/*
Unix SMB/CIFS implementation.
Fire connect requests to a host and a number of ports, with a timeout
between the connect request. Return if the first connect comes back
successfully or return the last error.
Copyright (C) Volker Lendecke 2005
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "includes.h"
#include "lib/socket/socket.h"
#include "lib/events/events.h"
#include "libcli/composite/composite.h"
#include "libcli/resolve/resolve.h"
#include "param/param.h"
#define MULTI_PORT_DELAY 2000 /* microseconds */
/*
overall state
*/
struct connect_multi_state {
const char *server_address;
int num_ports;
uint16_t *ports;
struct socket_context *sock;
uint16_t result_port;
int num_connects_sent, num_connects_recv;
};
/*
state of an individual socket_connect_send() call
*/
struct connect_one_state {
struct composite_context *result;
struct socket_context *sock;
struct socket_address *addr;
};
static void continue_resolve_name(struct composite_context *creq);
static void connect_multi_timer(struct event_context *ev,
struct timed_event *te,
struct timeval tv, void *p);
static void connect_multi_next_socket(struct composite_context *result);
static void continue_one(struct composite_context *creq);
/*
setup an async socket_connect, with multiple ports
*/
_PUBLIC_ struct composite_context *socket_connect_multi_send(
TALLOC_CTX *mem_ctx,
const char *server_address,
int num_server_ports,
uint16_t *server_ports,
struct event_context *event_ctx)
{
struct composite_context *result;
struct connect_multi_state *multi;
int i;
result = talloc_zero(mem_ctx, struct composite_context);
if (result == NULL) return NULL;
result->state = COMPOSITE_STATE_IN_PROGRESS;
result->event_ctx = event_ctx;
multi = talloc_zero(result, struct connect_multi_state);
if (composite_nomem(multi, result)) goto failed;
result->private_data = multi;
multi->server_address = talloc_strdup(multi, server_address);
if (composite_nomem(multi->server_address, result)) goto failed;
multi->num_ports = num_server_ports;
multi->ports = talloc_array(multi, uint16_t, multi->num_ports);
if (composite_nomem(multi->ports, result)) goto failed;
for (i=0; inum_ports; i++) {
multi->ports[i] = server_ports[i];
}
if (!is_ipaddress(server_address)) {
/*
we don't want to do the name resolution separately
for each port, so start it now, then only start on
the real sockets once we have an IP
*/
struct nbt_name name;
struct composite_context *creq;
make_nbt_name_client(&name, server_address);
creq = resolve_name_send(&name, result->event_ctx,
lp_name_resolve_order());
if (composite_nomem(creq, result)) goto failed;
composite_continue(result, creq, continue_resolve_name, result);
return result;
}
/* now we've setup the state we can process the first socket */
connect_multi_next_socket(result);
if (!NT_STATUS_IS_OK(result->status)) {
goto failed;
}
return result;
failed:
composite_error(result, result->status);
return result;
}
/*
start connecting to the next socket/port in the list
*/
static void connect_multi_next_socket(struct composite_context *result)
{
struct connect_multi_state *multi = talloc_get_type(result->private_data,
struct connect_multi_state);
struct connect_one_state *state;
struct composite_context *creq;
int next = multi->num_connects_sent;
if (next == multi->num_ports) {
/* don't do anything, just wait for the existing ones to finish */
return;
}
multi->num_connects_sent += 1;
state = talloc(multi, struct connect_one_state);
if (composite_nomem(state, result)) return;
state->result = result;
result->status = socket_create("ipv4", SOCKET_TYPE_STREAM, &state->sock, 0);
if (!composite_is_ok(result)) return;
/* Form up the particular address we are interested in */
state->addr = socket_address_from_strings(state, state->sock->backend_name,
multi->server_address, multi->ports[next]);
if (composite_nomem(state->addr, result)) return;
talloc_steal(state, state->sock);
creq = socket_connect_send(state->sock, NULL,
state->addr, 0, result->event_ctx);
if (composite_nomem(creq, result)) return;
talloc_steal(state, creq);
composite_continue(result, creq, continue_one, state);
/* if there are more ports to go then setup a timer to fire when we have waited
for a couple of milli-seconds, when that goes off we try the next port regardless
of whether this port has completed */
if (multi->num_ports > multi->num_connects_sent) {
/* note that this timer is a child of the single
connect attempt state, so it will go away when this
request completes */
event_add_timed(result->event_ctx, state,
timeval_current_ofs(0, MULTI_PORT_DELAY),
connect_multi_timer, result);
}
}
/*
a timer has gone off telling us that we should try the next port
*/
static void connect_multi_timer(struct event_context *ev,
struct timed_event *te,
struct timeval tv, void *p)
{
struct composite_context *result = talloc_get_type(p, struct composite_context);
connect_multi_next_socket(result);
}
/*
recv name resolution reply then send the next connect
*/
static void continue_resolve_name(struct composite_context *creq)
{
struct composite_context *result = talloc_get_type(creq->async.private_data,
struct composite_context);
struct connect_multi_state *multi = talloc_get_type(result->private_data,
struct connect_multi_state);
const char *addr;
result->status = resolve_name_recv(creq, multi, &addr);
if (!composite_is_ok(result)) return;
multi->server_address = addr;
connect_multi_next_socket(result);
}
/*
one of our socket_connect_send() calls hash finished. If it got a
connection or there are none left then we are done
*/
static void continue_one(struct composite_context *creq)
{
struct connect_one_state *state = talloc_get_type(creq->async.private_data,
struct connect_one_state);
struct composite_context *result = state->result;
struct connect_multi_state *multi = talloc_get_type(result->private_data,
struct connect_multi_state);
NTSTATUS status;
multi->num_connects_recv++;
status = socket_connect_recv(creq);
if (NT_STATUS_IS_OK(status)) {
multi->sock = talloc_steal(multi, state->sock);
multi->result_port = state->addr->port;
}
talloc_free(state);
if (NT_STATUS_IS_OK(status) ||
multi->num_connects_recv == multi->num_ports) {
result->status = status;
composite_done(result);
return;
}
/* try the next port */
connect_multi_next_socket(result);
}
/*
async recv routine for socket_connect_multi()
*/
_PUBLIC_ NTSTATUS socket_connect_multi_recv(struct composite_context *ctx,
TALLOC_CTX *mem_ctx,
struct socket_context **sock,
uint16_t *port)
{
NTSTATUS status = composite_wait(ctx);
if (NT_STATUS_IS_OK(status)) {
struct connect_multi_state *multi =
talloc_get_type(ctx->private_data,
struct connect_multi_state);
*sock = talloc_steal(mem_ctx, multi->sock);
*port = multi->result_port;
}
talloc_free(ctx);
return status;
}
NTSTATUS socket_connect_multi(TALLOC_CTX *mem_ctx,
const char *server_address,
int num_server_ports, uint16_t *server_ports,
struct event_context *event_ctx,
struct socket_context **result,
uint16_t *result_port)
{
struct composite_context *ctx =
socket_connect_multi_send(mem_ctx, server_address,
num_server_ports, server_ports,
event_ctx);
return socket_connect_multi_recv(ctx, mem_ctx, result, result_port);
}