/* Samba Unix/Linux SMB client utility libeditreg.c Copyright (C) 2002 Richard Sharpe, rsharpe@richardsharpe.com Copyright (C) 2003-2004 Jelmer Vernooij, jelmer@samba.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /************************************************************************* A utility to edit a Windows NT/2K etc registry file. Many of the ideas in here come from other people and software. I first looked in Wine in misc/registry.c and was also influenced by http://www.wednesday.demon.co.uk/dosreg.html Which seems to contain comments from someone else. I reproduce them here incase the site above disappears. It actually comes from http://home.eunet.no/~pnordahl/ntpasswd/WinReg.txt. The goal here is to read the registry into memory, manipulate it, and then write it out if it was changed by any actions of the user. The windows NT registry has 2 different blocks, where one can occur many times... the "regf"-Block ================ "regf" is obviously the abbreviation for "Registry file". "regf" is the signature of the header-block which is always 4kb in size, although only the first 64 bytes seem to be used and a checksum is calculated over the first 0x200 bytes only! Offset Size Contents 0x00000000 D-Word ID: ASCII-"regf" = 0x66676572 0x00000004 D-Word ???? //see struct REG_HANDLE 0x00000008 D-Word ???? Always the same value as at 0x00000004 0x0000000C Q-Word last modify date in WinNT date-format 0x00000014 D-Word 1 0x00000018 D-Word 3 0x0000001C D-Word 0 0x00000020 D-Word 1 0x00000024 D-Word Offset of 1st key record 0x00000028 D-Word Size of the data-blocks (Filesize-4kb) 0x0000002C D-Word 1 0x000001FC D-Word Sum of all D-Words from 0x00000000 to 0x000001FB //XOR of all words. Nigel I have analyzed more registry files (from multiple machines running NT 4.0 german version) and could not find an explanation for the values marked with ???? the rest of the first 4kb page is not important... the "hbin"-Block ================ hbin probably means hive-bin (what bin stands for I don't know) This block is always a multiple of 4kb in size. Inside these hbin-blocks the different records are placed. The memory- management looks like a C-compiler heap management to me... hbin-Header =========== Offset Size Contents 0x0000 D-Word ID: ASCII-"hbin" = 0x6E696268 0x0004 D-Word Offset from the 1st hbin-Block 0x0008 D-Word Offset to the next hbin-Block 0x001C D-Word Block-size The values in 0x0008 and 0x001C should be the same, so I don't know if they are correct or swapped... From offset 0x0020 inside a hbin-block data is stored with the following format: Offset Size Contents 0x0000 D-Word Data-block size //this size must be a multiple of 8. Nigel 0x0004 ???? Data If the size field is negative (bit 31 set), the corresponding block is free and has a size of -blocksize! That does not seem to be true. All block lengths seem to be negative! (Richard Sharpe) The data is stored as one record per block. Block size is a multiple of 4 and the last block reaches the next hbin-block, leaving no room. (That also seems incorrect, in that the block size if a multiple of 8. That is, the block, including the 4 byte header, is always a multiple of 8 bytes. Richard Sharpe.) Records in the hbin-blocks ========================== nk-Record The nk-record can be treated as a combination of tree-record and key-record of the win 95 registry. lf-Record The lf-record is the counterpart to the RGKN-record (the hash-function) vk-Record The vk-record consists information to a single value (value key). sk-Record sk (? Security Key ?) is the ACL of the registry. Value-Lists The value-lists contain information about which values are inside a sub-key and don't have a header. Datas The datas of the registry are (like the value-list) stored without a header. All offset-values are relative to the first hbin-block and point to the block-size field of the record-entry. to get the file offset, you have to add the header size (4kb) and the size field (4 bytes)... the nk-Record ============= Offset Size Contents 0x0000 Word ID: ASCII-"nk" = 0x6B6E 0x0002 Word for the root-key: 0x2C, otherwise 0x20 //key symbolic links 0x10. Nigel 0x0004 Q-Word write-date/time in windows nt notation 0x0010 D-Word Offset of Owner/Parent key 0x0014 D-Word number of sub-Keys 0x001C D-Word Offset of the sub-key lf-Records 0x0024 D-Word number of values 0x0028 D-Word Offset of the Value-List 0x002C D-Word Offset of the sk-Record 0x0030 D-Word Offset of the Class-Name //see NK structure for the use of these fields. Nigel 0x0044 D-Word Unused (data-trash) //some kind of run time index. Does not appear to be important. Nigel 0x0048 Word name-length 0x004A Word class-name length 0x004C ???? key-name the Value-List ============== Offset Size Contents 0x0000 D-Word Offset 1st Value 0x0004 D-Word Offset 2nd Value 0x???? D-Word Offset nth Value To determine the number of values, you have to look at the owner-nk-record! The vk-Record ============= Offset Size Contents 0x0000 Word ID: ASCII-"vk" = 0x6B76 0x0002 Word name length 0x0004 D-Word length of the data //if top bit is set when offset contains data. Nigel 0x0008 D-Word Offset of Data 0x000C D-Word Type of value 0x0010 Word Flag 0x0012 Word Unused (data-trash) 0x0014 ???? Name If bit 0 of the flag-word is set, a name is present, otherwise the value has no name (=default) If the data-size is lower 5, the data-offset value is used to store the data itself! The data-types ============== Wert Beteutung 0x0001 RegSZ: character string (in UNICODE!) 0x0002 ExpandSZ: string with "%var%" expanding (UNICODE!) 0x0003 RegBin: raw-binary value 0x0004 RegDWord: Dword 0x0007 RegMultiSZ: multiple strings, seperated with 0 (UNICODE!) The "lf"-record =============== Offset Size Contents 0x0000 Word ID: ASCII-"lf" = 0x666C 0x0002 Word number of keys 0x0004 ???? Hash-Records Hash-Record =========== Offset Size Contents 0x0000 D-Word Offset of corresponding "nk"-Record 0x0004 D-Word ASCII: the first 4 characters of the key-name, padded with 0's. Case sensitiv! Keep in mind, that the value at 0x0004 is used for checking the data-consistency! If you change the key-name you have to change the hash-value too! //These hashrecords must be sorted low to high within the lf record. Nigel. The "sk"-block ============== (due to the complexity of the SAM-info, not clear jet) (This is just a self-relative security descriptor in the data. R Sharpe.) Offset Size Contents 0x0000 Word ID: ASCII-"sk" = 0x6B73 0x0002 Word Unused 0x0004 D-Word Offset of previous "sk"-Record 0x0008 D-Word Offset of next "sk"-Record 0x000C D-Word usage-counter 0x0010 D-Word Size of "sk"-record in bytes ???? //standard self relative security desciptor. Nigel ???? ???? Security and auditing settings... ???? The usage counter counts the number of references to this "sk"-record. You can use one "sk"-record for the entire registry! Windows nt date/time format =========================== The time-format is a 64-bit integer which is incremented every 0,0000001 seconds by 1 (I don't know how accurate it realy is!) It starts with 0 at the 1st of january 1601 0:00! All values are stored in GMT time! The time-zone is important to get the real time! Common values for win95 and win-nt ================================== Offset values marking an "end of list", are either 0 or -1 (0xFFFFFFFF). If a value has no name (length=0, flag(bit 0)=0), it is treated as the "Default" entry... If a value has no data (length=0), it is displayed as empty. simplyfied win-3.?? registry: ============================= +-----------+ | next rec. |---+ +----->+------------+ | first sub | | | | Usage cnt. | | name | | +-->+------------+ | | length | | value | | | | next rec. | | | text |------->+-------+ +-----------+ | | | name rec. |--+ +------------+ | xxxxx | +------------+ | | value rec. |-------->+------------+ +-------+ v | +------------+ | Usage cnt. | +-----------+ | | length | | next rec. | | | text |------->+-------+ | first sub |------+ +------------+ | xxxxx | | name | +-------+ | value | +-----------+ Greatly simplyfied structure of the nt-registry: ================================================ +---------------------------------------------------------------+ | | v | +---------+ +---------->+-----------+ +----->+---------+ | | "nk" | | | lf-rec. | | | nk-rec. | | | ID | | | # of keys | | | parent |---+ | Date | | | 1st key |--+ | .... | | parent | | +-----------+ +---------+ | suk-keys|-----+ | values |--------------------->+----------+ | SK-rec. |---------------+ | 1. value |--> +----------+ | class |--+ | +----------+ | vk-rec. | +---------+ | | | .... | v | | data |--> +-------+ +------------+ | +----------+ | xxxxx | | Class name | | +-------+ +------------+ | v +---------+ +---------+ +----->| next sk |--->| Next sk |--+ | +---| prev sk |<---| prev sk | | | | | .... | | ... | | | | +---------+ +---------+ | | | ^ | | | | | | +--------------------+ | +----------------------------------+ --------------------------------------------------------------------------- Hope this helps.... (Although it was "fun" for me to uncover this things, it took me several sleepless nights ;) B.D. *************************************************************************/ #include "includes.h" #include "registry.h" #include "system/shmem.h" #define REG_KEY_LIST_SIZE 10 #define FLAG_HAS_NAME 0x01 /*FIXME*/ /* * Structures for dealing with the on-disk format of the registry */ const char *def_owner_sid_str = NULL; /* * These definitions are for the in-memory registry structure. * It is a tree structure that mimics what you see with tools like regedit */ /* * Definition of a Key. It has a name, classname, date/time last modified, * sub-keys, values, and a security descriptor */ #define REG_ROOT_KEY 1 #define REG_SUB_KEY 2 #define REG_SYM_LINK 3 /* * All of the structures below actually have a four-byte length before them * which always seems to be negative. The following macro retrieves that * size as an integer */ #define BLK_SIZE(b) ((int)*(int *)(((int *)b)-1)) typedef uint_t DWORD; typedef unsigned short WORD; typedef struct sk_struct SK_HDR; /* * This structure keeps track of the output format of the registry */ #define REG_OUTBLK_HDR 1 #define REG_OUTBLK_HBIN 2 typedef struct regf_block { DWORD REGF_ID; /* regf */ DWORD uk1; DWORD uk2; DWORD tim1, tim2; DWORD uk3; /* 1 */ DWORD uk4; /* 3 */ DWORD uk5; /* 0 */ DWORD uk6; /* 1 */ DWORD first_key; /* offset */ uint_t dblk_size; DWORD uk7[116]; /* 1 */ DWORD chksum; } REGF_HDR; typedef struct hbin_sub_struct { DWORD dblocksize; char data[1]; } HBIN_SUB_HDR; typedef struct hbin_struct { DWORD HBIN_ID; /* hbin */ DWORD off_from_first; DWORD off_to_next; DWORD uk1; DWORD uk2; DWORD uk3; DWORD uk4; DWORD blk_size; HBIN_SUB_HDR hbin_sub_hdr; } HBIN_HDR; typedef struct nk_struct { WORD NK_ID; WORD type; DWORD t1, t2; DWORD uk1; DWORD own_off; DWORD subk_num; DWORD uk2; DWORD lf_off; DWORD uk3; DWORD val_cnt; DWORD val_off; DWORD sk_off; DWORD clsnam_off; DWORD unk4[4]; DWORD unk5; WORD nam_len; WORD clsnam_len; char key_nam[1]; /* Actual length determined by nam_len */ } NK_HDR; struct sk_struct { WORD SK_ID; WORD uk1; DWORD prev_off; DWORD next_off; DWORD ref_cnt; DWORD rec_size; char sec_desc[1]; }; typedef struct key_sec_desc_s { struct key_sec_desc_s *prev, *next; int ref_cnt; int state; int offset; SK_HDR *sk_hdr; /* This means we must keep the registry in memory */ struct security_descriptor *sec_desc; } KEY_SEC_DESC; /* A map of sk offsets in the regf to KEY_SEC_DESCs for quick lookup etc */ typedef struct sk_map_s { int sk_off; KEY_SEC_DESC *key_sec_desc; } SK_MAP; typedef struct vk_struct { WORD VK_ID; WORD nam_len; DWORD dat_len; /* If top-bit set, offset contains the data */ DWORD dat_off; DWORD dat_type; WORD flag; /* =1, has name, else no name (=Default). */ WORD unk1; char dat_name[1]; /* Name starts here ... */ } VK_HDR; typedef DWORD VL_TYPE[1]; /* Value list is an array of vk rec offsets */ typedef struct hash_struct { DWORD nk_off; char hash[4]; } HASH_REC; typedef struct lf_struct { WORD LF_ID; WORD key_count; struct hash_struct hr[1]; /* Array of hash records, depending on key_count */} LF_HDR; /* * This structure keeps track of the output format of the registry */ #define REG_OUTBLK_HDR 1 #define REG_OUTBLK_HBIN 2 typedef struct hbin_blk_s { int type, size; struct hbin_blk_s *next; char *data; /* The data block */ uint_t file_offset; /* Offset in file */ uint_t free_space; /* Amount of free space in block */ uint_t fsp_off; /* Start of free space in block */ int complete, stored; } HBIN_BLK; typedef struct regf_struct_s { int reg_type; int fd; struct stat sbuf; char *base; BOOL modified; NTTIME last_mod_time; NK_HDR *first_key; int sk_count, sk_map_size; SK_MAP *sk_map; const char *owner_sid_str; struct security_descriptor *def_sec_desc; /* * These next pointers point to the blocks used to contain the * keys when we are preparing to write them to a file */ HBIN_BLK *blk_head, *blk_tail, *free_space; } REGF; static DWORD str_to_dword(const char *a) { int i; unsigned long ret = 0; for(i = strlen(a)-1; i >= 0; i--) { ret = ret * 0x100 + a[i]; } return ret; } #if 0 /* * Create an ACE */ static BOOL nt_create_ace(SEC_ACE *ace, int type, int flags, uint32_t perms, const char *sid) { DOM_SID s; SEC_ACCESS access; access.mask = perms; if(!string_to_sid(&s, sid))return False; init_sec_ace(ace, &s, type, access, flags); return True; } /* * Create a default ACL */ static SEC_ACL *nt_create_default_acl(struct registry_hive *regf) { SEC_ACE aces[8]; if(!nt_create_ace(&aces[0], 0x00, 0x0, 0xF003F, regf->owner_sid_str)) return NULL; if(!nt_create_ace(&aces[1], 0x00, 0x0, 0xF003F, "S-1-5-18")) return NULL; if(!nt_create_ace(&aces[2], 0x00, 0x0, 0xF003F, "S-1-5-32-544")) return NULL; if(!nt_create_ace(&aces[3], 0x00, 0x0, 0x20019, "S-1-5-12")) return NULL; if(!nt_create_ace(&aces[4], 0x00, 0x0B, GENERIC_RIGHT_ALL_ACCESS, regf->owner_sid_str)) return NULL; if(!nt_create_ace(&aces[5], 0x00, 0x0B, 0x10000000, "S-1-5-18")) return NULL; if(!nt_create_ace(&aces[6], 0x00, 0x0B, 0x10000000, "S-1-5-32-544")) return NULL; if(!nt_create_ace(&aces[7], 0x00, 0x0B, 0x80000000, "S-1-5-12")) return NULL; return make_sec_acl(regf->mem_ctx, 2, 8, aces); } /* * Create a default security descriptor. We pull in things from env * if need be */ static SEC_DESC *nt_create_def_sec_desc(struct registry_hive *regf) { SEC_DESC *tmp; tmp = malloc_p(SEC_DESC); tmp->revision = 1; tmp->type = SEC_DESC_SELF_RELATIVE | SEC_DESC_DACL_PRESENT; if (!string_to_sid(tmp->owner_sid, "S-1-5-32-544")) goto error; if (!string_to_sid(tmp->grp_sid, "S-1-5-18")) goto error; tmp->sacl = NULL; tmp->dacl = nt_create_default_acl(regf); return tmp; error: if (tmp) nt_delete_sec_desc(tmp); return NULL; } /* * We will implement inheritence that is based on what the parent's SEC_DESC * says, but the Owner and Group SIDs can be overwridden from the command line * and additional ACEs can be applied from the command line etc. */ static KEY_SEC_DESC *nt_inherit_security(struct registry_key *key) { if (!key) return NULL; return key->security; } /* * Create an initial security descriptor and init other structures, if needed * We assume that the initial security stuff is empty ... */ static KEY_SEC_DESC *nt_create_init_sec(struct registry_hive *h) { REGF *regf = h->backend_data; KEY_SEC_DESC *tsec = NULL; tsec = malloc_p(KEY_SEC_DESC); tsec->ref_cnt = 1; tsec->state = SEC_DESC_NBK; tsec->offset = 0; tsec->sec_desc = regf->def_sec_desc; return tsec; } #endif /* * Get the starting record for NT Registry file */ /* * Where we keep all the regf stuff for one registry. * This is the structure that we use to tie the in memory tree etc * together. By keeping separate structs, we can operate on different * registries at the same time. * Currently, the SK_MAP is an array of mapping structure. * Since we only need this on input and output, we fill in the structure * as we go on input. On output, we know how many SK items we have, so * we can allocate the structure as we need to. * If you add stuff here that is dynamically allocated, add the * appropriate free statements below. */ #define REG_HANDLE_REGTYPE_NONE 0 #define REG_HANDLE_REGTYPE_NT 1 #define REG_HANDLE_REGTYPE_W9X 2 #define TTTONTTIME(r, t1, t2) (r)->last_mod_time = (t1) | (((uint64_t)(t2)) << 32) #define REGF_HDR_BLKSIZ 0x1000 #define OFF(f) ((f) + REGF_HDR_BLKSIZ + 4) #define LOCN(base, f) ((base) + OFF(f)) /* Get the header of the registry. Return a pointer to the structure * If the mmap'd area has not been allocated, then mmap the input file */ static REGF_HDR *nt_get_regf_hdr(struct registry_hive *h) { REGF *regf = h->backend_data; SMB_REG_ASSERT(regf); if (!regf->base) { /* Try to mmap etc the file */ if ((regf->fd = open(h->location, O_RDONLY, 0000)) <0) { return NULL; /* What about errors? */ } if (fstat(regf->fd, ®f->sbuf) < 0) { return NULL; } regf->base = mmap(0, regf->sbuf.st_size, PROT_READ, MAP_SHARED, regf->fd, 0); if ((int)regf->base == 1) { DEBUG(0,("Could not mmap file: %s, %s\n", h->location, strerror(errno))); return NULL; } } /* * At this point, regf->base != NULL, and we should be able to read the * header */ SMB_REG_ASSERT(regf->base != NULL); return (REGF_HDR *)regf->base; } /* * Validate a regf header * For now, do nothing, but we should check the checksum */ static int valid_regf_hdr(REGF_HDR *regf_hdr) { if (!regf_hdr) return 0; return 1; } #if 0 /* * Process an SK header ... * Every time we see a new one, add it to the map. Otherwise, just look it up. * We will do a simple linear search for the moment, since many KEYs have the * same security descriptor. * We allocate the map in increments of 10 entries. */ /* * Create a new entry in the map, and increase the size of the map if needed */ static SK_MAP *alloc_sk_map_entry(struct registry_hive *h, KEY_SEC_DESC *tmp, int sk_off) { REGF *regf = h->backend_data; if (!regf->sk_map) { /* Allocate a block of 10 */ regf->sk_map = malloc_array_p(SK_MAP, 10); regf->sk_map_size = 10; regf->sk_count = 1; (regf->sk_map)[0].sk_off = sk_off; (regf->sk_map)[0].key_sec_desc = tmp; } else { /* Simply allocate a new slot, unless we have to expand the list */ int ndx = regf->sk_count; if (regf->sk_count >= regf->sk_map_size) { regf->sk_map = (SK_MAP *)realloc(regf->sk_map, (regf->sk_map_size + 10)*sizeof(SK_MAP)); if (!regf->sk_map) { free(tmp); return NULL; } /* * ndx already points at the first entry of the new block */ regf->sk_map_size += 10; } (regf->sk_map)[ndx].sk_off = sk_off; (regf->sk_map)[ndx].key_sec_desc = tmp; regf->sk_count++; } return regf->sk_map; } /* * Search for a KEY_SEC_DESC in the sk_map, but don't create one if not * found */ KEY_SEC_DESC *lookup_sec_key(SK_MAP *sk_map, int count, int sk_off) { int i; if (!sk_map) return NULL; for (i = 0; i < count; i++) { if (sk_map[i].sk_off == sk_off) return sk_map[i].key_sec_desc; } return NULL; } /* * Allocate a KEY_SEC_DESC if we can't find one in the map */ static KEY_SEC_DESC *lookup_create_sec_key(struct registry_hive *h, SK_MAP *sk_map, int sk_off) { REGF *regf = h->backend_data; KEY_SEC_DESC *tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off); if (tmp) { return tmp; } else { /* Allocate a new one */ tmp = malloc_p(KEY_SEC_DESC); memset(tmp, 0, sizeof(KEY_SEC_DESC)); /* Neatly sets offset to 0 */ tmp->state = SEC_DESC_RES; if (!alloc_sk_map_entry(h, tmp, sk_off)) { return NULL; } return tmp; } } static SEC_DESC *process_sec_desc(struct registry_hive *regf, SEC_DESC *sec_desc) { SEC_DESC *tmp = NULL; tmp = malloc_p(SEC_DESC); tmp->revision = SVAL(&sec_desc->revision,0); tmp->type = SVAL(&sec_desc->type,0); DEBUG(2, ("SEC_DESC Rev: %0X, Type: %0X\n", tmp->revision, tmp->type)); DEBUGADD(2, ("SEC_DESC Owner Off: %0X\n", IVAL(&sec_desc->off_owner_sid,0))); DEBUGADD(2, ("SEC_DESC Group Off: %0X\n", IVAL(&sec_desc->off_grp_sid,0))); DEBUGADD(2, ("SEC_DESC DACL Off: %0X\n", IVAL(&sec_desc->off_dacl,0))); tmp->owner_sid = sid_dup_talloc(regf->mem_ctx, (DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->off_owner_sid,0))); if (!tmp->owner_sid) { free(tmp); return NULL; } tmp->grp_sid = sid_dup_talloc(regf->mem_ctx, (DOM_SID *)((char *)sec_desc + IVAL(&sec_desc->off_grp_sid,0))); if (!tmp->grp_sid) { free(tmp); return NULL; } /* Now pick up the SACL and DACL */ DEBUG(0, ("%d, %d\n", IVAL(&sec_desc->off_sacl,0), IVAL(&sec_desc->off_dacl,0))); if (sec_desc->off_sacl) tmp->sacl = dup_sec_acl(regf->mem_ctx, (SEC_ACL *)((char *)sec_desc + IVAL(&sec_desc->off_sacl,0))); else tmp->sacl = NULL; if (sec_desc->off_dacl) tmp->dacl = dup_sec_acl(regf->mem_ctx, (SEC_ACL *)((char *)sec_desc + IVAL(&sec_desc->off_dacl,0))); else tmp->dacl = NULL; return tmp; } static KEY_SEC_DESC *process_sk(struct registry_hive *regf, SK_HDR *sk_hdr, int sk_off, int size) { KEY_SEC_DESC *tmp = NULL; int sk_next_off, sk_prev_off, sk_size; SEC_DESC *sec_desc; if (!sk_hdr) return NULL; if (SVAL(&sk_hdr->SK_ID,0) != str_to_dword("sk")) { DEBUG(0, ("Unrecognized SK Header ID: %08X, %s\n", (int)sk_hdr, regf->regfile_name)); return NULL; } if (-size < (sk_size = IVAL(&sk_hdr->rec_size,0))) { DEBUG(0, ("Incorrect SK record size: %d vs %d. %s\n", -size, sk_size, regf->regfile_name)); return NULL; } /* * Now, we need to look up the SK Record in the map, and return it * Since the map contains the SK_OFF mapped to KEY_SEC_DESC, we can * use that */ if (regf->sk_map && ((tmp = lookup_sec_key(regf->sk_map, regf->sk_count, sk_off)) != NULL) && (tmp->state == SEC_DESC_OCU)) { tmp->ref_cnt++; return tmp; } /* Here, we have an item in the map that has been reserved, or tmp==NULL. */ SMB_REG_ASSERT(tmp == NULL || (tmp && tmp->state != SEC_DESC_NON)); /* * Now, allocate a KEY_SEC_DESC, and parse the structure here, and add the * new KEY_SEC_DESC to the mapping structure, since the offset supplied is * the actual offset of structure. The same offset will be used by * all future references to this structure * We could put all this unpleasantness in a function. */ if (!tmp) { tmp = malloc_p(KEY_SEC_DESC); memset(tmp, 0, sizeof(KEY_SEC_DESC)); /* * Allocate an entry in the SK_MAP ... * We don't need to free tmp, because that is done for us if the * sm_map entry can't be expanded when we need more space in the map. */ if (!alloc_sk_map_entry(regf, tmp, sk_off)) { return NULL; } } tmp->ref_cnt++; tmp->state = SEC_DESC_OCU; /* * Now, process the actual sec desc and plug the values in */ sec_desc = (SEC_DESC *)&sk_hdr->sec_desc[0]; tmp->sec_desc = process_sec_desc(regf, sec_desc); /* * Now forward and back links. Here we allocate an entry in the sk_map * if it does not exist, and mark it reserved */ sk_prev_off = IVAL(&sk_hdr->prev_off,0); tmp->prev = lookup_create_sec_key(regf, regf->sk_map, sk_prev_off); SMB_REG_ASSERT(tmp->prev != NULL); sk_next_off = IVAL(&sk_hdr->next_off,0); tmp->next = lookup_create_sec_key(regf, regf->sk_map, sk_next_off); SMB_REG_ASSERT(tmp->next != NULL); return tmp; } #endif /* * Process a VK header and return a value */ static WERROR vk_to_val(TALLOC_CTX *mem_ctx, struct registry_key *parent, VK_HDR *vk_hdr, int size, struct registry_value **value) { REGF *regf = parent->hive->backend_data; int nam_len, dat_len, flag, dat_type, dat_off, vk_id; struct registry_value *tmp = NULL; if (!vk_hdr) return WERR_INVALID_PARAM; if ((vk_id = SVAL(&vk_hdr->VK_ID,0)) != str_to_dword("vk")) { DEBUG(0, ("Unrecognized VK header ID: %0X, block: %0X, %s\n", vk_id, (int)vk_hdr, parent->hive->location)); return WERR_GENERAL_FAILURE; } nam_len = SVAL(&vk_hdr->nam_len,0); flag = SVAL(&vk_hdr->flag,0); dat_type = IVAL(&vk_hdr->dat_type,0); dat_len = IVAL(&vk_hdr->dat_len,0); /* If top bit, offset contains data */ dat_off = IVAL(&vk_hdr->dat_off,0); tmp = talloc_p(mem_ctx, struct registry_value); tmp->data_type = dat_type; if (flag & FLAG_HAS_NAME) { tmp->name = talloc_strndup(mem_ctx, vk_hdr->dat_name, nam_len); } else { tmp->name = NULL; } /* * Allocate space and copy the data as a BLOB */ if (dat_len&0x7FFFFFFF) { char *dtmp = (char *)talloc(mem_ctx, dat_len&0x7FFFFFFF); if ((dat_len&0x80000000) == 0) { /* The data is pointed to by the offset */ char *dat_ptr = LOCN(regf->base, dat_off); memcpy(dtmp, dat_ptr, dat_len); } else { /* The data is in the offset or type */ /* * FIXME. * Some registry files seem to have weird fields. If top bit is set, * but len is 0, the type seems to be the value ... * Not sure how to handle this last type for the moment ... */ dat_len = dat_len & 0x7FFFFFFF; memcpy(dtmp, &dat_off, dat_len); } if(tmp->data_type == REG_SZ) { char *ret; dat_len = convert_string_talloc(mem_ctx, CH_UTF16, CH_UNIX, dtmp, dat_len, (void **)&ret); dtmp = ret; } tmp->data_blk = dtmp; tmp->data_len = dat_len; } *value = tmp; return WERR_OK; } #if 0 /* unused */ static BOOL vl_verify(VL_TYPE vl, int count, int size) { if(!vl) return False; if (-size < (count+1)*sizeof(int)){ DEBUG(0, ("Error in VL header format. Size less than space required. %d\n", -size)); return False; } return True; } #endif static WERROR lf_verify(struct registry_hive *h, LF_HDR *lf_hdr, int size) { int lf_id; if ((lf_id = SVAL(&lf_hdr->LF_ID,0)) != str_to_dword("lf")) { DEBUG(0, ("Unrecognized LF Header format: %0X, Block: %0X, %s.\n", lf_id, (int)lf_hdr, h->location)); return WERR_INVALID_PARAM; } return WERR_OK; } static WERROR lf_num_entries(struct registry_hive *h, LF_HDR *lf_hdr, int size, int *count) { WERROR error; error = lf_verify(h, lf_hdr, size); if(!W_ERROR_IS_OK(error)) return error; SMB_REG_ASSERT(size < 0); *count = SVAL(&lf_hdr->key_count,0); DEBUG(2, ("Key Count: %u\n", *count)); if (*count <= 0) return WERR_INVALID_PARAM; return WERR_OK; } static WERROR nk_to_key(TALLOC_CTX *, struct registry_hive *regf, NK_HDR *nk_hdr, int size, struct registry_key *parent, struct registry_key **); /* * Process an LF Header and return a list of sub-keys */ static WERROR lf_get_entry(TALLOC_CTX *mem_ctx, struct registry_key *parent, LF_HDR *lf_hdr, int size, int n, struct registry_key **key) { REGF *regf = parent->hive->backend_data; int count, nk_off; NK_HDR *nk_hdr; WERROR error; if (!lf_hdr) return WERR_INVALID_PARAM; error = lf_verify(parent->hive, lf_hdr, size); if(!W_ERROR_IS_OK(error)) return error; SMB_REG_ASSERT(size < 0); count = SVAL(&lf_hdr->key_count,0); DEBUG(2, ("Key Count: %u\n", count)); if (count <= 0) return WERR_GENERAL_FAILURE; if (n >= count) return WERR_NO_MORE_ITEMS; nk_off = IVAL(&lf_hdr->hr[n].nk_off,0); DEBUG(2, ("NK Offset: %0X\n", nk_off)); nk_hdr = (NK_HDR *)LOCN(regf->base, nk_off); return nk_to_key(mem_ctx, parent->hive, nk_hdr, BLK_SIZE(nk_hdr), parent, key); } static WERROR nk_to_key(TALLOC_CTX *mem_ctx, struct registry_hive *h, NK_HDR *nk_hdr, int size, struct registry_key *parent, struct registry_key **key) { REGF *regf = h->backend_data; struct registry_key *tmp = NULL, *own; int namlen, clsname_len, sk_off, own_off; uint_t nk_id; SK_HDR *sk_hdr; int type; char key_name[1024]; if (!nk_hdr) return WERR_INVALID_PARAM; if ((nk_id = SVAL(&nk_hdr->NK_ID,0)) != str_to_dword("nk")) { DEBUG(0, ("Unrecognized NK Header format: %08X, Block: %0X. %s\n", nk_id, (int)nk_hdr, parent->hive->location)); return WERR_INVALID_PARAM; } SMB_REG_ASSERT(size < 0); namlen = SVAL(&nk_hdr->nam_len,0); clsname_len = SVAL(&nk_hdr->clsnam_len,0); /* * The value of -size should be ge * (sizeof(NK_HDR) - 1 + namlen) * The -1 accounts for the fact that we included the first byte of * the name in the structure. clsname_len is the length of the thing * pointed to by clsnam_off */ if (-size < (sizeof(NK_HDR) - 1 + namlen)) { DEBUG(0, ("Incorrect NK_HDR size: %d, %0X\n", -size, (int)nk_hdr)); DEBUG(0, ("Sizeof NK_HDR: %d, name_len %d, clsname_len %d\n", sizeof(NK_HDR), namlen, clsname_len)); return WERR_GENERAL_FAILURE; } DEBUG(2, ("NK HDR: Name len: %d, class name len: %d\n", namlen, clsname_len)); /* Fish out the key name and process the LF list */ SMB_REG_ASSERT(namlen < sizeof(key_name)); strncpy(key_name, nk_hdr->key_nam, namlen); key_name[namlen] = '\0'; type = (SVAL(&nk_hdr->type,0)==0x2C?REG_ROOT_KEY:REG_SUB_KEY); if(type == REG_ROOT_KEY && parent) { DEBUG(0,("Root key encountered below root level!\n")); return WERR_GENERAL_FAILURE; } tmp = talloc_p(mem_ctx, struct registry_key); tmp->name = talloc_strdup(mem_ctx, key_name); tmp->backend_data = nk_hdr; DEBUG(2, ("Key name: %s\n", key_name)); /* * Fish out the class name, it is in UNICODE, while the key name is * ASCII :-) */ if (clsname_len) { /* Just print in Ascii for now */ void *clsnamep; int clsnam_off; clsnam_off = IVAL(&nk_hdr->clsnam_off,0); clsnamep = LOCN(regf->base, clsnam_off); DEBUG(2, ("Class Name Offset: %0X\n", clsnam_off)); pull_ucs2_talloc(mem_ctx, &tmp->class_name, clsnamep); DEBUGADD(2,(" Class Name: %s\n", tmp->class_name)); } /* * Process the owner offset ... */ own_off = IVAL(&nk_hdr->own_off,0); own = (struct registry_key *)LOCN(regf->base, own_off); DEBUG(2, ("Owner Offset: %0X\n", own_off)); DEBUGADD(2, (" Owner locn: %0X, Our locn: %0X\n", (uint_t)own, (uint_t)nk_hdr)); /* * We should verify that the owner field is correct ... * for now, we don't worry ... */ /* * Also handle the SK header ... */ sk_off = IVAL(&nk_hdr->sk_off,0); sk_hdr = (SK_HDR *)LOCN(regf->base, sk_off); DEBUG(2, ("SK Offset: %0X\n", sk_off)); if (sk_off != -1) { #if 0 tmp->security = process_sk(regf, sk_hdr, sk_off, BLK_SIZE(sk_hdr)); #endif } *key = tmp; return WERR_OK; } #if 0 /* unused */ /* * Allocate a new hbin block, set up the header for the block etc */ static HBIN_BLK *nt_create_hbin_blk(struct registry_hive *h, int size) { REGF *regf = h->backend_data; HBIN_BLK *tmp; HBIN_HDR *hdr; if (!regf || !size) return NULL; /* Round size up to multiple of REGF_HDR_BLKSIZ */ size = (size + (REGF_HDR_BLKSIZ - 1)) & ~(REGF_HDR_BLKSIZ - 1); tmp = malloc_p(HBIN_BLK); memset(tmp, 0, sizeof(HBIN_BLK)); tmp->data = malloc(size); memset(tmp->data, 0, size); /* Make it pristine */ tmp->size = size; /*FIXMEtmp->file_offset = regf->blk_tail->file_offset + regf->blk_tail->size;*/ tmp->free_space = size - (sizeof(HBIN_HDR) - sizeof(HBIN_SUB_HDR)); tmp->fsp_off = size - tmp->free_space; /* * Now, build the header in the data block */ hdr = (HBIN_HDR *)tmp->data; hdr->HBIN_ID = str_to_dword("hbin"); hdr->off_from_first = tmp->file_offset - REGF_HDR_BLKSIZ; hdr->off_to_next = tmp->size; hdr->blk_size = tmp->size; /* * Now link it in */ regf->blk_tail->next = tmp; regf->blk_tail = tmp; if (!regf->free_space) regf->free_space = tmp; return tmp; } /* * Allocate a unit of space ... and return a pointer as function param * and the block's offset as a side effect */ static void *nt_alloc_regf_space(struct registry_hive *h, int size, uint_t *off) { REGF *regf = h->backend_data; int tmp = 0; void *ret = NULL; HBIN_BLK *blk; if (!regf || !size || !off) return NULL; SMB_REG_ASSERT(regf->blk_head != NULL); /* * round up size to include header and then to 8-byte boundary */ size = (size + 4 + 7) & ~7; /* * Check if there is space, if none, grab a block */ if (!regf->free_space) { if (!nt_create_hbin_blk(h, REGF_HDR_BLKSIZ)) return NULL; } /* * Now, chain down the list of blocks looking for free space */ for (blk = regf->free_space; blk != NULL; blk = blk->next) { if (blk->free_space <= size) { tmp = blk->file_offset + blk->fsp_off - REGF_HDR_BLKSIZ; ret = blk->data + blk->fsp_off; blk->free_space -= size; blk->fsp_off += size; /* Insert the header */ ((HBIN_SUB_HDR *)ret)->dblocksize = -size; /* * Fix up the free space ptr * If it is NULL, we fix it up next time */ if (!blk->free_space) regf->free_space = blk->next; *off = tmp; return (((char *)ret)+4);/* The pointer needs to be to the data struct */ } } /* * If we got here, we need to add another block, which might be * larger than one block -- deal with that later */ if (nt_create_hbin_blk(h, REGF_HDR_BLKSIZ)) { blk = regf->free_space; tmp = blk->file_offset + blk->fsp_off - REGF_HDR_BLKSIZ; ret = blk->data + blk->fsp_off; blk->free_space -= size; blk->fsp_off += size; /* Insert the header */ ((HBIN_SUB_HDR *)ret)->dblocksize = -size; /* * Fix up the free space ptr * If it is NULL, we fix it up next time */ if (!blk->free_space) regf->free_space = blk->next; *off = tmp; return (((char *)ret) + 4);/* The pointer needs to be to the data struct */ } return NULL; } /* * Store a SID at the location provided */ static int nt_store_SID(struct registry_hive *regf, DOM_SID *sid, uint8_t *locn) { int i; uint8_t *p = locn; if (!regf || !sid || !locn) return 0; *p = sid->sid_rev_num; p++; *p = sid->num_auths; p++; for (i=0; i < 6; i++) { *p = sid->id_auth[i]; p++; } for (i=0; i < sid->num_auths; i++) { SIVAL(p, 0, sid->sub_auths[i]); p+=4; } return p - locn; } static int nt_store_ace(struct registry_hive *regf, SEC_ACE *ace, uint8_t *locn) { int size = 0; SEC_ACE *reg_ace = (SEC_ACE *)locn; uint8_t *p; if (!regf || !ace || !locn) return 0; reg_ace->type = ace->type; reg_ace->flags = ace->flags; /* Deal with the length when we have stored the SID */ p = (uint8_t *)®_ace->info.mask; SIVAL(p, 0, ace->info.mask); p += 4; size = nt_store_SID(regf, &ace->trustee, p); size += 8; /* Size of the fixed header */ p = (uint8_t *)®_ace->size; SSVAL(p, 0, size); return size; } /* * Store an ACL at the location provided */ static int nt_store_acl(struct registry_hive *regf, SEC_ACL *acl, uint8_t *locn) { int size = 0, i; uint8_t *p = locn, *s; if (!regf || !acl || !locn) return 0; /* * Now store the header and then the ACEs ... */ SSVAL(p, 0, acl->revision); p += 2; s = p; /* Save this for the size field */ p += 2; SIVAL(p, 0, acl->num_aces); p += 4; for (i = 0; i < acl->num_aces; i++) { size = nt_store_ace(regf, &acl->ace[i], p); p += size; } size = s - locn; SSVAL(s, 0, size); return size; } /* * Flatten and store the Sec Desc * Windows lays out the DACL first, but since there is no SACL, it might be * that first, then the owner, then the group SID. So, we do it that way * too. */ static uint_t nt_store_sec_desc(struct registry_hive *regf, SEC_DESC *sd, char *locn) { SEC_DESC *rsd = (SEC_DESC *)locn; uint_t size = 0, off = 0; if (!regf || !sd || !locn) return 0; /* * Now, fill in the first two fields, then lay out the various fields * as needed */ rsd->revision = SEC_DESC_REVISION; rsd->type = SEC_DESC_DACL_PRESENT | SEC_DESC_SELF_RELATIVE; off = 4 * sizeof(DWORD) + 4; if (sd->sacl){ size = nt_store_acl(regf, sd->sacl, (char *)(locn + off)); rsd->off_sacl = off; } else rsd->off_sacl = 0; off += size; if (sd->dacl) { rsd->off_dacl = off; size = nt_store_acl(regf, sd->dacl, (char *)(locn + off)); } else { rsd->off_dacl = 0; } off += size; /* Now the owner and group SIDs */ if (sd->owner_sid) { rsd->off_owner_sid = off; size = nt_store_SID(regf, sd->owner_sid, (char *)(locn + off)); } else { rsd->off_owner_sid = 0; } off += size; if (sd->grp_sid) { rsd->off_grp_sid = off; size = nt_store_SID(regf, sd->grp_sid, (char *)(locn + off)); } else { rsd->off_grp_sid = 0; } off += size; return size; } /* * Store the security information * * If it has already been stored, just get its offset from record * otherwise, store it and record its offset */ static uint_t nt_store_security(struct registry_hive *regf, KEY_SEC_DESC *sec) { int size = 0; uint_t sk_off; SK_HDR *sk_hdr; if (sec->offset) return sec->offset; /* * OK, we don't have this one in the file yet. We must compute the * size taken by the security descriptor as a self-relative SD, which * means making one pass over each structure and figuring it out */ /* FIXME size = sec_desc_size(sec->sec_desc); */ /* Allocate that much space */ sk_hdr = nt_alloc_regf_space(regf, size, &sk_off); sec->sk_hdr = sk_hdr; if (!sk_hdr) return 0; /* Now, lay out the sec_desc in the space provided */ sk_hdr->SK_ID = str_to_dword("sk"); /* * We can't deal with the next and prev offset in the SK_HDRs until the * whole tree has been stored, then we can go and deal with them */ sk_hdr->ref_cnt = sec->ref_cnt; sk_hdr->rec_size = size; /* Is this correct */ /* Now, lay out the sec_desc */ if (!nt_store_sec_desc(regf, sec->sec_desc, (char *)&sk_hdr->sec_desc)) return 0; return sk_off; } /* * Store a KEY in the file ... * * We store this depth first, and defer storing the lf struct until * all the sub-keys have been stored. * * We store the NK hdr, any SK header, class name, and VK structure, then * recurse down the LF structures ... * * We return the offset of the NK struct * FIXME, FIXME, FIXME: Convert to using SIVAL and SSVAL ... */ static int nt_store_reg_key(struct registry_hive *regf, struct registry_key *key) { NK_HDR *nk_hdr; uint_t nk_off, sk_off, size; if (!regf || !key) return 0; size = sizeof(NK_HDR) + strlen(key->name) - 1; nk_hdr = nt_alloc_regf_space(regf, size, &nk_off); if (!nk_hdr) goto error; key->offset = nk_off; /* We will need this later */ /* * Now fill in each field etc ... */ nk_hdr->NK_ID = str_to_dword("nk"); if (key->type == REG_ROOT_KEY) nk_hdr->type = 0x2C; else nk_hdr->type = 0x20; /* FIXME: Fill in the time of last update */ if (key->type != REG_ROOT_KEY) nk_hdr->own_off = key->owner->offset; if (key->sub_keys) nk_hdr->subk_num = key->sub_keys->key_count; /* * Now, process the Sec Desc and then store its offset */ sk_off = nt_store_security(regf, key->security); nk_hdr->sk_off = sk_off; /* * Then, store the val list and store its offset */ if (key->values) { nk_hdr->val_cnt = key->values->val_count; nk_hdr->val_off = nt_store_val_list(regf, key->values); } else { nk_hdr->val_off = -1; nk_hdr->val_cnt = 0; } /* * Finally, store the subkeys, and their offsets */ error: return 0; } /* * Store the registry header ... * We actually create the registry header block and link it to the chain * of output blocks. */ static REGF_HDR *nt_get_reg_header(struct registry_hive *h) { REGF *regf = h->backend_data; HBIN_BLK *tmp = NULL; tmp = malloc_p(HBIN_BLK); memset(tmp, 0, sizeof(HBIN_BLK)); tmp->type = REG_OUTBLK_HDR; tmp->size = REGF_HDR_BLKSIZ; tmp->data = malloc(REGF_HDR_BLKSIZ); if (!tmp->data) goto error; memset(tmp->data, 0, REGF_HDR_BLKSIZ); /* Make it pristine, unlike Windows */ regf->blk_head = regf->blk_tail = tmp; return (REGF_HDR *)tmp->data; error: if (tmp) free(tmp); return NULL; } #endif static WERROR nt_open_hive (struct registry_hive *h, struct registry_key **key) { REGF *regf; REGF_HDR *regf_hdr; uint_t regf_id, hbin_id; HBIN_HDR *hbin_hdr; regf = (REGF *)talloc_p(h, REGF); memset(regf, 0, sizeof(REGF)); regf->owner_sid_str = NULL; /* FIXME: Fill in */ h->backend_data = regf; DEBUG(5, ("Attempting to load registry file\n")); /* Get the header */ if ((regf_hdr = nt_get_regf_hdr(h)) == NULL) { DEBUG(0, ("Unable to get header\n")); return WERR_GENERAL_FAILURE; } /* Now process that header and start to read the rest in */ if ((regf_id = IVAL(®f_hdr->REGF_ID,0)) != str_to_dword("regf")) { DEBUG(0, ("Unrecognized NT registry header id: %0X, %s\n", regf_id, h->location)); return WERR_GENERAL_FAILURE; } /* * Validate the header ... */ if (!valid_regf_hdr(regf_hdr)) { DEBUG(0, ("Registry file header does not validate: %s\n", h->location)); return WERR_GENERAL_FAILURE; } /* Update the last mod date, and then go get the first NK record and on */ TTTONTTIME(regf, IVAL(®f_hdr->tim1,0), IVAL(®f_hdr->tim2,0)); /* * The hbin hdr seems to be just uninteresting garbage. Check that * it is there, but that is all. */ hbin_hdr = (HBIN_HDR *)(regf->base + REGF_HDR_BLKSIZ); if ((hbin_id = IVAL(&hbin_hdr->HBIN_ID,0)) != str_to_dword("hbin")) { DEBUG(0, ("Unrecognized registry hbin hdr ID: %0X, %s\n", hbin_id, h->location)); return WERR_GENERAL_FAILURE; } /* * Get a pointer to the first key from the hreg_hdr */ DEBUG(2, ("First Key: %0X\n", IVAL(®f_hdr->first_key, 0))); regf->first_key = (NK_HDR *)LOCN(regf->base, IVAL(®f_hdr->first_key,0)); DEBUGADD(2, ("First Key Offset: %0X\n", IVAL(®f_hdr->first_key, 0))); DEBUGADD(2, ("Data Block Size: %d\n", IVAL(®f_hdr->dblk_size, 0))); DEBUGADD(2, ("Offset to next hbin block: %0X\n", IVAL(&hbin_hdr->off_to_next, 0))); DEBUGADD(2, ("HBIN block size: %0X\n", IVAL(&hbin_hdr->blk_size, 0))); /* * Unmap the registry file, as we might want to read in another * tree etc. */ h->backend_data = regf; return nk_to_key(h, h, ((REGF *)h->backend_data)->first_key, BLK_SIZE(((REGF *)h->backend_data)->first_key), NULL, key); } static WERROR nt_num_subkeys(struct registry_key *k, int *num) { REGF *regf = k->hive->backend_data; LF_HDR *lf_hdr; int lf_off; NK_HDR *nk_hdr = k->backend_data; lf_off = IVAL(&nk_hdr->lf_off,0); DEBUG(2, ("SubKey list offset: %0X\n", lf_off)); if(lf_off == -1) { *num = 0; return WERR_OK; } lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off); return lf_num_entries(k->hive, lf_hdr, BLK_SIZE(lf_hdr), num); } static WERROR nt_num_values(struct registry_key *k, int *count) { NK_HDR *nk_hdr = k->backend_data; *count = IVAL(&nk_hdr->val_cnt,0); return WERR_OK; } static WERROR nt_value_by_index(TALLOC_CTX *mem_ctx, struct registry_key *k, int n, struct registry_value **value) { VL_TYPE *vl; int val_off, vk_off; int val_count; VK_HDR *vk_hdr; REGF *regf = k->hive->backend_data; NK_HDR *nk_hdr = k->backend_data; val_count = IVAL(&nk_hdr->val_cnt,0); val_off = IVAL(&nk_hdr->val_off,0); vl = (VL_TYPE *)LOCN(regf->base, val_off); DEBUG(2, ("Val List Offset: %0X\n", val_off)); if(n < 0) return WERR_INVALID_PARAM; if(n >= val_count) return WERR_NO_MORE_ITEMS; vk_off = IVAL(&vl[n],0); vk_hdr = (VK_HDR *)LOCN(regf->base, vk_off); return vk_to_val(mem_ctx, k, vk_hdr, BLK_SIZE(vk_hdr), value); } static WERROR nt_key_by_index(TALLOC_CTX *mem_ctx, struct registry_key *k, int n, struct registry_key **subkey) { REGF *regf = k->hive->backend_data; int lf_off; NK_HDR *nk_hdr = k->backend_data; LF_HDR *lf_hdr; lf_off = IVAL(&nk_hdr->lf_off,0); DEBUG(2, ("SubKey list offset: %0X\n", lf_off)); /* * No more subkeys if lf_off == -1 */ if (lf_off != -1) { lf_hdr = (LF_HDR *)LOCN(regf->base, lf_off); return lf_get_entry(mem_ctx, k, lf_hdr, BLK_SIZE(lf_hdr), n, subkey); } return WERR_NO_MORE_ITEMS; } static struct hive_operations reg_backend_nt4 = { .name = "nt4", .open_hive = nt_open_hive, .num_subkeys = nt_num_subkeys, .num_values = nt_num_values, .get_subkey_by_index = nt_key_by_index, .get_value_by_index = nt_value_by_index, /* TODO: .add_key .add_value .del_key .del_value .update_value */ }; NTSTATUS registry_nt4_init(void) { return registry_register(®_backend_nt4); }