); if(*key == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } ret = krb5_copy_keyblock(context, crypto->key.key, &(*key)->key); if(ret) return ret; for(i = 0; i < (*key)->key->keyvalue.length; i++) ((unsigned char*)(*key)->key->keyvalue.data)[i] ^= 0xF0; } else { *key = &crypto->key; } if(ret == 0) ret = _key_schedule(context, *key); return ret; } static krb5_error_code create_checksum (krb5_context context, struct checksum_type *ct, krb5_crypto crypto, unsigned usage, void *data, size_t len, Checksum *result) { krb5_error_code ret; struct key_data *dkey; int keyed_checksum; if (ct->flags & F_DISABLED) { krb5_clear_error_message (context); return KRB5_PROG_SUMTYPE_NOSUPP; } keyed_checksum = (ct->flags & F_KEYED) != 0; if(keyed_checksum && crypto == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("Checksum type %s is keyed but no " "crypto context (key) was passed in", ""), ct->name); return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */ } if(keyed_checksum) { ret = get_checksum_key(context, crypto, usage, ct, &dkey); if (ret) return ret; } else dkey = NULL; result->cksumtype = ct->type; ret = krb5_data_alloc(&result->checksum, ct->checksumsize); if (ret) return (ret); return (*ct->checksum)(context, dkey, data, len, usage, result); } static int arcfour_checksum_p(struct checksum_type *ct, krb5_crypto crypto) { return (ct->type == CKSUMTYPE_HMAC_MD5) && (crypto->key.key->keytype == KEYTYPE_ARCFOUR); } krb5_error_code KRB5_LIB_FUNCTION krb5_create_checksum(krb5_context context, krb5_crypto crypto, krb5_key_usage usage, int type, void *data, size_t len, Checksum *result) { struct checksum_type *ct = NULL; unsigned keyusage; /* type 0 -> pick from crypto */ if (type) { ct = _find_checksum(type); } else if (crypto) { ct = crypto->et->keyed_checksum; if (ct == NULL) ct = crypto->et->checksum; } if(ct == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), type); return KRB5_PROG_SUMTYPE_NOSUPP; } if (arcfour_checksum_p(ct, crypto)) { keyusage = usage; usage2arcfour(context, &keyusage); } else keyusage = CHECKSUM_USAGE(usage); return create_checksum(context, ct, crypto, keyusage, data, len, result); } static krb5_error_code verify_checksum(krb5_context context, krb5_crypto crypto, unsigned usage, /* not krb5_key_usage */ void *data, size_t len, Checksum *cksum) { krb5_error_code ret; struct key_data *dkey; int keyed_checksum; Checksum c; struct checksum_type *ct; ct = _find_checksum(cksum->cksumtype); if (ct == NULL || (ct->flags & F_DISABLED)) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), cksum->cksumtype); return KRB5_PROG_SUMTYPE_NOSUPP; } if(ct->checksumsize != cksum->checksum.length) { krb5_clear_error_message (context); return KRB5KRB_AP_ERR_BAD_INTEGRITY; /* XXX */ } keyed_checksum = (ct->flags & F_KEYED) != 0; if(keyed_checksum) { struct checksum_type *kct; if (crypto == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("Checksum type %s is keyed but no " "crypto context (key) was passed in", ""), ct->name); return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */ } kct = crypto->et->keyed_checksum; if (kct != NULL && kct->type != ct->type) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("Checksum type %s is keyed, but " "the key type %s passed didnt have that checksum " "type as the keyed type", ""), ct->name, crypto->et->name); return KRB5_PROG_SUMTYPE_NOSUPP; /* XXX */ } ret = get_checksum_key(context, crypto, usage, ct, &dkey); if (ret) return ret; } else dkey = NULL; if(ct->verify) return (*ct->verify)(context, dkey, data, len, usage, cksum); ret = krb5_data_alloc (&c.checksum, ct->checksumsize); if (ret) return ret; ret = (*ct->checksum)(context, dkey, data, len, usage, &c); if (ret) { krb5_data_free(&c.checksum); return ret; } if(c.checksum.length != cksum->checksum.length || memcmp(c.checksum.data, cksum->checksum.data, c.checksum.length)) { krb5_clear_error_message (context); ret = KRB5KRB_AP_ERR_BAD_INTEGRITY; } else { ret = 0; } krb5_data_free (&c.checksum); return ret; } krb5_error_code KRB5_LIB_FUNCTION krb5_verify_checksum(krb5_context context, krb5_crypto crypto, krb5_key_usage usage, void *data, size_t len, Checksum *cksum) { struct checksum_type *ct; unsigned keyusage; ct = _find_checksum(cksum->cksumtype); if(ct == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), cksum->cksumtype); return KRB5_PROG_SUMTYPE_NOSUPP; } if (arcfour_checksum_p(ct, crypto)) { keyusage = usage; usage2arcfour(context, &keyusage); } else keyusage = CHECKSUM_USAGE(usage); return verify_checksum(context, crypto, keyusage, data, len, cksum); } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_get_checksum_type(krb5_context context, krb5_crypto crypto, krb5_cksumtype *type) { struct checksum_type *ct = NULL; if (crypto != NULL) { ct = crypto->et->keyed_checksum; if (ct == NULL) ct = crypto->et->checksum; } if (ct == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type not found", "")); return KRB5_PROG_SUMTYPE_NOSUPP; } *type = ct->type; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_checksumsize(krb5_context context, krb5_cksumtype type, size_t *size) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), type); return KRB5_PROG_SUMTYPE_NOSUPP; } *size = ct->checksumsize; return 0; } krb5_boolean KRB5_LIB_FUNCTION krb5_checksum_is_keyed(krb5_context context, krb5_cksumtype type) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { if (context) krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), type); return KRB5_PROG_SUMTYPE_NOSUPP; } return ct->flags & F_KEYED; } krb5_boolean KRB5_LIB_FUNCTION krb5_checksum_is_collision_proof(krb5_context context, krb5_cksumtype type) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { if (context) krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), type); return KRB5_PROG_SUMTYPE_NOSUPP; } return ct->flags & F_CPROOF; } krb5_error_code KRB5_LIB_FUNCTION krb5_checksum_disable(krb5_context context, krb5_cksumtype type) { struct checksum_type *ct = _find_checksum(type); if(ct == NULL) { if (context) krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), type); return KRB5_PROG_SUMTYPE_NOSUPP; } ct->flags |= F_DISABLED; return 0; } /************************************************************ * * ************************************************************/ static krb5_error_code NULL_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { return 0; } static krb5_error_code evp_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { struct evp_schedule *ctx = key->schedule->data; EVP_CIPHER_CTX *c; c = encryptp ? &ctx->ectx : &ctx->dctx; if (ivec == NULL) { /* alloca ? */ size_t len = EVP_CIPHER_CTX_iv_length(c); void *loiv = malloc(len); if (loiv == NULL) { krb5_clear_error_message(context); return ENOMEM; } memset(loiv, 0, len); EVP_CipherInit_ex(c, NULL, NULL, NULL, loiv, -1); free(loiv); } else EVP_CipherInit_ex(c, NULL, NULL, NULL, ivec, -1); EVP_Cipher(c, data, data, len); return 0; } #ifdef WEAK_ENCTYPES static krb5_error_code evp_des_encrypt_null_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { struct evp_schedule *ctx = key->schedule->data; EVP_CIPHER_CTX *c; DES_cblock ivec; memset(&ivec, 0, sizeof(ivec)); c = encryptp ? &ctx->ectx : &ctx->dctx; EVP_CipherInit_ex(c, NULL, NULL, NULL, (void *)&ivec, -1); EVP_Cipher(c, data, data, len); return 0; } static krb5_error_code evp_des_encrypt_key_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { struct evp_schedule *ctx = key->schedule->data; EVP_CIPHER_CTX *c; DES_cblock ivec; memcpy(&ivec, key->key->keyvalue.data, sizeof(ivec)); c = encryptp ? &ctx->ectx : &ctx->dctx; EVP_CipherInit_ex(c, NULL, NULL, NULL, (void *)&ivec, -1); EVP_Cipher(c, data, data, len); return 0; } static krb5_error_code DES_CFB64_encrypt_null_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { DES_cblock ivec; int num = 0; DES_key_schedule *s = key->schedule->data; memset(&ivec, 0, sizeof(ivec)); DES_cfb64_encrypt(data, data, len, s, &ivec, &num, encryptp); return 0; } static krb5_error_code DES_PCBC_encrypt_key_ivec(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ignore_ivec) { DES_cblock ivec; DES_key_schedule *s = key->schedule->data; memcpy(&ivec, key->key->keyvalue.data, sizeof(ivec)); DES_pcbc_encrypt(data, data, len, s, &ivec, encryptp); return 0; } #endif /* * section 6 of draft-brezak-win2k-krb-rc4-hmac-03 * * warning: not for small children */ static krb5_error_code ARCFOUR_subencrypt(krb5_context context, struct key_data *key, void *data, size_t len, unsigned usage, void *ivec) { struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); Checksum k1_c, k2_c, k3_c, cksum; struct key_data ke; krb5_keyblock kb; unsigned char t[4]; RC4_KEY rc4_key; unsigned char *cdata = data; unsigned char k1_c_data[16], k2_c_data[16], k3_c_data[16]; krb5_error_code ret; t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; k1_c.checksum.length = sizeof(k1_c_data); k1_c.checksum.data = k1_c_data; ret = hmac(NULL, c, t, sizeof(t), 0, key, &k1_c); if (ret) krb5_abortx(context, "hmac failed"); memcpy (k2_c_data, k1_c_data, sizeof(k1_c_data)); k2_c.checksum.length = sizeof(k2_c_data); k2_c.checksum.data = k2_c_data; ke.key = &kb; kb.keyvalue = k2_c.checksum; cksum.checksum.length = 16; cksum.checksum.data = data; ret = hmac(NULL, c, cdata + 16, len - 16, 0, &ke, &cksum); if (ret) krb5_abortx(context, "hmac failed"); ke.key = &kb; kb.keyvalue = k1_c.checksum; k3_c.checksum.length = sizeof(k3_c_data); k3_c.checksum.data = k3_c_data; ret = hmac(NULL, c, data, 16, 0, &ke, &k3_c); if (ret) krb5_abortx(context, "hmac failed"); RC4_set_key (&rc4_key, k3_c.checksum.length, k3_c.checksum.data); RC4 (&rc4_key, len - 16, cdata + 16, cdata + 16); memset (k1_c_data, 0, sizeof(k1_c_data)); memset (k2_c_data, 0, sizeof(k2_c_data)); memset (k3_c_data, 0, sizeof(k3_c_data)); return 0; } static krb5_error_code ARCFOUR_subdecrypt(krb5_context context, struct key_data *key, void *data, size_t len, unsigned usage, void *ivec) { struct checksum_type *c = _find_checksum (CKSUMTYPE_RSA_MD5); Checksum k1_c, k2_c, k3_c, cksum; struct key_data ke; krb5_keyblock kb; unsigned char t[4]; RC4_KEY rc4_key; unsigned char *cdata = data; unsigned char k1_c_data[16], k2_c_data[16], k3_c_data[16]; unsigned char cksum_data[16]; krb5_error_code ret; t[0] = (usage >> 0) & 0xFF; t[1] = (usage >> 8) & 0xFF; t[2] = (usage >> 16) & 0xFF; t[3] = (usage >> 24) & 0xFF; k1_c.checksum.length = sizeof(k1_c_data); k1_c.checksum.data = k1_c_data; ret = hmac(NULL, c, t, sizeof(t), 0, key, &k1_c); if (ret) krb5_abortx(context, "hmac failed"); memcpy (k2_c_data, k1_c_data, sizeof(k1_c_data)); k2_c.checksum.length = sizeof(k2_c_data); k2_c.checksum.data = k2_c_data; ke.key = &kb; kb.keyvalue = k1_c.checksum; k3_c.checksum.length = sizeof(k3_c_data); k3_c.checksum.data = k3_c_data; ret = hmac(NULL, c, cdata, 16, 0, &ke, &k3_c); if (ret) krb5_abortx(context, "hmac failed"); RC4_set_key (&rc4_key, k3_c.checksum.length, k3_c.checksum.data); RC4 (&rc4_key, len - 16, cdata + 16, cdata + 16); ke.key = &kb; kb.keyvalue = k2_c.checksum; cksum.checksum.length = 16; cksum.checksum.data = cksum_data; ret = hmac(NULL, c, cdata + 16, len - 16, 0, &ke, &cksum); if (ret) krb5_abortx(context, "hmac failed"); memset (k1_c_data, 0, sizeof(k1_c_data)); memset (k2_c_data, 0, sizeof(k2_c_data)); memset (k3_c_data, 0, sizeof(k3_c_data)); if (memcmp (cksum.checksum.data, data, 16) != 0) { krb5_clear_error_message (context); return KRB5KRB_AP_ERR_BAD_INTEGRITY; } else { return 0; } } /* * convert the usage numbers used in * draft-ietf-cat-kerb-key-derivation-00.txt to the ones in * draft-brezak-win2k-krb-rc4-hmac-04.txt */ static krb5_error_code usage2arcfour (krb5_context context, unsigned *usage) { switch (*usage) { case KRB5_KU_AS_REP_ENC_PART : /* 3 */ case KRB5_KU_TGS_REP_ENC_PART_SUB_KEY : /* 9 */ *usage = 8; return 0; case KRB5_KU_USAGE_SEAL : /* 22 */ *usage = 13; return 0; case KRB5_KU_USAGE_SIGN : /* 23 */ *usage = 15; return 0; case KRB5_KU_USAGE_SEQ: /* 24 */ *usage = 0; return 0; default : return 0; } } static krb5_error_code ARCFOUR_encrypt(krb5_context context, struct key_data *key, void *data, size_t len, krb5_boolean encryptp, int usage, void *ivec) { krb5_error_code ret; unsigned keyusage = usage; if((ret = usage2arcfour (context, &keyusage)) != 0) return ret; if (encryptp) return ARCFOUR_subencrypt (context, key, data, len, keyusage, ivec); else return ARCFOUR_subdecrypt (context, key, data, len, keyusage, ivec); } /* * */ static krb5_error_code AES_PRF(krb5_context context, krb5_crypto crypto, const krb5_data *in, krb5_data *out) { struct checksum_type *ct = crypto->et->checksum; krb5_error_code ret; Checksum result; krb5_keyblock *derived; result.cksumtype = ct->type; ret = krb5_data_alloc(&result.checksum, ct->checksumsize); if (ret) { krb5_set_error_message(context, ret, N_("malloc: out memory", "")); return ret; } ret = (*ct->checksum)(context, NULL, in->data, in->length, 0, &result); if (ret) { krb5_data_free(&result.checksum); return ret; } if (result.checksum.length < crypto->et->blocksize) krb5_abortx(context, "internal prf error"); derived = NULL; ret = krb5_derive_key(context, crypto->key.key, crypto->et->type, "prf", 3, &derived); if (ret) krb5_abortx(context, "krb5_derive_key"); ret = krb5_data_alloc(out, crypto->et->blocksize); if (ret) krb5_abortx(context, "malloc failed"); { const EVP_CIPHER *c = (*crypto->et->keytype->evp)(); EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); /* ivec all zero */ EVP_CipherInit_ex(&ctx, c, NULL, derived->keyvalue.data, NULL, 1); EVP_Cipher(&ctx, out->data, result.checksum.data, crypto->et->blocksize); EVP_CIPHER_CTX_cleanup(&ctx); } krb5_data_free(&result.checksum); krb5_free_keyblock(context, derived); return ret; } /* * these should currently be in reverse preference order. * (only relevant for !F_PSEUDO) */ static struct encryption_type enctype_null = { ETYPE_NULL, "null", 1, 1, 0, &keytype_null, &checksum_none, NULL, F_DISABLED, NULL_encrypt, 0, NULL }; static struct encryption_type enctype_arcfour_hmac_md5 = { ETYPE_ARCFOUR_HMAC_MD5, "arcfour-hmac-md5", 1, 1, 8, &keytype_arcfour, &checksum_hmac_md5, NULL, F_SPECIAL, ARCFOUR_encrypt, 0, NULL }; #ifdef DES3_OLD_ENCTYPE static struct encryption_type enctype_des3_cbc_md5 = { ETYPE_DES3_CBC_MD5, "des3-cbc-md5", 8, 8, 8, &keytype_des3, &checksum_rsa_md5, &checksum_rsa_md5_des3, 0, evp_encrypt, 0, NULL }; #endif static struct encryption_type enctype_des3_cbc_sha1 = { ETYPE_DES3_CBC_SHA1, "des3-cbc-sha1", 8, 8, 8, &keytype_des3_derived, &checksum_sha1, &checksum_hmac_sha1_des3, F_DERIVED, evp_encrypt, 0, NULL }; #ifdef DES3_OLD_ENCTYPE static struct encryption_type enctype_old_des3_cbc_sha1 = { ETYPE_OLD_DES3_CBC_SHA1, "old-des3-cbc-sha1", 8, 8, 8, &keytype_des3, &checksum_sha1, &checksum_hmac_sha1_des3, 0, evp_encrypt, 0, NULL }; #endif static struct encryption_type enctype_aes128_cts_hmac_sha1 = { ETYPE_AES128_CTS_HMAC_SHA1_96, "aes128-cts-hmac-sha1-96", 16, 1, 16, &keytype_aes128, &checksum_sha1, &checksum_hmac_sha1_aes128, F_DERIVED, evp_encrypt, 16, AES_PRF }; static struct encryption_type enctype_aes256_cts_hmac_sha1 = { ETYPE_AES256_CTS_HMAC_SHA1_96, "aes256-cts-hmac-sha1-96", 16, 1, 16, &keytype_aes256, &checksum_sha1, &checksum_hmac_sha1_aes256, F_DERIVED, evp_encrypt, 16, AES_PRF }; static struct encryption_type enctype_des3_cbc_none = { ETYPE_DES3_CBC_NONE, "des3-cbc-none", 8, 8, 0, &keytype_des3_derived, &checksum_none, NULL, F_PSEUDO, evp_encrypt, 0, NULL }; #ifdef WEAK_ENCTYPES static struct encryption_type enctype_des_cbc_crc = { ETYPE_DES_CBC_CRC, "des-cbc-crc", 8, 8, 8, &keytype_des, &checksum_crc32, NULL, F_DISABLED, evp_des_encrypt_key_ivec, 0, NULL }; static struct encryption_type enctype_des_cbc_md4 = { ETYPE_DES_CBC_MD4, "des-cbc-md4", 8, 8, 8, &keytype_des, &checksum_rsa_md4, &checksum_rsa_md4_des, F_DISABLED, evp_des_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_cbc_md5 = { ETYPE_DES_CBC_MD5, "des-cbc-md5", 8, 8, 8, &keytype_des, &checksum_rsa_md5, &checksum_rsa_md5_des, F_DISABLED, evp_des_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_cbc_none = { ETYPE_DES_CBC_NONE, "des-cbc-none", 8, 8, 0, &keytype_des, &checksum_none, NULL, F_PSEUDO|F_DISABLED, evp_des_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_cfb64_none = { ETYPE_DES_CFB64_NONE, "des-cfb64-none", 1, 1, 0, &keytype_des_old, &checksum_none, NULL, F_PSEUDO|F_DISABLED, DES_CFB64_encrypt_null_ivec, 0, NULL }; static struct encryption_type enctype_des_pcbc_none = { ETYPE_DES_PCBC_NONE, "des-pcbc-none", 8, 8, 0, &keytype_des_old, &checksum_none, NULL, F_PSEUDO|F_DISABLED, DES_PCBC_encrypt_key_ivec, 0, NULL }; #endif /* WEAK_ENCTYPES */ static struct encryption_type *etypes[] = { &enctype_aes256_cts_hmac_sha1, &enctype_aes128_cts_hmac_sha1, &enctype_des3_cbc_sha1, &enctype_des3_cbc_none, /* used by the gss-api mech */ &enctype_arcfour_hmac_md5, #ifdef DES3_OLD_ENCTYPE &enctype_des3_cbc_md5, &enctype_old_des3_cbc_sha1, #endif #ifdef WEAK_ENCTYPES &enctype_des_cbc_crc, &enctype_des_cbc_md4, &enctype_des_cbc_md5, &enctype_des_cbc_none, &enctype_des_cfb64_none, &enctype_des_pcbc_none, #endif &enctype_null }; static unsigned num_etypes = sizeof(etypes) / sizeof(etypes[0]); static struct encryption_type * _find_enctype(krb5_enctype type) { int i; for(i = 0; i < num_etypes; i++) if(etypes[i]->type == type) return etypes[i]; return NULL; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_to_string(krb5_context context, krb5_enctype etype, char **string) { struct encryption_type *e; e = _find_enctype(etype); if(e == NULL) { krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); *string = NULL; return KRB5_PROG_ETYPE_NOSUPP; } *string = strdup(e->name); if(*string == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_enctype(krb5_context context, const char *string, krb5_enctype *etype) { int i; for(i = 0; i < num_etypes; i++) if(strcasecmp(etypes[i]->name, string) == 0){ *etype = etypes[i]->type; return 0; } krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %s not supported", ""), string); return KRB5_PROG_ETYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_to_keytype(krb5_context context, krb5_enctype etype, krb5_keytype *keytype) { struct encryption_type *e = _find_enctype(etype); if(e == NULL) { krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); return KRB5_PROG_ETYPE_NOSUPP; } *keytype = e->keytype->type; /* XXX */ return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_valid(krb5_context context, krb5_enctype etype) { struct encryption_type *e = _find_enctype(etype); if(e == NULL) { krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); return KRB5_PROG_ETYPE_NOSUPP; } if (e->flags & F_DISABLED) { krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %s is disabled", ""), e->name); return KRB5_PROG_ETYPE_NOSUPP; } return 0; } /** * Return the coresponding encryption type for a checksum type. * * @param context Kerberos context * @param ctype The checksum type to get the result enctype for * @param etype The returned encryption, when the matching etype is * not found, etype is set to ETYPE_NULL. * * @return Return an error code for an failure or 0 on success. * @ingroup krb5_crypto */ krb5_error_code KRB5_LIB_FUNCTION krb5_cksumtype_to_enctype(krb5_context context, krb5_cksumtype ctype, krb5_enctype *etype) { int i; *etype = ETYPE_NULL; for(i = 0; i < num_etypes; i++) { if(etypes[i]->keyed_checksum && etypes[i]->keyed_checksum->type == ctype) { *etype = etypes[i]->type; return 0; } } krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), (int)ctype); return KRB5_PROG_SUMTYPE_NOSUPP; } krb5_error_code KRB5_LIB_FUNCTION krb5_cksumtype_valid(krb5_context context, krb5_cksumtype ctype) { struct checksum_type *c = _find_checksum(ctype); if (c == NULL) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %d not supported", ""), ctype); return KRB5_PROG_SUMTYPE_NOSUPP; } if (c->flags & F_DISABLED) { krb5_set_error_message (context, KRB5_PROG_SUMTYPE_NOSUPP, N_("checksum type %s is disabled", ""), c->name); return KRB5_PROG_SUMTYPE_NOSUPP; } return 0; } static krb5_boolean derived_crypto(krb5_context context, krb5_crypto crypto) { return (crypto->et->flags & F_DERIVED) != 0; } static krb5_boolean special_crypto(krb5_context context, krb5_crypto crypto) { return (crypto->et->flags & F_SPECIAL) != 0; } #define CHECKSUMSIZE(C) ((C)->checksumsize) #define CHECKSUMTYPE(C) ((C)->type) static krb5_error_code encrypt_internal_derived(krb5_context context, krb5_crypto crypto, unsigned usage, const void *data, size_t len, krb5_data *result, void *ivec) { size_t sz, block_sz, checksum_sz, total_sz; Checksum cksum; unsigned char *p, *q; krb5_error_code ret; struct key_data *dkey; const struct encryption_type *et = crypto->et; checksum_sz = CHECKSUMSIZE(et->keyed_checksum); sz = et->confoundersize + len; block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */ total_sz = block_sz + checksum_sz; p = calloc(1, total_sz); if(p == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } q = p; krb5_generate_random_block(q, et->confoundersize); /* XXX */ q += et->confoundersize; memcpy(q, data, len); ret = create_checksum(context, et->keyed_checksum, crypto, INTEGRITY_USAGE(usage), p, block_sz, &cksum); if(ret == 0 && cksum.checksum.length != checksum_sz) { free_Checksum (&cksum); krb5_clear_error_message (context); ret = KRB5_CRYPTO_INTERNAL; } if(ret) goto fail; memcpy(p + block_sz, cksum.checksum.data, cksum.checksum.length); free_Checksum (&cksum); ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) goto fail; ret = _key_schedule(context, dkey); if(ret) goto fail; ret = (*et->encrypt)(context, dkey, p, block_sz, 1, usage, ivec); if (ret) goto fail; result->data = p; result->length = total_sz; return 0; fail: memset(p, 0, total_sz); free(p); return ret; } static krb5_error_code encrypt_internal(krb5_context context, krb5_crypto crypto, const void *data, size_t len, krb5_data *result, void *ivec) { size_t sz, block_sz, checksum_sz; Checksum cksum; unsigned char *p, *q; krb5_error_code ret; const struct encryption_type *et = crypto->et; checksum_sz = CHECKSUMSIZE(et->checksum); sz = et->confoundersize + checksum_sz + len; block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */ p = calloc(1, block_sz); if(p == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } q = p; krb5_generate_random_block(q, et->confoundersize); /* XXX */ q += et->confoundersize; memset(q, 0, checksum_sz); q += checksum_sz; memcpy(q, data, len); ret = create_checksum(context, et->checksum, crypto, 0, p, block_sz, &cksum); if(ret == 0 && cksum.checksum.length != checksum_sz) { krb5_clear_error_message (context); free_Checksum(&cksum); ret = KRB5_CRYPTO_INTERNAL; } if(ret) goto fail; memcpy(p + et->confoundersize, cksum.checksum.data, cksum.checksum.length); free_Checksum(&cksum); ret = _key_schedule(context, &crypto->key); if(ret) goto fail; ret = (*et->encrypt)(context, &crypto->key, p, block_sz, 1, 0, ivec); if (ret) { memset(p, 0, block_sz); free(p); return ret; } result->data = p; result->length = block_sz; return 0; fail: memset(p, 0, block_sz); free(p); return ret; } static krb5_error_code encrypt_internal_special(krb5_context context, krb5_crypto crypto, int usage, const void *data, size_t len, krb5_data *result, void *ivec) { struct encryption_type *et = crypto->et; size_t cksum_sz = CHECKSUMSIZE(et->checksum); size_t sz = len + cksum_sz + et->confoundersize; char *tmp, *p; krb5_error_code ret; tmp = malloc (sz); if (tmp == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } p = tmp; memset (p, 0, cksum_sz); p += cksum_sz; krb5_generate_random_block(p, et->confoundersize); p += et->confoundersize; memcpy (p, data, len); ret = (*et->encrypt)(context, &crypto->key, tmp, sz, TRUE, usage, ivec); if (ret) { memset(tmp, 0, sz); free(tmp); return ret; } result->data = tmp; result->length = sz; return 0; } static krb5_error_code decrypt_internal_derived(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, krb5_data *result, void *ivec) { size_t checksum_sz; Checksum cksum; unsigned char *p; krb5_error_code ret; struct key_data *dkey; struct encryption_type *et = crypto->et; unsigned long l; checksum_sz = CHECKSUMSIZE(et->keyed_checksum); if (len < checksum_sz + et->confoundersize) { krb5_set_error_message(context, KRB5_BAD_MSIZE, N_("Encrypted data shorter then " "checksum + confunder", "")); return KRB5_BAD_MSIZE; } if (((len - checksum_sz) % et->padsize) != 0) { krb5_clear_error_message(context); return KRB5_BAD_MSIZE; } p = malloc(len); if(len != 0 && p == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memcpy(p, data, len); len -= checksum_sz; ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) { free(p); return ret; } ret = _key_schedule(context, dkey); if(ret) { free(p); return ret; } ret = (*et->encrypt)(context, dkey, p, len, 0, usage, ivec); if (ret) { free(p); return ret; } cksum.checksum.data = p + len; cksum.checksum.length = checksum_sz; cksum.cksumtype = CHECKSUMTYPE(et->keyed_checksum); ret = verify_checksum(context, crypto, INTEGRITY_USAGE(usage), p, len, &cksum); if(ret) { free(p); return ret; } l = len - et->confoundersize; memmove(p, p + et->confoundersize, l); result->data = realloc(p, l); if(result->data == NULL && l != 0) { free(p); krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } result->length = l; return 0; } static krb5_error_code decrypt_internal(krb5_context context, krb5_crypto crypto, void *data, size_t len, krb5_data *result, void *ivec) { krb5_error_code ret; unsigned char *p; Checksum cksum; size_t checksum_sz, l; struct encryption_type *et = crypto->et; if ((len % et->padsize) != 0) { krb5_clear_error_message(context); return KRB5_BAD_MSIZE; } checksum_sz = CHECKSUMSIZE(et->checksum); p = malloc(len); if(len != 0 && p == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memcpy(p, data, len); ret = _key_schedule(context, &crypto->key); if(ret) { free(p); return ret; } ret = (*et->encrypt)(context, &crypto->key, p, len, 0, 0, ivec); if (ret) { free(p); return ret; } ret = krb5_data_copy(&cksum.checksum, p + et->confoundersize, checksum_sz); if(ret) { free(p); return ret; } memset(p + et->confoundersize, 0, checksum_sz); cksum.cksumtype = CHECKSUMTYPE(et->checksum); ret = verify_checksum(context, NULL, 0, p, len, &cksum); free_Checksum(&cksum); if(ret) { free(p); return ret; } l = len - et->confoundersize - checksum_sz; memmove(p, p + et->confoundersize + checksum_sz, l); result->data = realloc(p, l); if(result->data == NULL && l != 0) { free(p); krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } result->length = l; return 0; } static krb5_error_code decrypt_internal_special(krb5_context context, krb5_crypto crypto, int usage, void *data, size_t len, krb5_data *result, void *ivec) { struct encryption_type *et = crypto->et; size_t cksum_sz = CHECKSUMSIZE(et->checksum); size_t sz = len - cksum_sz - et->confoundersize; unsigned char *p; krb5_error_code ret; if ((len % et->padsize) != 0) { krb5_clear_error_message(context); return KRB5_BAD_MSIZE; } p = malloc (len); if (p == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } memcpy(p, data, len); ret = (*et->encrypt)(context, &crypto->key, p, len, FALSE, usage, ivec); if (ret) { free(p); return ret; } memmove (p, p + cksum_sz + et->confoundersize, sz); result->data = realloc(p, sz); if(result->data == NULL && sz != 0) { free(p); krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } result->length = sz; return 0; } static krb5_crypto_iov * find_iv(krb5_crypto_iov *data, int num_data, int type) { int i; for (i = 0; i < num_data; i++) if (data[i].flags == type) return &data[i]; return NULL; } /** * Inline encrypt a kerberos message * * @param context Kerberos context * @param crypto Kerberos crypto context * @param usage Key usage for this buffer * @param data array of buffers to process * @param num_data length of array * @param ivec initial cbc/cts vector * * @return Return an error code or 0. * @ingroup krb5_crypto * * Kerberos encrypted data look like this: * * 1. KRB5_CRYPTO_TYPE_HEADER * 2. array [1,...] KRB5_CRYPTO_TYPE_DATA and array [0,...] * KRB5_CRYPTO_TYPE_SIGN_ONLY in any order, however the receiver * have to aware of the order. KRB5_CRYPTO_TYPE_SIGN_ONLY is * commonly used headers and trailers. * 3. KRB5_CRYPTO_TYPE_PADDING, at least on padsize long if padsize > 1 * 4. KRB5_CRYPTO_TYPE_TRAILER */ krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt_iov_ivec(krb5_context context, krb5_crypto crypto, unsigned usage, krb5_crypto_iov *data, int num_data, void *ivec) { size_t headersz, trailersz, len; int i; size_t sz, block_sz, pad_sz; Checksum cksum; unsigned char *p, *q; krb5_error_code ret; struct key_data *dkey; const struct encryption_type *et = crypto->et; krb5_crypto_iov *tiv, *piv, *hiv, *div; if (num_data < 0) { krb5_clear_error_message(context); return KRB5_CRYPTO_INTERNAL; } if(!derived_crypto(context, crypto)) { krb5_clear_error_message(context); return KRB5_CRYPTO_INTERNAL; } headersz = et->confoundersize; trailersz = CHECKSUMSIZE(et->keyed_checksum); div = find_iv(data, num_data, KRB5_CRYPTO_TYPE_DATA); if (div == NULL) return KRB5_CRYPTO_INTERNAL; len = div->data.length; sz = headersz + len; block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */ pad_sz = block_sz - sz; /* header */ hiv = find_iv(data, num_data, KRB5_CRYPTO_TYPE_HEADER); if (hiv == NULL || hiv->data.length != headersz) return KRB5_BAD_MSIZE; krb5_generate_random_block(hiv->data.data, hiv->data.length); /* padding */ piv = find_iv(data, num_data, KRB5_CRYPTO_TYPE_PADDING); /* its ok to have no TYPE_PADDING if there is no padding */ if (piv == NULL && pad_sz != 0) return KRB5_BAD_MSIZE; if (piv) { if (piv->data.length < pad_sz) return KRB5_BAD_MSIZE; piv->data.length = pad_sz; } /* trailer */ tiv = find_iv(data, num_data, KRB5_CRYPTO_TYPE_TRAILER); if (tiv == NULL || tiv->data.length != trailersz) return KRB5_BAD_MSIZE; /* * XXX replace with EVP_Sign? at least make create_checksum an iov * function. * XXX CTS EVP is broken, can't handle multi buffers :( */ len = hiv->data.length; for (i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_DATA && data[i].flags != KRB5_CRYPTO_TYPE_SIGN_ONLY) continue; len += data[i].data.length; } p = q = malloc(len); memcpy(q, hiv->data.data, hiv->data.length); q += hiv->data.length; for (i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_DATA && data[i].flags != KRB5_CRYPTO_TYPE_SIGN_ONLY) continue; memcpy(q, data[i].data.data, data[i].data.length); q += data[i].data.length; } ret = create_checksum(context, et->keyed_checksum, crypto, INTEGRITY_USAGE(usage), p, len, &cksum); free(p); if(ret == 0 && cksum.checksum.length != trailersz) { free_Checksum (&cksum); krb5_clear_error_message (context); ret = KRB5_CRYPTO_INTERNAL; } if(ret) return ret; /* save cksum at end */ memcpy(tiv->data.data, cksum.checksum.data, cksum.checksum.length); free_Checksum (&cksum); /* now encrypt data */ ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) return ret; ret = _key_schedule(context, dkey); if(ret) return ret; /* XXX replace with EVP_Cipher */ len = hiv->data.length + div->data.length; if (piv) len += piv->data.length; p = q = malloc(len); if(p == NULL) return ENOMEM; memcpy(q, hiv->data.data, hiv->data.length); q += hiv->data.length; memcpy(q, div->data.data, div->data.length); q += div->data.length; memset(q, 0, pad_sz); ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) { free(p); return ret; } ret = _key_schedule(context, dkey); if(ret) { free(p); return ret; } ret = (*et->encrypt)(context, dkey, p, len, 1, usage, ivec); if (ret) { free(p); return ret; } /* now copy data back to buffers */ q = p; memcpy(hiv->data.data, q, hiv->data.length); q += hiv->data.length; memcpy(div->data.data, q, div->data.length); q += div->data.length; if (piv) memcpy(piv->data.data, q, pad_sz); free(p); return ret; } /** * Inline decrypt a Kerberos message. * * @param context Kerberos context * @param crypto Kerberos crypto context * @param usage Key usage for this buffer * @param data array of buffers to process * @param num_data length of array * @param ivec initial cbc/cts vector * * @return Return an error code or 0. * @ingroup krb5_crypto * * 1. KRB5_CRYPTO_TYPE_HEADER * 2. one KRB5_CRYPTO_TYPE_DATA and array [0,...] of KRB5_CRYPTO_TYPE_SIGN_ONLY in * any order, however the receiver have to aware of the * order. KRB5_CRYPTO_TYPE_SIGN_ONLY is commonly used unencrypoted * protocol headers and trailers. The output data will be of same * size as the input data or shorter. */ krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt_iov_ivec(krb5_context context, krb5_crypto crypto, unsigned usage, krb5_crypto_iov *data, unsigned int num_data, void *ivec) { unsigned int i; size_t headersz, trailersz, len; size_t sz, block_sz, pad_sz; Checksum cksum; unsigned char *p, *q; krb5_error_code ret; struct key_data *dkey; struct encryption_type *et = crypto->et; krb5_crypto_iov *tiv, *hiv, *div; if (num_data < 0) { krb5_clear_error_message(context); return KRB5_CRYPTO_INTERNAL; } if(!derived_crypto(context, crypto)) { krb5_clear_error_message(context); return KRB5_CRYPTO_INTERNAL; } headersz = et->confoundersize; trailersz = CHECKSUMSIZE(et->keyed_checksum); for (len = 0, i = 0; i < num_data; i++) { if (data[i].flags == KRB5_CRYPTO_TYPE_DATA) { if (len != 0) return KRB5_CRYPTO_INTERNAL; len += data[i].data.length; } } sz = headersz + len; block_sz = (sz + et->padsize - 1) &~ (et->padsize - 1); /* pad */ pad_sz = block_sz - sz; trailersz += pad_sz; /* header */ hiv = find_iv(data, num_data, KRB5_CRYPTO_TYPE_HEADER); if (hiv == NULL || hiv->data.length < headersz) return KRB5_BAD_MSIZE; hiv->data.length = headersz; /* trailer */ tiv = find_iv(data, num_data, KRB5_CRYPTO_TYPE_TRAILER); if (tiv == NULL || tiv->data.length < trailersz) return KRB5_BAD_MSIZE; tiv->data.length = trailersz; div = find_iv(data, num_data, KRB5_CRYPTO_TYPE_DATA); if (div == NULL) return KRB5_CRYPTO_INTERNAL; /* XXX replace with EVP_Cipher */ for (len = 0, i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_HEADER && data[i].flags != KRB5_CRYPTO_TYPE_DATA) continue; len += data[i].data.length; } p = q = malloc(len); if (p == NULL) return ENOMEM; memcpy(q, hiv->data.data, hiv->data.length); q += hiv->data.length; memcpy(q, div->data.data, div->data.length); ret = _get_derived_key(context, crypto, ENCRYPTION_USAGE(usage), &dkey); if(ret) { free(p); return ret; } ret = _key_schedule(context, dkey); if(ret) { free(p); return ret; } ret = (*et->encrypt)(context, dkey, p, len, 0, usage, ivec); if (ret) { free(p); return ret; } /* copy data back to buffers */ memcpy(hiv->data.data, p, hiv->data.length); memcpy(div->data.data, p + hiv->data.length, len - hiv->data.length); free(p); /* check signature */ len = hiv->data.length; for (i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_DATA && data[i].flags != KRB5_CRYPTO_TYPE_SIGN_ONLY) continue; len += data[i].data.length; } p = q = malloc(len); memcpy(q, hiv->data.data, hiv->data.length); q += hiv->data.length; for (i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_DATA && data[i].flags != KRB5_CRYPTO_TYPE_SIGN_ONLY) continue; memcpy(q, data[i].data.data, data[i].data.length); q += data[i].data.length; } cksum.checksum.data = tiv->data.data; cksum.checksum.length = tiv->data.length; cksum.cksumtype = CHECKSUMTYPE(et->keyed_checksum); ret = verify_checksum(context, crypto, INTEGRITY_USAGE(usage), p, len, &cksum); free(p); return ret; } /** * Create a Kerberos message checksum. * * @param context Kerberos context * @param crypto Kerberos crypto context * @param usage Key usage for this buffer * @param data array of buffers to process * @param num_data length of array * @param type output data * * @return Return an error code or 0. * @ingroup krb5_crypto */ krb5_error_code KRB5_LIB_FUNCTION krb5_create_checksum_iov(krb5_context context, krb5_crypto crypto, unsigned usage, krb5_crypto_iov *data, unsigned int num_data, krb5_cksumtype *type) { Checksum cksum; krb5_crypto_iov *civ; krb5_error_code ret; int i; size_t len; char *p, *q; if (num_data < 0) { krb5_clear_error_message(context); return KRB5_CRYPTO_INTERNAL; } if(!derived_crypto(context, crypto)) { krb5_clear_error_message(context); return KRB5_CRYPTO_INTERNAL; } civ = find_iv(data, num_data, KRB5_CRYPTO_TYPE_CHECKSUM); if (civ == NULL) return KRB5_BAD_MSIZE; len = 0; for (i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_DATA && data[i].flags != KRB5_CRYPTO_TYPE_SIGN_ONLY) continue; len += data[i].data.length; } p = q = malloc(len); for (i = 0; i < num_data; i++) { if (data[i].flags != KRB5_CRYPTO_TYPE_DATA && data[i].flags != KRB5_CRYPTO_TYPE_SIGN_ONLY) continue; memcpy(q, data[i].data.data, data[i].data.length); q += data[i].data.length; } ret = krb5_create_checksum(context, crypto, usage, 0, p, len, &cksum); free(p); if (ret) return ret; if (type) *type = cksum.cksumtype; if (cksum.checksum.length > civ->data.length) { krb5_set_error_message(context, KRB5_BAD_MSIZE, N_("Checksum larger then input buffer", "")); free_Checksum(&cksum); return KRB5_BAD_MSIZE; } civ->data.length = cksum.checksum.length; memcpy(civ->data.data, cksum.checksum.data, civ->data.length); free_Checksum(&cksum); return 0; } size_t KRB5_LIB_FUNCTION krb5_crypto_length(krb5_context context, krb5_crypto crypto, int type) { if (!derived_crypto(context, crypto)) return (size_t)-1; switch(type) { case KRB5_CRYPTO_TYPE_EMPTY: return 0; case KRB5_CRYPTO_TYPE_HEADER: return crypto->et->blocksize; case KRB5_CRYPTO_TYPE_PADDING: if (crypto->et->padsize > 1) return crypto->et->padsize; return 0; case KRB5_CRYPTO_TYPE_TRAILER: return CHECKSUMSIZE(crypto->et->keyed_checksum); case KRB5_CRYPTO_TYPE_CHECKSUM: if (crypto->et->keyed_checksum) return CHECKSUMSIZE(crypto->et->keyed_checksum); return CHECKSUMSIZE(crypto->et->checksum); } return (size_t)-1; } krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt_ivec(krb5_context context, krb5_crypto crypto, unsigned usage, const void *data, size_t len, krb5_data *result, void *ivec) { if(derived_crypto(context, crypto)) return encrypt_internal_derived(context, crypto, usage, data, len, result, ivec); else if (special_crypto(context, crypto)) return encrypt_internal_special (context, crypto, usage, data, len, result, ivec); else return encrypt_internal(context, crypto, data, len, result, ivec); } krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt(krb5_context context, krb5_crypto crypto, unsigned usage, const void *data, size_t len, krb5_data *result) { return krb5_encrypt_ivec(context, crypto, usage, data, len, result, NULL); } krb5_error_code KRB5_LIB_FUNCTION krb5_encrypt_EncryptedData(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, int kvno, EncryptedData *result) { result->etype = CRYPTO_ETYPE(crypto); if(kvno){ ALLOC(result->kvno, 1); *result->kvno = kvno; }else result->kvno = NULL; return krb5_encrypt(context, crypto, usage, data, len, &result->cipher); } krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt_ivec(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, krb5_data *result, void *ivec) { if(derived_crypto(context, crypto)) return decrypt_internal_derived(context, crypto, usage, data, len, result, ivec); else if (special_crypto (context, crypto)) return decrypt_internal_special(context, crypto, usage, data, len, result, ivec); else return decrypt_internal(context, crypto, data, len, result, ivec); } krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt(krb5_context context, krb5_crypto crypto, unsigned usage, void *data, size_t len, krb5_data *result) { return krb5_decrypt_ivec (context, crypto, usage, data, len, result, NULL); } krb5_error_code KRB5_LIB_FUNCTION krb5_decrypt_EncryptedData(krb5_context context, krb5_crypto crypto, unsigned usage, const EncryptedData *e, krb5_data *result) { return krb5_decrypt(context, crypto, usage, e->cipher.data, e->cipher.length, result); } /************************************************************ * * ************************************************************/ #define ENTROPY_NEEDED 128 static int seed_something(void) { char buf[1024], seedfile[256]; /* If there is a seed file, load it. But such a file cannot be trusted, so use 0 for the entropy estimate */ if (RAND_file_name(seedfile, sizeof(seedfile))) { int fd; fd = open(seedfile, O_RDONLY | O_BINARY | O_CLOEXEC); if (fd >= 0) { ssize_t ret; rk_cloexec(fd); ret = read(fd, buf, sizeof(buf)); if (ret > 0) RAND_add(buf, ret, 0.0); close(fd); } else seedfile[0] = '\0'; } else seedfile[0] = '\0'; /* Calling RAND_status() will try to use /dev/urandom if it exists so we do not have to deal with it. */ if (RAND_status() != 1) { krb5_context context; const char *p; /* Try using egd */ if (!krb5_init_context(&context)) { p = krb5_config_get_string(context, NULL, "libdefaults", "egd_socket", NULL); if (p != NULL) RAND_egd_bytes(p, ENTROPY_NEEDED); krb5_free_context(context); } } if (RAND_status() == 1) { /* Update the seed file */ if (seedfile[0]) RAND_write_file(seedfile); return 0; } else return -1; } void KRB5_LIB_FUNCTION krb5_generate_random_block(void *buf, size_t len) { static int rng_initialized = 0; HEIMDAL_MUTEX_lock(&crypto_mutex); if (!rng_initialized) { if (seed_something()) krb5_abortx(NULL, "Fatal: could not seed the " "random number generator"); rng_initialized = 1; } HEIMDAL_MUTEX_unlock(&crypto_mutex); if (RAND_bytes(buf, len) != 1) krb5_abortx(NULL, "Failed to generate random block"); } static krb5_error_code derive_key(krb5_context context, struct encryption_type *et, struct key_data *key, const void *constant, size_t len) { unsigned char *k = NULL; unsigned int nblocks = 0, i; krb5_error_code ret = 0; struct key_type *kt = et->keytype; ret = _key_schedule(context, key); if(ret) return ret; if(et->blocksize * 8 < kt->bits || len != et->blocksize) { nblocks = (kt->bits + et->blocksize * 8 - 1) / (et->blocksize * 8); k = malloc(nblocks * et->blocksize); if(k == NULL) { ret = ENOMEM; krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); goto out; } ret = _krb5_n_fold(constant, len, k, et->blocksize); if (ret) { krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); goto out; } for(i = 0; i < nblocks; i++) { if(i > 0) memcpy(k + i * et->blocksize, k + (i - 1) * et->blocksize, et->blocksize); (*et->encrypt)(context, key, k + i * et->blocksize, et->blocksize, 1, 0, NULL); } } else { /* this case is probably broken, but won't be run anyway */ void *c = malloc(len); size_t res_len = (kt->bits + 7) / 8; if(len != 0 && c == NULL) { ret = ENOMEM; krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); goto out; } memcpy(c, constant, len); (*et->encrypt)(context, key, c, len, 1, 0, NULL); k = malloc(res_len); if(res_len != 0 && k == NULL) { free(c); ret = ENOMEM; krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); goto out; } ret = _krb5_n_fold(c, len, k, res_len); free(c); if (ret) { krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); goto out; } } /* XXX keytype dependent post-processing */ switch(kt->type) { case KEYTYPE_DES3: DES3_random_to_key(context, key->key, k, nblocks * et->blocksize); break; case KEYTYPE_AES128: case KEYTYPE_AES256: memcpy(key->key->keyvalue.data, k, key->key->keyvalue.length); break; default: ret = KRB5_CRYPTO_INTERNAL; krb5_set_error_message(context, ret, N_("derive_key() called with unknown keytype (%u)", ""), kt->type); break; } out: if (key->schedule) { free_key_schedule(context, key, et); key->schedule = NULL; } if (k) { memset(k, 0, nblocks * et->blocksize); free(k); } return ret; } static struct key_data * _new_derived_key(krb5_crypto crypto, unsigned usage) { struct key_usage *d = crypto->key_usage; d = realloc(d, (crypto->num_key_usage + 1) * sizeof(*d)); if(d == NULL) return NULL; crypto->key_usage = d; d += crypto->num_key_usage++; memset(d, 0, sizeof(*d)); d->usage = usage; return &d->key; } krb5_error_code KRB5_LIB_FUNCTION krb5_derive_key(krb5_context context, const krb5_keyblock *key, krb5_enctype etype, const void *constant, size_t constant_len, krb5_keyblock **derived_key) { krb5_error_code ret; struct encryption_type *et; struct key_data d; *derived_key = NULL; et = _find_enctype (etype); if (et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); return KRB5_PROG_ETYPE_NOSUPP; } ret = krb5_copy_keyblock(context, key, &d.key); if (ret) return ret; d.schedule = NULL; ret = derive_key(context, et, &d, constant, constant_len); if (ret == 0) ret = krb5_copy_keyblock(context, d.key, derived_key); free_key_data(context, &d, et); return ret; } static krb5_error_code _get_derived_key(krb5_context context, krb5_crypto crypto, unsigned usage, struct key_data **key) { int i; struct key_data *d; unsigned char constant[5]; for(i = 0; i < crypto->num_key_usage; i++) if(crypto->key_usage[i].usage == usage) { *key = &crypto->key_usage[i].key; return 0; } d = _new_derived_key(crypto, usage); if(d == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } krb5_copy_keyblock(context, crypto->key.key, &d->key); _krb5_put_int(constant, usage, 5); derive_key(context, crypto->et, d, constant, sizeof(constant)); *key = d; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_init(krb5_context context, const krb5_keyblock *key, krb5_enctype etype, krb5_crypto *crypto) { krb5_error_code ret; ALLOC(*crypto, 1); if(*crypto == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } if(etype == ETYPE_NULL) etype = key->keytype; (*crypto)->et = _find_enctype(etype); if((*crypto)->et == NULL || ((*crypto)->et->flags & F_DISABLED)) { free(*crypto); *crypto = NULL; krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); return KRB5_PROG_ETYPE_NOSUPP; } if((*crypto)->et->keytype->size != key->keyvalue.length) { free(*crypto); *crypto = NULL; krb5_set_error_message (context, KRB5_BAD_KEYSIZE, "encryption key has bad length"); return KRB5_BAD_KEYSIZE; } ret = krb5_copy_keyblock(context, key, &(*crypto)->key.key); if(ret) { free(*crypto); *crypto = NULL; return ret; } (*crypto)->key.schedule = NULL; (*crypto)->num_key_usage = 0; (*crypto)->key_usage = NULL; return 0; } static void free_key_schedule(krb5_context context, struct key_data *key, struct encryption_type *et) { if (et->keytype->cleanup) (*et->keytype->cleanup)(context, key); memset(key->schedule->data, 0, key->schedule->length); krb5_free_data(context, key->schedule); } static void free_key_data(krb5_context context, struct key_data *key, struct encryption_type *et) { krb5_free_keyblock(context, key->key); if(key->schedule) { free_key_schedule(context, key, et); key->schedule = NULL; } } static void free_key_usage(krb5_context context, struct key_usage *ku, struct encryption_type *et) { free_key_data(context, &ku->key, et); } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_destroy(krb5_context context, krb5_crypto crypto) { int i; for(i = 0; i < crypto->num_key_usage; i++) free_key_usage(context, &crypto->key_usage[i], crypto->et); free(crypto->key_usage); free_key_data(context, &crypto->key, crypto->et); free (crypto); return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getblocksize(krb5_context context, krb5_crypto crypto, size_t *blocksize) { *blocksize = crypto->et->blocksize; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getenctype(krb5_context context, krb5_crypto crypto, krb5_enctype *enctype) { *enctype = crypto->et->type; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getpadsize(krb5_context context, krb5_crypto crypto, size_t *padsize) { *padsize = crypto->et->padsize; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_getconfoundersize(krb5_context context, krb5_crypto crypto, size_t *confoundersize) { *confoundersize = crypto->et->confoundersize; return 0; } /** * Disable encryption type * * @param context Kerberos 5 context * @param enctype encryption type to disable * * @return Return an error code or 0. * * @ingroup krb5_crypto */ krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_disable(krb5_context context, krb5_enctype enctype) { struct encryption_type *et = _find_enctype(enctype); if(et == NULL) { if (context) krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), enctype); return KRB5_PROG_ETYPE_NOSUPP; } et->flags |= F_DISABLED; return 0; } /** * Enable encryption type * * @param context Kerberos 5 context * @param enctype encryption type to enable * * @return Return an error code or 0. * * @ingroup krb5_crypto */ krb5_error_code KRB5_LIB_FUNCTION krb5_enctype_enable(krb5_context context, krb5_enctype enctype) { struct encryption_type *et = _find_enctype(enctype); if(et == NULL) { if (context) krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), enctype); return KRB5_PROG_ETYPE_NOSUPP; } et->flags &= ~F_DISABLED; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_string_to_key_derived(krb5_context context, const void *str, size_t len, krb5_enctype etype, krb5_keyblock *key) { struct encryption_type *et = _find_enctype(etype); krb5_error_code ret; struct key_data kd; size_t keylen; u_char *tmp; if(et == NULL) { krb5_set_error_message (context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), etype); return KRB5_PROG_ETYPE_NOSUPP; } keylen = et->keytype->bits / 8; ALLOC(kd.key, 1); if(kd.key == NULL) { krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } ret = krb5_data_alloc(&kd.key->keyvalue, et->keytype->size); if(ret) { free(kd.key); return ret; } kd.key->keytype = etype; tmp = malloc (keylen); if(tmp == NULL) { krb5_free_keyblock(context, kd.key); krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } ret = _krb5_n_fold(str, len, tmp, keylen); if (ret) { free(tmp); krb5_set_error_message (context, ENOMEM, N_("malloc: out of memory", "")); return ret; } kd.schedule = NULL; DES3_random_to_key(context, kd.key, tmp, keylen); memset(tmp, 0, keylen); free(tmp); ret = derive_key(context, et, &kd, "kerberos", /* XXX well known constant */ strlen("kerberos")); if (ret) { free_key_data(context, &kd, et); return ret; } ret = krb5_copy_keyblock_contents(context, kd.key, key); free_key_data(context, &kd, et); return ret; } static size_t wrapped_length (krb5_context context, krb5_crypto crypto, size_t data_len) { struct encryption_type *et = crypto->et; size_t padsize = et->padsize; size_t checksumsize = CHECKSUMSIZE(et->checksum); size_t res; res = et->confoundersize + checksumsize + data_len; res = (res + padsize - 1) / padsize * padsize; return res; } static size_t wrapped_length_dervied (krb5_context context, krb5_crypto crypto, size_t data_len) { struct encryption_type *et = crypto->et; size_t padsize = et->padsize; size_t res; res = et->confoundersize + data_len; res = (res + padsize - 1) / padsize * padsize; if (et->keyed_checksum) res += et->keyed_checksum->checksumsize; else res += et->checksum->checksumsize; return res; } /* * Return the size of an encrypted packet of length `data_len' */ size_t krb5_get_wrapped_length (krb5_context context, krb5_crypto crypto, size_t data_len) { if (derived_crypto (context, crypto)) return wrapped_length_dervied (context, crypto, data_len); else return wrapped_length (context, crypto, data_len); } /* * Return the size of an encrypted packet of length `data_len' */ static size_t crypto_overhead (krb5_context context, krb5_crypto crypto) { struct encryption_type *et = crypto->et; size_t res; res = CHECKSUMSIZE(et->checksum); res += et->confoundersize; if (et->padsize > 1) res += et->padsize; return res; } static size_t crypto_overhead_dervied (krb5_context context, krb5_crypto crypto) { struct encryption_type *et = crypto->et; size_t res; if (et->keyed_checksum) res = CHECKSUMSIZE(et->keyed_checksum); else res = CHECKSUMSIZE(et->checksum); res += et->confoundersize; if (et->padsize > 1) res += et->padsize; return res; } size_t krb5_crypto_overhead (krb5_context context, krb5_crypto crypto) { if (derived_crypto (context, crypto)) return crypto_overhead_dervied (context, crypto); else return crypto_overhead (context, crypto); } /** * Converts the random bytestring to a protocol key according to * Kerberos crypto frame work. It may be assumed that all the bits of * the input string are equally random, even though the entropy * present in the random source may be limited. * * @param context Kerberos 5 context * @param type the enctype resulting key will be of * @param data input random data to convert to a key * @param data size of input random data, at least krb5_enctype_keysize() long * @param data key, output key, free with krb5_free_keyblock_contents() * * @return Return an error code or 0. * * @ingroup krb5_crypto */ krb5_error_code KRB5_LIB_FUNCTION krb5_random_to_key(krb5_context context, krb5_enctype type, const void *data, size_t size, krb5_keyblock *key) { krb5_error_code ret; struct encryption_type *et = _find_enctype(type); if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), type); return KRB5_PROG_ETYPE_NOSUPP; } if ((et->keytype->bits + 7) / 8 > size) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption key %s needs %d bytes " "of random to make an encryption key " "out of it", ""), et->name, (int)et->keytype->size); return KRB5_PROG_ETYPE_NOSUPP; } ret = krb5_data_alloc(&key->keyvalue, et->keytype->size); if(ret) return ret; key->keytype = type; if (et->keytype->random_to_key) (*et->keytype->random_to_key)(context, key, data, size); else memcpy(key->keyvalue.data, data, et->keytype->size); return 0; } krb5_error_code _krb5_pk_octetstring2key(krb5_context context, krb5_enctype type, const void *dhdata, size_t dhsize, const heim_octet_string *c_n, const heim_octet_string *k_n, krb5_keyblock *key) { struct encryption_type *et = _find_enctype(type); krb5_error_code ret; size_t keylen, offset; void *keydata; unsigned char counter; unsigned char shaoutput[SHA_DIGEST_LENGTH]; if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), type); return KRB5_PROG_ETYPE_NOSUPP; } keylen = (et->keytype->bits + 7) / 8; keydata = malloc(keylen); if (keydata == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } counter = 0; offset = 0; do { SHA_CTX m; SHA1_Init(&m); SHA1_Update(&m, &counter, 1); SHA1_Update(&m, dhdata, dhsize); if (c_n) SHA1_Update(&m, c_n->data, c_n->length); if (k_n) SHA1_Update(&m, k_n->data, k_n->length); SHA1_Final(shaoutput, &m); memcpy((unsigned char *)keydata + offset, shaoutput, min(keylen - offset, sizeof(shaoutput))); offset += sizeof(shaoutput); counter++; } while(offset < keylen); memset(shaoutput, 0, sizeof(shaoutput)); ret = krb5_random_to_key(context, type, keydata, keylen, key); memset(keydata, 0, sizeof(keylen)); free(keydata); return ret; } static krb5_error_code encode_uvinfo(krb5_context context, krb5_const_principal p, krb5_data *data) { KRB5PrincipalName pn; krb5_error_code ret; size_t size; pn.principalName = p->name; pn.realm = p->realm; ASN1_MALLOC_ENCODE(KRB5PrincipalName, data->data, data->length, &pn, &size, ret); if (ret) { krb5_data_zero(data); krb5_set_error_message(context, ret, N_("Failed to encode KRB5PrincipalName", "")); return ret; } if (data->length != size) krb5_abortx(context, "asn1 compiler internal error"); return 0; } static krb5_error_code encode_otherinfo(krb5_context context, const AlgorithmIdentifier *ai, krb5_const_principal client, krb5_const_principal server, krb5_enctype enctype, const krb5_data *as_req, const krb5_data *pk_as_rep, const Ticket *ticket, krb5_data *other) { PkinitSP80056AOtherInfo otherinfo; PkinitSuppPubInfo pubinfo; krb5_error_code ret; krb5_data pub; size_t size; krb5_data_zero(other); memset(&otherinfo, 0, sizeof(otherinfo)); memset(&pubinfo, 0, sizeof(pubinfo)); pubinfo.enctype = enctype; pubinfo.as_REQ = *as_req; pubinfo.pk_as_rep = *pk_as_rep; pubinfo.ticket = *ticket; ASN1_MALLOC_ENCODE(PkinitSuppPubInfo, pub.data, pub.length, &pubinfo, &size, ret); if (ret) { krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); return ret; } if (pub.length != size) krb5_abortx(context, "asn1 compiler internal error"); ret = encode_uvinfo(context, client, &otherinfo.partyUInfo); if (ret) { free(pub.data); return ret; } ret = encode_uvinfo(context, server, &otherinfo.partyVInfo); if (ret) { free(otherinfo.partyUInfo.data); free(pub.data); return ret; } otherinfo.algorithmID = *ai; otherinfo.suppPubInfo = &pub; ASN1_MALLOC_ENCODE(PkinitSP80056AOtherInfo, other->data, other->length, &otherinfo, &size, ret); free(otherinfo.partyUInfo.data); free(otherinfo.partyVInfo.data); free(pub.data); if (ret) { krb5_set_error_message(context, ret, N_("malloc: out of memory", "")); return ret; } if (other->length != size) krb5_abortx(context, "asn1 compiler internal error"); return 0; } krb5_error_code _krb5_pk_kdf(krb5_context context, const struct AlgorithmIdentifier *ai, const void *dhdata, size_t dhsize, krb5_const_principal client, krb5_const_principal server, krb5_enctype enctype, const krb5_data *as_req, const krb5_data *pk_as_rep, const Ticket *ticket, krb5_keyblock *key) { struct encryption_type *et; krb5_error_code ret; krb5_data other; size_t keylen, offset; uint32_t counter; unsigned char *keydata; unsigned char shaoutput[SHA_DIGEST_LENGTH]; if (der_heim_oid_cmp(&asn1_oid_id_pkinit_kdf_ah_sha1, &ai->algorithm) != 0) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("KDF not supported", "")); return KRB5_PROG_ETYPE_NOSUPP; } if (ai->parameters != NULL && (ai->parameters->length != 2 || memcmp(ai->parameters->data, "\x05\x00", 2) != 0)) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("kdf params not NULL or the NULL-type", "")); return KRB5_PROG_ETYPE_NOSUPP; } et = _find_enctype(enctype); if(et == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), enctype); return KRB5_PROG_ETYPE_NOSUPP; } keylen = (et->keytype->bits + 7) / 8; keydata = malloc(keylen); if (keydata == NULL) { krb5_set_error_message(context, ENOMEM, N_("malloc: out of memory", "")); return ENOMEM; } ret = encode_otherinfo(context, ai, client, server, enctype, as_req, pk_as_rep, ticket, &other); if (ret) { free(keydata); return ret; } offset = 0; counter = 1; do { unsigned char cdata[4]; SHA_CTX m; SHA1_Init(&m); _krb5_put_int(cdata, counter, 4); SHA1_Update(&m, cdata, 4); SHA1_Update(&m, dhdata, dhsize); SHA1_Update(&m, other.data, other.length); SHA1_Final(shaoutput, &m); memcpy((unsigned char *)keydata + offset, shaoutput, min(keylen - offset, sizeof(shaoutput))); offset += sizeof(shaoutput); counter++; } while(offset < keylen); memset(shaoutput, 0, sizeof(shaoutput)); free(other.data); ret = krb5_random_to_key(context, enctype, keydata, keylen, key); memset(keydata, 0, sizeof(keylen)); free(keydata); return ret; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_prf_length(krb5_context context, krb5_enctype type, size_t *length) { struct encryption_type *et = _find_enctype(type); if(et == NULL || et->prf_length == 0) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, N_("encryption type %d not supported", ""), type); return KRB5_PROG_ETYPE_NOSUPP; } *length = et->prf_length; return 0; } krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_prf(krb5_context context, const krb5_crypto crypto, const krb5_data *input, krb5_data *output) { struct encryption_type *et = crypto->et; krb5_data_zero(output); if(et->prf == NULL) { krb5_set_error_message(context, KRB5_PROG_ETYPE_NOSUPP, "kerberos prf for %s not supported", et->name); return KRB5_PROG_ETYPE_NOSUPP; } return (*et->prf)(context, crypto, input, output); } static krb5_error_code krb5_crypto_prfplus(krb5_context context, const krb5_crypto crypto, const krb5_data *input, size_t length, krb5_data *output) { krb5_error_code ret; krb5_data input2; unsigned char i = 1; unsigned char *p; krb5_data_zero(&input2); krb5_data_zero(output); krb5_clear_error_message(context); ret = krb5_data_alloc(output, length); if (ret) goto out; ret = krb5_data_alloc(&input2, input->length + 1); if (ret) goto out; krb5_clear_error_message(context); memcpy(((unsigned char *)input2.data) + 1, input->data, input->length); p = output->data; while (length) { krb5_data block; ((unsigned char *)input2.data)[0] = i++; ret = krb5_crypto_prf(context, crypto, &input2, &block); if (ret) goto out; if (block.length < length) { memcpy(p, block.data, block.length); length -= block.length; } else { memcpy(p, block.data, length); length = 0; } p += block.length; krb5_data_free(&block); } out: krb5_data_free(&input2); if (ret) krb5_data_free(output); return 0; } /** * The FX-CF2 key derivation function, used in FAST and preauth framework. * * @param context Kerberos 5 context * @param crypto1 first key to combine * @param crypto2 second key to combine * @param pepper1 factor to combine with first key to garante uniqueness * @param pepper1 factor to combine with second key to garante uniqueness * @param enctype the encryption type of the resulting key * @param res allocated key, free with krb5_free_keyblock_contents() * * @return Return an error code or 0. * * @ingroup krb5_crypto */ krb5_error_code KRB5_LIB_FUNCTION krb5_crypto_fx_cf2(krb5_context context, const krb5_crypto crypto1, const krb5_crypto crypto2, krb5_data *pepper1, krb5_data *pepper2, krb5_enctype enctype, krb5_keyblock *res) { krb5_error_code ret; krb5_data os1, os2; size_t i, keysize; memset(res, 0, sizeof(*res)); ret = krb5_enctype_keysize(context, enctype, &keysize); if (ret) return ret; ret = krb5_data_alloc(&res->keyvalue, keysize); if (ret) goto out; ret = krb5_crypto_prfplus(context, crypto1, pepper1, keysize, &os1); if (ret) goto out; ret = krb5_crypto_prfplus(context, crypto2, pepper2, keysize, &os2); if (ret) goto out; res->keytype = enctype; { unsigned char *p1 = os1.data, *p2 = os2.data, *p3 = res->keyvalue.data; for (i = 0; i < keysize; i++) p3[i] = p1[i] ^ p2[i]; } out: if (ret) krb5_data_free(&res->keyvalue); krb5_data_free(&os1); krb5_data_free(&os2); return ret; } #ifndef HEIMDAL_SMALLER krb5_error_code KRB5_LIB_FUNCTION krb5_keytype_to_enctypes (krb5_context context, krb5_keytype keytype, unsigned *len, krb5_enctype **val) KRB5_DEPRECATED { int i; unsigned n = 0; krb5_enctype *ret; for (i = num_etypes - 1; i >= 0; --i) { if (etypes[i]->keytype->type == keytype && !(etypes[i]->flags & F_PSEUDO) && krb5_enctype_valid(context, etypes[i]->type) == 0) ++n; } if (n == 0) { krb5_set_error_message(context, KRB5_PROG_KEYTYPE_NOSUPP, "Keytype have no mapping"); return KRB5_PROG_KEYTYPE_NOSUPP; } ret = malloc(n * sizeof(*ret)); if (ret == NULL && n != 0) { krb5_set_error_message(context, ENOMEM, "malloc: out of memory"); return ENOMEM; } n = 0; for (i = num_etypes - 1; i >= 0; --i) { if (etypes[i]->keytype->type == keytype && !(etypes[i]->flags & F_PSEUDO) && krb5_enctype_valid(context, etypes[i]->type) == 0) ret[n++] = etypes[i]->type; } *len = n; *val = ret; return 0; } /* if two enctypes have compatible keys */ krb5_boolean KRB5_LIB_FUNCTION krb5_enctypes_compatible_keys(krb5_context context, krb5_enctype etype1, krb5_enctype etype2) KRB5_DEPRECATED { struct encryption_type *e1 = _find_enctype(etype1); struct encryption_type *e2 = _find_enctype(etype2); return e1 != NULL && e2 != NULL && e1->keytype == e2->keytype; } #endif /* HEIMDAL_SMALLER */