/* Unix SMB/CIFS implementation. simple SPNEGO routines Copyright (C) Andrew Tridgell 2001 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "includes.h" /* free an asn1 structure */ void asn1_free(ASN1_DATA *data) { talloc_free(data->data); } /* write to the ASN1 buffer, advancing the buffer pointer */ BOOL asn1_write(ASN1_DATA *data, const void *p, int len) { if (data->has_error) return False; if (data->length < data->ofs+len) { uint8_t *newp; newp = talloc_realloc(data->data, data->ofs+len); if (!newp) { asn1_free(data); data->has_error = True; return False; } data->data = newp; data->length = data->ofs+len; } memcpy(data->data + data->ofs, p, len); data->ofs += len; return True; } /* useful fn for writing a uint8_t */ BOOL asn1_write_uint8(ASN1_DATA *data, uint8_t v) { return asn1_write(data, &v, 1); } /* push a tag onto the asn1 data buffer. Used for nested structures */ BOOL asn1_push_tag(ASN1_DATA *data, uint8_t tag) { struct nesting *nesting; asn1_write_uint8(data, tag); nesting = talloc_p(NULL, struct nesting); if (!nesting) { data->has_error = True; return False; } nesting->start = data->ofs; nesting->next = data->nesting; data->nesting = nesting; return asn1_write_uint8(data, 0xff); } /* pop a tag */ BOOL asn1_pop_tag(ASN1_DATA *data) { struct nesting *nesting; size_t len; nesting = data->nesting; if (!nesting) { data->has_error = True; return False; } len = data->ofs - (nesting->start+1); /* yes, this is ugly. We don't know in advance how many bytes the length of a tag will take, so we assumed 1 byte. If we were wrong then we need to correct our mistake */ if (len > 255) { data->data[nesting->start] = 0x82; if (!asn1_write_uint8(data, 0)) return False; if (!asn1_write_uint8(data, 0)) return False; memmove(data->data+nesting->start+3, data->data+nesting->start+1, len); data->data[nesting->start+1] = len>>8; data->data[nesting->start+2] = len&0xff; } else if (len > 127) { data->data[nesting->start] = 0x81; if (!asn1_write_uint8(data, 0)) return False; memmove(data->data+nesting->start+2, data->data+nesting->start+1, len); data->data[nesting->start+1] = len; } else { data->data[nesting->start] = len; } data->nesting = nesting->next; talloc_free(nesting); return True; } /* "i" is the one's complement representation, as is the normal result of an * implicit signed->unsigned conversion */ static void push_int_bigendian(ASN1_DATA *data, unsigned int i, BOOL negative) { uint8_t lowest = i & 0xFF; i = i >> 8; if (i != 0) push_int_bigendian(data, i, negative); if (data->nesting->start+1 == data->ofs) { /* We did not write anything yet, looking at the highest * valued byte */ if (negative) { /* Don't write leading 0xff's */ if (lowest == 0xFF) return; if ((lowest & 0x80) == 0) { /* The only exception for a leading 0xff is if * the highest bit is 0, which would indicate * a positive value */ asn1_write_uint8(data, 0xff); } } else { if (lowest & 0x80) { /* The highest bit of a positive integer is 1, * this would indicate a negative number. Push * a 0 to indicate a positive one */ asn1_write_uint8(data, 0); } } } asn1_write_uint8(data, lowest); } /* write an integer */ BOOL asn1_write_Integer(ASN1_DATA *data, int i) { if (!asn1_push_tag(data, ASN1_INTEGER)) return False; if (i == -1) { /* -1 is special as it consists of all-0xff bytes. In push_int_bigendian this is the only case that is not properly handled, as all 0xff bytes would be handled as leading ones to be ignored. */ asn1_write_uint8(data, 0xff); } else { push_int_bigendian(data, i, i<0); } return asn1_pop_tag(data); } /* write an object ID to a ASN1 buffer */ BOOL asn1_write_OID(ASN1_DATA *data, const char *OID) { uint_t v, v2; const char *p = (const char *)OID; char *newp; if (!asn1_push_tag(data, ASN1_OID)) return False; v = strtol(p, &newp, 10); p = newp; v2 = strtol(p, &newp, 10); p = newp; if (!asn1_write_uint8(data, 40*v + v2)) return False; while (*p) { v = strtol(p, &newp, 10); p = newp; if (v >= (1<<28)) asn1_write_uint8(data, 0x80 | ((v>>28)&0xff)); if (v >= (1<<21)) asn1_write_uint8(data, 0x80 | ((v>>21)&0xff)); if (v >= (1<<14)) asn1_write_uint8(data, 0x80 | ((v>>14)&0xff)); if (v >= (1<<7)) asn1_write_uint8(data, 0x80 | ((v>>7)&0xff)); if (!asn1_write_uint8(data, v&0x7f)) return False; } return asn1_pop_tag(data); } /* write an octet string */ BOOL asn1_write_OctetString(ASN1_DATA *data, const void *p, size_t length) { asn1_push_tag(data, ASN1_OCTET_STRING); asn1_write(data, p, length); asn1_pop_tag(data); return !data->has_error; } /* write a general string */ BOOL asn1_write_GeneralString(ASN1_DATA *data, const char *s) { asn1_push_tag(data, ASN1_GENERAL_STRING); asn1_write(data, s, strlen(s)); asn1_pop_tag(data); return !data->has_error; } BOOL asn1_write_ContextSimple(ASN1_DATA *data, uint8_t num, DATA_BLOB *blob) { asn1_push_tag(data, ASN1_CONTEXT_SIMPLE(num)); asn1_write(data, blob->data, blob->length); asn1_pop_tag(data); return !data->has_error; } /* write a BOOLEAN */ BOOL asn1_write_BOOLEAN(ASN1_DATA *data, BOOL v) { asn1_push_tag(data, ASN1_BOOLEAN); asn1_write_uint8(data, v ? 0xFF : 0); asn1_pop_tag(data); return !data->has_error; } BOOL asn1_read_BOOLEAN(ASN1_DATA *data, BOOL *v) { asn1_start_tag(data, ASN1_BOOLEAN); asn1_read_uint8(data, (uint8 *)v); asn1_end_tag(data); return !data->has_error; } /* check a BOOLEAN */ BOOL asn1_check_BOOLEAN(ASN1_DATA *data, BOOL v) { uint8_t b = 0; asn1_read_uint8(data, &b); if (b != ASN1_BOOLEAN) { data->has_error = True; return False; } asn1_read_uint8(data, &b); if (b != v) { data->has_error = True; return False; } return !data->has_error; } /* load a ASN1_DATA structure with a lump of data, ready to be parsed */ BOOL asn1_load(ASN1_DATA *data, DATA_BLOB blob) { ZERO_STRUCTP(data); data->data = talloc_memdup(NULL, blob.data, blob.length); if (!data->data) { data->has_error = True; return False; } data->length = blob.length; return True; } /* Peek into an ASN1 buffer, not advancing the pointer */ BOOL asn1_peek(ASN1_DATA *data, void *p, int len) { if (len < 0 || data->ofs + len < data->ofs || data->ofs + len < len) return False; if (data->ofs + len > data->length) return False; memcpy(p, data->data + data->ofs, len); return True; } /* read from a ASN1 buffer, advancing the buffer pointer */ BOOL asn1_read(ASN1_DATA *data, void *p, int len) { if (!asn1_peek(data, p, len)) { data->has_error = True; return False; } data->ofs += len; return True; } /* read a uint8_t from a ASN1 buffer */ BOOL asn1_read_uint8(ASN1_DATA *data, uint8_t *v) { return asn1_read(data, v, 1); } BOOL asn1_peek_uint8(ASN1_DATA *data, uint8_t *v) { return asn1_peek(data, v, 1); } BOOL asn1_peek_tag(ASN1_DATA *data, uint8_t tag) { uint8_t b; if (asn1_tag_remaining(data) <= 0) { return False; } if (!asn1_peek(data, &b, sizeof(b))) return False; return (b == tag); } /* start reading a nested asn1 structure */ BOOL asn1_start_tag(ASN1_DATA *data, uint8_t tag) { uint8_t b; struct nesting *nesting; if (!asn1_read_uint8(data, &b)) return False; if (b != tag) { data->has_error = True; return False; } nesting = talloc_p(NULL, struct nesting); if (!nesting) { data->has_error = True; return False; } if (!asn1_read_uint8(data, &b)) { return False; } if (b & 0x80) { int n = b & 0x7f; if (!asn1_read_uint8(data, &b)) return False; nesting->taglen = b; while (n > 1) { if (!asn1_read_uint8(data, &b)) return False; nesting->taglen = (nesting->taglen << 8) | b; n--; } } else { nesting->taglen = b; } nesting->start = data->ofs; nesting->next = data->nesting; data->nesting = nesting; return !data->has_error; } static BOOL read_one_uint8(int sock, uint8_t *result, ASN1_DATA *data, const struct timeval *endtime) { if (read_data_until(sock, result, 1, endtime) != 1) return False; return asn1_write(data, result, 1); } /* Read a complete ASN sequence (ie LDAP result) from a socket */ BOOL asn1_read_sequence_until(int sock, ASN1_DATA *data, const struct timeval *endtime) { uint8_t b; size_t len; char *buf; ZERO_STRUCTP(data); if (!read_one_uint8(sock, &b, data, endtime)) return False; if (b != 0x30) { data->has_error = True; return False; } if (!read_one_uint8(sock, &b, data, endtime)) return False; if (b & 0x80) { int n = b & 0x7f; if (!read_one_uint8(sock, &b, data, endtime)) return False; len = b; while (n > 1) { if (!read_one_uint8(sock, &b, data, endtime)) return False; len = (len<<8) | b; n--; } } else { len = b; } buf = talloc(NULL, len); if (buf == NULL) return False; if (read_data_until(sock, buf, len, endtime) != len) return False; if (!asn1_write(data, buf, len)) return False; talloc_free(buf); data->ofs = 0; return True; } /* Get the length to be expected in buf */ BOOL asn1_object_length(uint8_t *buf, size_t buf_length, uint8_t tag, size_t *result) { ASN1_DATA data; /* Fake the asn1_load to avoid the memdup, this is just to be able to * re-use the length-reading in asn1_start_tag */ ZERO_STRUCT(data); data.data = buf; data.length = buf_length; if (!asn1_start_tag(&data, tag)) return False; *result = asn1_tag_remaining(&data)+data.ofs; /* We can't use asn1_end_tag here, as we did not consume the complete * tag, so asn1_end_tag would flag an error and not free nesting */ talloc_free(data.nesting); return True; } /* stop reading a tag */ BOOL asn1_end_tag(ASN1_DATA *data) { struct nesting *nesting; /* make sure we read it all */ if (asn1_tag_remaining(data) != 0) { data->has_error = True; return False; } nesting = data->nesting; if (!nesting) { data->has_error = True; return False; } data->nesting = nesting->next; talloc_free(nesting); return True; } /* work out how many bytes are left in this nested tag */ int asn1_tag_remaining(ASN1_DATA *data) { if (!data->nesting) { data->has_error = True; return -1; } return data->nesting->taglen - (data->ofs - data->nesting->start); } /* read an object ID from a ASN1 buffer */ BOOL asn1_read_OID(ASN1_DATA *data, char **OID) { uint8_t b; char *tmp_oid = NULL; if (!asn1_start_tag(data, ASN1_OID)) return False; asn1_read_uint8(data, &b); tmp_oid = talloc_asprintf(NULL, "%u", b/40); tmp_oid = talloc_asprintf_append(tmp_oid, " %u", b%40); while (!data->has_error && asn1_tag_remaining(data) > 0) { uint_t v = 0; do { asn1_read_uint8(data, &b); v = (v<<7) | (b&0x7f); } while (!data->has_error && b & 0x80); tmp_oid = talloc_asprintf_append(tmp_oid, " %u", v); } asn1_end_tag(data); *OID = talloc_strdup(NULL, tmp_oid); talloc_free(tmp_oid); return (*OID && !data->has_error); } /* check that the next object ID is correct */ BOOL asn1_check_OID(ASN1_DATA *data, const char *OID) { char *id; if (!asn1_read_OID(data, &id)) return False; if (strcmp(id, OID) != 0) { data->has_error = True; return False; } talloc_free(id); return True; } /* read a GeneralString from a ASN1 buffer */ BOOL asn1_read_GeneralString(ASN1_DATA *data, char **s) { int len; if (!asn1_start_tag(data, ASN1_GENERAL_STRING)) return False; len = asn1_tag_remaining(data); if (len < 0) { data->has_error = True; return False; } *s = talloc(NULL, len+1); if (! *s) { data->has_error = True; return False; } asn1_read(data, *s, len); (*s)[len] = 0; asn1_end_tag(data); return !data->has_error; } /* read a octet string blob */ BOOL asn1_read_OctetString(ASN1_DATA *data, DATA_BLOB *blob) { int len; ZERO_STRUCTP(blob); if (!asn1_start_tag(data, ASN1_OCTET_STRING)) return False; len = asn1_tag_remaining(data); if (len < 0) { data->has_error = True; return False; } *blob = data_blob(NULL, len); asn1_read(data, blob->data, len); asn1_end_tag(data); return !data->has_error; } BOOL asn1_read_ContextSimple(ASN1_DATA *data, uint8_t num, DATA_BLOB *blob) { int len; ZERO_STRUCTP(blob); if (!asn1_start_tag(data, ASN1_CONTEXT_SIMPLE(num))) return False; len = asn1_tag_remaining(data); if (len < 0) { data->has_error = True; return False; } *blob = data_blob(NULL, len); asn1_read(data, blob->data, len); asn1_end_tag(data); return !data->has_error; } /* read an interger */ BOOL asn1_read_Integer(ASN1_DATA *data, int *i) { uint8_t b; *i = 0; if (!asn1_start_tag(data, ASN1_INTEGER)) return False; while (asn1_tag_remaining(data)>0) { asn1_read_uint8(data, &b); *i = (*i << 8) + b; } return asn1_end_tag(data); } /* read an interger */ BOOL asn1_read_enumerated(ASN1_DATA *data, int *v) { *v = 0; if (!asn1_start_tag(data, ASN1_ENUMERATED)) return False; while (asn1_tag_remaining(data)>0) { uint8_t b; asn1_read_uint8(data, &b); *v = (*v << 8) + b; } return asn1_end_tag(data); } /* check a enumarted value is correct */ BOOL asn1_check_enumerated(ASN1_DATA *data, int v) { uint8_t b; if (!asn1_start_tag(data, ASN1_ENUMERATED)) return False; asn1_read_uint8(data, &b); asn1_end_tag(data); if (v != b) data->has_error = False; return !data->has_error; } /* write an enumarted value to the stream */ BOOL asn1_write_enumerated(ASN1_DATA *data, uint8_t v) { if (!asn1_push_tag(data, ASN1_ENUMERATED)) return False; asn1_write_uint8(data, v); asn1_pop_tag(data); return !data->has_error; }