/* Unix SMB/CIFS implementation. raw dcerpc operations Copyright (C) Tim Potter 2003 Copyright (C) Andrew Tridgell 2003 This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "includes.h" /* initialise a dcerpc pipe. This currently assumes a SMB named pipe transport */ struct dcerpc_pipe *dcerpc_pipe_init(struct cli_tree *tree) { struct dcerpc_pipe *p; TALLOC_CTX *mem_ctx = talloc_init("dcerpc_tree"); if (mem_ctx == NULL) return NULL; p = talloc(mem_ctx, sizeof(*p)); if (!p) { talloc_destroy(mem_ctx); return NULL; } p->reference_count = 0; p->mem_ctx = mem_ctx; p->tree = tree; p->tree->reference_count++; p->call_id = 1; p->fnum = 0; return p; } /* close down a dcerpc over SMB pipe */ void dcerpc_pipe_close(struct dcerpc_pipe *p) { if (!p) return; p->reference_count--; if (p->reference_count <= 0) { cli_tree_close(p->tree); talloc_destroy(p->mem_ctx); } } #define BLOB_CHECK_BOUNDS(blob, offset, len) do { \ if ((offset) > blob->length || (blob->length - (offset) < (len))) { \ return NT_STATUS_INVALID_PARAMETER; \ } \ } while (0) #define DCERPC_ALIGN(offset, n) do { \ (offset) = ((offset) + ((n)-1)) & ~((n)-1); \ } while (0) /* pull a wire format uuid into a string. This will consume 16 bytes */ static char *dcerpc_pull_uuid(char *data, TALLOC_CTX *mem_ctx) { uint32 time_low; uint16 time_mid, time_hi_and_version; uint8 clock_seq_hi_and_reserved; uint8 clock_seq_low; uint8 node[6]; int i; time_low = IVAL(data, 0); time_mid = SVAL(data, 4); time_hi_and_version = SVAL(data, 6); clock_seq_hi_and_reserved = CVAL(data, 8); clock_seq_low = CVAL(data, 9); for (i=0;i<6;i++) { node[i] = CVAL(data, 10 + i); } return talloc_asprintf(mem_ctx, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", time_low, time_mid, time_hi_and_version, clock_seq_hi_and_reserved, clock_seq_low, node[0], node[1], node[2], node[3], node[4], node[5]); } /* push a uuid_str into wire format. It will consume 16 bytes */ static NTSTATUS push_uuid_str(char *data, const char *uuid_str) { uint32 time_low; uint32 time_mid, time_hi_and_version; uint32 clock_seq_hi_and_reserved; uint32 clock_seq_low; uint32 node[6]; int i; if (11 != sscanf(uuid_str, "%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", &time_low, &time_mid, &time_hi_and_version, &clock_seq_hi_and_reserved, &clock_seq_low, &node[0], &node[1], &node[2], &node[3], &node[4], &node[5])) { return NT_STATUS_INVALID_PARAMETER; } SIVAL(data, 0, time_low); SSVAL(data, 4, time_mid); SSVAL(data, 6, time_hi_and_version); SCVAL(data, 8, clock_seq_hi_and_reserved); SCVAL(data, 9, clock_seq_low); for (i=0;i<6;i++) { SCVAL(data, 10 + i, node[i]); } return NT_STATUS_OK; } /* pull a dcerpc syntax id from a blob */ static NTSTATUS dcerpc_pull_syntax_id(DATA_BLOB *blob, TALLOC_CTX *mem_ctx, uint32 *offset, struct dcerpc_syntax_id *syntax) { syntax->uuid_str = dcerpc_pull_uuid(blob->data + (*offset), mem_ctx); if (!syntax->uuid_str) { return NT_STATUS_NO_MEMORY; } (*offset) += 16; syntax->if_version = IVAL(blob->data, *offset); (*offset) += 4; return NT_STATUS_OK; } /* push a syntax id onto the wire. It will consume 20 bytes */ static NTSTATUS push_syntax_id(char *data, const struct dcerpc_syntax_id *syntax) { NTSTATUS status; status = push_uuid_str(data, syntax->uuid_str); SIVAL(data, 16, syntax->if_version); return status; } /* pull an auth verifier from a packet */ static NTSTATUS dcerpc_pull_auth_verifier(DATA_BLOB *blob, TALLOC_CTX *mem_ctx, uint32 *offset, struct dcerpc_hdr *hdr, DATA_BLOB *auth) { if (hdr->auth_length == 0) { return NT_STATUS_OK; } BLOB_CHECK_BOUNDS(blob, *offset, hdr->auth_length); *auth = data_blob_talloc(mem_ctx, blob->data + (*offset), hdr->auth_length); if (!auth->data) { return NT_STATUS_NO_MEMORY; } (*offset) += hdr->auth_length; return NT_STATUS_OK; } /* parse a struct dcerpc_response */ static NTSTATUS dcerpc_pull_response(DATA_BLOB *blob, TALLOC_CTX *mem_ctx, uint32 *offset, struct dcerpc_hdr *hdr, struct dcerpc_response *pkt) { uint32 stub_len; BLOB_CHECK_BOUNDS(blob, *offset, 8); pkt->alloc_hint = IVAL(blob->data, (*offset) + 0); pkt->context_id = SVAL(blob->data, (*offset) + 4); pkt->cancel_count = CVAL(blob->data, (*offset) + 6); (*offset) += 8; stub_len = blob->length - ((*offset) + hdr->auth_length); BLOB_CHECK_BOUNDS(blob, *offset, stub_len); pkt->stub_data = data_blob_talloc(mem_ctx, blob->data + (*offset), stub_len); if (stub_len != 0 && !pkt->stub_data.data) { return NT_STATUS_NO_MEMORY; } (*offset) += stub_len; return dcerpc_pull_auth_verifier(blob, mem_ctx, offset, hdr, &pkt->auth_verifier); } /* parse a struct bind_ack */ static NTSTATUS dcerpc_pull_bind_ack(DATA_BLOB *blob, TALLOC_CTX *mem_ctx, uint32 *offset, struct dcerpc_hdr *hdr, struct dcerpc_bind_ack *pkt) { uint16 len; int i; BLOB_CHECK_BOUNDS(blob, *offset, 10); pkt->max_xmit_frag = SVAL(blob->data, (*offset) + 0); pkt->max_recv_frag = SVAL(blob->data, (*offset) + 2); pkt->assoc_group_id = IVAL(blob->data, (*offset) + 4); len = SVAL(blob->data, (*offset) + 8); (*offset) += 10; if (len) { BLOB_CHECK_BOUNDS(blob, *offset, len); pkt->secondary_address = talloc_strndup(mem_ctx, blob->data + (*offset), len); if (!pkt->secondary_address) { return NT_STATUS_NO_MEMORY; } (*offset) += len; } DCERPC_ALIGN(*offset, 4); BLOB_CHECK_BOUNDS(blob, *offset, 4); pkt->num_results = CVAL(blob->data, *offset); (*offset) += 4; if (pkt->num_results > 0) { pkt->ctx_list = talloc(mem_ctx, sizeof(pkt->ctx_list[0]) * pkt->num_results); if (!pkt->ctx_list) { return NT_STATUS_NO_MEMORY; } } for (i=0;inum_results;i++) { NTSTATUS status; BLOB_CHECK_BOUNDS(blob, *offset, 24); pkt->ctx_list[i].result = SVAL(blob->data, *offset); pkt->ctx_list[i].reason = SVAL(blob->data, 2 + *offset); (*offset) += 4; status = dcerpc_pull_syntax_id(blob, mem_ctx, offset, &pkt->ctx_list[i].syntax); if (!NT_STATUS_IS_OK(status)) { return status; } } return dcerpc_pull_auth_verifier(blob, mem_ctx, offset, hdr, &pkt->auth_verifier); } /* parse a dcerpc header */ static NTSTATUS dcerpc_pull_hdr(DATA_BLOB *blob, uint32 *offset, struct dcerpc_hdr *hdr) { BLOB_CHECK_BOUNDS(blob, *offset, 16); hdr->rpc_vers = CVAL(blob->data, (*offset) + 0); hdr->rpc_vers_minor = CVAL(blob->data, (*offset) + 1); hdr->ptype = CVAL(blob->data, (*offset) + 2); hdr->pfc_flags = CVAL(blob->data, (*offset) + 3); memcpy(hdr->drep, blob->data + (*offset) + 4, 4); hdr->frag_length = SVAL(blob->data, (*offset) + 8); hdr->auth_length = SVAL(blob->data, (*offset) + 10); hdr->call_id = IVAL(blob->data, (*offset) + 12); (*offset) += 16; return NT_STATUS_OK; } /* parse a dcerpc header. It consumes 16 bytes */ static void dcerpc_push_hdr(char *data, struct dcerpc_hdr *hdr) { SCVAL(data, 0, hdr->rpc_vers); SCVAL(data, 1, hdr->rpc_vers_minor); SCVAL(data, 2, hdr->ptype); SCVAL(data, 3, hdr->pfc_flags); memcpy(data + 4, hdr->drep, 4); SSVAL(data, 8, hdr->frag_length); SSVAL(data, 12, hdr->call_id); } /* parse a data blob into a dcerpc_packet structure. This handles both input and output packets */ NTSTATUS dcerpc_pull(DATA_BLOB *blob, TALLOC_CTX *mem_ctx, struct dcerpc_packet *pkt) { NTSTATUS status; uint32 offset = 0; status = dcerpc_pull_hdr(blob, &offset, &pkt->hdr); if (!NT_STATUS_IS_OK(status)) { return status; } switch (pkt->hdr.ptype) { case DCERPC_PKT_BIND_ACK: status = dcerpc_pull_bind_ack(blob, mem_ctx, &offset, &pkt->hdr, &pkt->out.bind_ack); if (!NT_STATUS_IS_OK(status)) { return status; } break; case DCERPC_PKT_RESPONSE: status = dcerpc_pull_response(blob, mem_ctx, &offset, &pkt->hdr, &pkt->out.response); if (!NT_STATUS_IS_OK(status)) { return status; } break; default: return NT_STATUS_NET_WRITE_FAULT; } return status; } /* push a dcerpc_bind into a blob */ static NTSTATUS dcerpc_push_bind(DATA_BLOB *blob, uint32 *offset, struct dcerpc_hdr *hdr, struct dcerpc_bind *pkt) { int i, j; SSVAL(blob->data, (*offset) + 0, pkt->max_xmit_frag); SSVAL(blob->data, (*offset) + 2, pkt->max_recv_frag); SIVAL(blob->data, (*offset) + 4, pkt->assoc_group_id); SCVAL(blob->data, (*offset) + 8, pkt->num_contexts); (*offset) += 12; for (i=0;inum_contexts;i++) { NTSTATUS status; SSVAL(blob->data, (*offset) + 0, pkt->ctx_list[i].context_id); SCVAL(blob->data, (*offset) + 2, pkt->ctx_list[i].num_transfer_syntaxes); status = push_syntax_id(blob->data + (*offset) + 4, &pkt->ctx_list[i].abstract_syntax); if (!NT_STATUS_IS_OK(status)) { return status; } (*offset) += 24; for (j=0;jctx_list[i].num_transfer_syntaxes;j++) { status = push_syntax_id(blob->data + (*offset), &pkt->ctx_list[i].transfer_syntaxes[j]); if (!NT_STATUS_IS_OK(status)) { return status; } (*offset) += 20; } } return NT_STATUS_OK; } /* push a dcerpc_request into a blob */ static NTSTATUS dcerpc_push_request(DATA_BLOB *blob, uint32 *offset, struct dcerpc_hdr *hdr, struct dcerpc_request *pkt) { SIVAL(blob->data, (*offset) + 0, pkt->alloc_hint); SSVAL(blob->data, (*offset) + 4, pkt->context_id); SSVAL(blob->data, (*offset) + 6, pkt->opnum); (*offset) += 8; memcpy(blob->data + (*offset), pkt->stub_data.data, pkt->stub_data.length); (*offset) += pkt->stub_data.length; memcpy(blob->data + (*offset), pkt->auth_verifier.data, pkt->auth_verifier.length); (*offset) += pkt->auth_verifier.length; return NT_STATUS_OK; } /* work out the wire size of a dcerpc packet */ static uint32 dcerpc_wire_size(struct dcerpc_packet *pkt) { int i; uint32 size = 0; size += 16; /* header */ switch (pkt->hdr.ptype) { case DCERPC_PKT_REQUEST: size += 8; size += pkt->in.request.stub_data.length; size += pkt->in.request.auth_verifier.length; break; case DCERPC_PKT_RESPONSE: size += 8; size += pkt->out.response.stub_data.length; size += pkt->hdr.auth_length; break; case DCERPC_PKT_BIND: size += 12; for (i=0;iin.bind.num_contexts;i++) { size += 24; size += pkt->in.bind.ctx_list[i].num_transfer_syntaxes * 20; } size += pkt->hdr.auth_length; break; case DCERPC_PKT_BIND_ACK: size += 10; if (pkt->out.bind_ack.secondary_address) { size += strlen(pkt->out.bind_ack.secondary_address) + 1; } size += 4; size += pkt->out.bind_ack.num_results * 24; size += pkt->hdr.auth_length; break; } return size; } /* push a dcerpc_packet into a blob. This handles both input and output packets */ NTSTATUS dcerpc_push(DATA_BLOB *blob, TALLOC_CTX *mem_ctx, struct dcerpc_packet *pkt) { uint32 offset = 0; uint32 wire_size; NTSTATUS status; /* work out how big the packet will be on the wire */ wire_size = dcerpc_wire_size(pkt); (*blob) = data_blob_talloc(mem_ctx, NULL, wire_size); if (!blob->data) { return NT_STATUS_NO_MEMORY; } pkt->hdr.frag_length = wire_size; dcerpc_push_hdr(blob->data + offset, &pkt->hdr); offset += 16; switch (pkt->hdr.ptype) { case DCERPC_PKT_BIND: status = dcerpc_push_bind(blob, &offset, &pkt->hdr, &pkt->in.bind); break; case DCERPC_PKT_REQUEST: status = dcerpc_push_request(blob, &offset, &pkt->hdr, &pkt->in.request); break; default: status = NT_STATUS_NET_WRITE_FAULT; } return status; } /* fill in the fixed values in a dcerpc header */ static void init_dcerpc_hdr(struct dcerpc_hdr *hdr) { hdr->rpc_vers = 5; hdr->rpc_vers_minor = 0; hdr->drep[0] = 0x10; /* Little endian */ hdr->drep[1] = 0; hdr->drep[2] = 0; hdr->drep[3] = 0; } /* perform a bind using the given syntax */ NTSTATUS dcerpc_bind(struct dcerpc_pipe *p, const struct dcerpc_syntax_id *syntax, const struct dcerpc_syntax_id *transfer_syntax) { TALLOC_CTX *mem_ctx; struct dcerpc_packet pkt; NTSTATUS status; DATA_BLOB blob; DATA_BLOB blob_out; mem_ctx = talloc_init("dcerpc_bind"); if (!mem_ctx) { return NT_STATUS_NO_MEMORY; } init_dcerpc_hdr(&pkt.hdr); pkt.hdr.ptype = DCERPC_PKT_BIND; pkt.hdr.pfc_flags = DCERPC_PFC_FLAG_FIRST | DCERPC_PFC_FLAG_LAST; pkt.hdr.call_id = p->call_id++; pkt.hdr.auth_length = 0; pkt.in.bind.max_xmit_frag = 0x2000; pkt.in.bind.max_recv_frag = 0x2000; pkt.in.bind.assoc_group_id = 0; pkt.in.bind.num_contexts = 1; pkt.in.bind.ctx_list = talloc(mem_ctx, sizeof(pkt.in.bind.ctx_list[0])); if (!pkt.in.bind.ctx_list) { talloc_destroy(mem_ctx); return NT_STATUS_NO_MEMORY; } pkt.in.bind.ctx_list[0].context_id = 0; pkt.in.bind.ctx_list[0].num_transfer_syntaxes = 1; pkt.in.bind.ctx_list[0].abstract_syntax = *syntax; pkt.in.bind.ctx_list[0].transfer_syntaxes = transfer_syntax; pkt.in.bind.auth_verifier = data_blob(NULL, 0); status = dcerpc_push(&blob, mem_ctx, &pkt); if (!NT_STATUS_IS_OK(status)) { talloc_destroy(mem_ctx); return status; } status = dcerpc_raw_packet(p, mem_ctx, &blob, &blob_out); if (!NT_STATUS_IS_OK(status)) { talloc_destroy(mem_ctx); return status; } status = dcerpc_pull(&blob_out, mem_ctx, &pkt); if (!NT_STATUS_IS_OK(status)) { talloc_destroy(mem_ctx); return status; } if (pkt.hdr.ptype != DCERPC_PKT_BIND_ACK || pkt.out.bind_ack.num_results == 0 || pkt.out.bind_ack.ctx_list[0].result != 0) { status = NT_STATUS_UNSUCCESSFUL; } p->srv_max_xmit_frag = pkt.out.bind_ack.max_xmit_frag; p->srv_max_recv_frag = pkt.out.bind_ack.max_recv_frag; talloc_destroy(mem_ctx); return status; } /* Perform a bind using the given UUID and version */ NTSTATUS dcerpc_bind_byuuid(struct dcerpc_pipe *p, const char *uuid, unsigned version) { struct dcerpc_syntax_id syntax; struct dcerpc_syntax_id transfer_syntax; syntax.uuid_str = uuid; syntax.if_version = version; transfer_syntax.uuid_str = "8a885d04-1ceb-11c9-9fe8-08002b104860"; transfer_syntax.if_version = 2; return dcerpc_bind(p, &syntax, &transfer_syntax); } /* perform a full request/response pair on a dcerpc pipe */ NTSTATUS dcerpc_request(struct dcerpc_pipe *p, uint16 opnum, TALLOC_CTX *mem_ctx, DATA_BLOB *stub_data_in, DATA_BLOB *stub_data_out) { struct dcerpc_packet pkt; NTSTATUS status; DATA_BLOB blob_in, blob_out, payload; uint32 remaining, chunk_size; init_dcerpc_hdr(&pkt.hdr); remaining = stub_data_in->length; /* we can write a full max_recv_frag size, minus the dcerpc request header size */ chunk_size = p->srv_max_recv_frag - 24; pkt.hdr.ptype = DCERPC_PKT_REQUEST; pkt.hdr.call_id = p->call_id++; pkt.hdr.auth_length = 0; pkt.in.request.alloc_hint = remaining; pkt.in.request.context_id = 0; pkt.in.request.opnum = opnum; pkt.in.request.auth_verifier = data_blob(NULL, 0); /* we send a series of pdus without waiting for a reply until the last pdu */ while (remaining > chunk_size) { if (remaining == stub_data_in->length) { pkt.hdr.pfc_flags = DCERPC_PFC_FLAG_FIRST; } else { pkt.hdr.pfc_flags = 0; } pkt.in.request.stub_data.data = stub_data_in->data + (stub_data_in->length - remaining); pkt.in.request.stub_data.length = chunk_size; status = dcerpc_push(&blob_in, mem_ctx, &pkt); if (!NT_STATUS_IS_OK(status)) { return status; } status = dcerpc_raw_packet_initial(p, mem_ctx, &blob_in); if (!NT_STATUS_IS_OK(status)) { return status; } remaining -= chunk_size; } /* now we send a pdu with LAST_FRAG sent and get the first part of the reply */ if (remaining == stub_data_in->length) { pkt.hdr.pfc_flags = DCERPC_PFC_FLAG_FIRST | DCERPC_PFC_FLAG_LAST; } else { pkt.hdr.pfc_flags = DCERPC_PFC_FLAG_LAST; } pkt.in.request.stub_data.data = stub_data_in->data + (stub_data_in->length - remaining); pkt.in.request.stub_data.length = remaining; status = dcerpc_push(&blob_in, mem_ctx, &pkt); if (!NT_STATUS_IS_OK(status)) { return status; } /* send the pdu and get the initial response pdu */ status = dcerpc_raw_packet(p, mem_ctx, &blob_in, &blob_out); status = dcerpc_pull(&blob_out, mem_ctx, &pkt); if (!NT_STATUS_IS_OK(status)) { return status; } if (pkt.hdr.ptype != DCERPC_PKT_RESPONSE) { return NT_STATUS_UNSUCCESSFUL; } if (!(pkt.hdr.pfc_flags & DCERPC_PFC_FLAG_FIRST)) { /* something is badly wrong! */ return NT_STATUS_UNSUCCESSFUL; } payload = pkt.out.response.stub_data; /* continue receiving fragments */ while (!(pkt.hdr.pfc_flags & DCERPC_PFC_FLAG_LAST)) { uint32 length; status = dcerpc_raw_packet_secondary(p, mem_ctx, &blob_out); if (!NT_STATUS_IS_OK(status)) { return status; } status = dcerpc_pull(&blob_out, mem_ctx, &pkt); if (!NT_STATUS_IS_OK(status)) { return status; } if (pkt.hdr.pfc_flags & DCERPC_PFC_FLAG_FIRST) { /* start of another packet!? */ return NT_STATUS_UNSUCCESSFUL; } if (pkt.hdr.ptype != DCERPC_PKT_RESPONSE) { return NT_STATUS_UNSUCCESSFUL; } length = pkt.out.response.stub_data.length; payload.data = talloc_realloc(mem_ctx, payload.data, payload.length + length); if (!payload.data) { return NT_STATUS_NO_MEMORY; } memcpy(payload.data + payload.length, pkt.out.response.stub_data.data, length); payload.length += length; } if (stub_data_out) { *stub_data_out = payload; } return status; } /* this is a paranoid NDR validator. For every packet we push onto the wire we pull it back again, then push it again. Then we compare the raw NDR data for that to the NDR we initially generated. If they don't match then we know we must have a bug in either the pull or push side of our code */ static NTSTATUS dcerpc_ndr_validate_in(TALLOC_CTX *mem_ctx, DATA_BLOB blob, size_t struct_size, NTSTATUS (*ndr_push)(struct ndr_push *, int, void *), NTSTATUS (*ndr_pull)(struct ndr_pull *, int, void *)) { void *st; struct ndr_pull *pull; struct ndr_push *push; NTSTATUS status; DATA_BLOB blob2; st = talloc(mem_ctx, struct_size); if (!st) { return NT_STATUS_NO_MEMORY; } pull = ndr_pull_init_blob(&blob, mem_ctx); if (!pull) { return NT_STATUS_NO_MEMORY; } status = ndr_pull(pull, NDR_IN, st); if (!NT_STATUS_IS_OK(status)) { return ndr_pull_error(pull, NDR_ERR_VALIDATE, "failed input validation pull - %s", nt_errstr(status)); } push = ndr_push_init_ctx(mem_ctx); if (!push) { return NT_STATUS_NO_MEMORY; } status = ndr_push(push, NDR_IN, st); if (!NT_STATUS_IS_OK(status)) { return ndr_push_error(push, NDR_ERR_VALIDATE, "failed input validation push - %s", nt_errstr(status)); } blob2 = ndr_push_blob(push); if (!data_blob_equal(&blob, &blob2)) { DEBUG(3,("original:\n")); dump_data(3, blob.data, blob.length); DEBUG(3,("secondary:\n")); dump_data(3, blob2.data, blob2.length); return ndr_push_error(push, NDR_ERR_VALIDATE, "failed input validation data - %s", nt_errstr(status)); } return NT_STATUS_OK; } /* this is a paranoid NDR input validator. For every packet we pull from the wire we push it back again then pull and push it again. Then we compare the raw NDR data for that to the NDR we initially generated. If they don't match then we know we must have a bug in either the pull or push side of our code */ static NTSTATUS dcerpc_ndr_validate_out(TALLOC_CTX *mem_ctx, void *struct_ptr, size_t struct_size, NTSTATUS (*ndr_push)(struct ndr_push *, int, void *), NTSTATUS (*ndr_pull)(struct ndr_pull *, int, void *)) { void *st; struct ndr_pull *pull; struct ndr_push *push; NTSTATUS status; DATA_BLOB blob, blob2; st = talloc(mem_ctx, struct_size); if (!st) { return NT_STATUS_NO_MEMORY; } memcpy(st, struct_ptr, struct_size); push = ndr_push_init_ctx(mem_ctx); if (!push) { return NT_STATUS_NO_MEMORY; } status = ndr_push(push, NDR_OUT, struct_ptr); if (!NT_STATUS_IS_OK(status)) { return ndr_push_error(push, NDR_ERR_VALIDATE, "failed output validation push - %s", nt_errstr(status)); } blob = ndr_push_blob(push); pull = ndr_pull_init_blob(&blob, mem_ctx); if (!pull) { return NT_STATUS_NO_MEMORY; } pull->flags |= LIBNDR_FLAG_REF_ALLOC; status = ndr_pull(pull, NDR_OUT, st); if (!NT_STATUS_IS_OK(status)) { return ndr_pull_error(pull, NDR_ERR_VALIDATE, "failed output validation pull - %s", nt_errstr(status)); } push = ndr_push_init_ctx(mem_ctx); if (!push) { return NT_STATUS_NO_MEMORY; } status = ndr_push(push, NDR_OUT, st); if (!NT_STATUS_IS_OK(status)) { return ndr_push_error(push, NDR_ERR_VALIDATE, "failed output validation push2 - %s", nt_errstr(status)); } blob2 = ndr_push_blob(push); if (!data_blob_equal(&blob, &blob2)) { DEBUG(3,("original:\n")); dump_data(3, blob.data, blob.length); DEBUG(3,("secondary:\n")); dump_data(3, blob2.data, blob2.length); return ndr_push_error(push, NDR_ERR_VALIDATE, "failed output validation data - %s", nt_errstr(status)); } return NT_STATUS_OK; } /* a useful helper function for synchronous rpc requests this can be used when you have ndr push/pull functions in the standard format */ NTSTATUS dcerpc_ndr_request(struct dcerpc_pipe *p, uint32 opnum, TALLOC_CTX *mem_ctx, NTSTATUS (*ndr_push)(struct ndr_push *, int, void *), NTSTATUS (*ndr_pull)(struct ndr_pull *, int, void *), void *struct_ptr, size_t struct_size) { struct ndr_push *push; struct ndr_pull *pull; NTSTATUS status; DATA_BLOB request, response; /* setup for a ndr_push_* call */ push = ndr_push_init(); if (!push) { talloc_destroy(mem_ctx); return NT_STATUS_NO_MEMORY; } /* push the structure into a blob */ status = ndr_push(push, NDR_IN, struct_ptr); if (!NT_STATUS_IS_OK(status)) { goto failed; } /* retrieve the blob */ request = ndr_push_blob(push); if (p->flags & DCERPC_DEBUG_VALIDATE_IN) { status = dcerpc_ndr_validate_in(mem_ctx, request, struct_size, ndr_push, ndr_pull); if (!NT_STATUS_IS_OK(status)) { goto failed; } } DEBUG(10,("rpc request data:\n")); dump_data(10, request.data, request.length); /* make the actual dcerpc request */ status = dcerpc_request(p, opnum, mem_ctx, &request, &response); if (!NT_STATUS_IS_OK(status)) { goto failed; } /* prepare for ndr_pull_* */ pull = ndr_pull_init_blob(&response, mem_ctx); if (!pull) { goto failed; } DEBUG(10,("rpc reply data:\n")); dump_data(10, pull->data, pull->data_size); /* pull the structure from the blob */ status = ndr_pull(pull, NDR_OUT, struct_ptr); if (!NT_STATUS_IS_OK(status)) { goto failed; } if (p->flags & DCERPC_DEBUG_VALIDATE_OUT) { status = dcerpc_ndr_validate_out(mem_ctx, struct_ptr, struct_size, ndr_push, ndr_pull); if (!NT_STATUS_IS_OK(status)) { goto failed; } } if (pull->offset != pull->data_size) { DEBUG(0,("Warning! %d unread bytes\n", pull->data_size - pull->offset)); status = NT_STATUS_INFO_LENGTH_MISMATCH; goto failed; } failed: ndr_push_free(push); return status; } /* a useful function for retrieving the server name we connected to */ const char *dcerpc_server_name(struct dcerpc_pipe *p) { return p->tree->session->transport->called.name; }