/*
Unix SMB/CIFS implementation.
generic byte range locking code - tdb backend
Copyright (C) Andrew Tridgell 1992-2006
Copyright (C) Jeremy Allison 1992-2000
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/* This module implements a tdb based byte range locking service,
replacing the fcntl() based byte range locking previously
used. This allows us to provide the same semantics as NT */
#include "includes.h"
#include "system/filesys.h"
#include "tdb_compat.h"
#include "messaging/messaging.h"
#include "lib/tdb_wrap/tdb_wrap.h"
#include "lib/messaging/irpc.h"
#include "libcli/libcli.h"
#include "cluster/cluster.h"
#include "ntvfs/common/brlock.h"
#include "ntvfs/ntvfs.h"
#include "param/param.h"
/*
in this module a "DATA_BLOB *file_key" is a blob that uniquely identifies
a file. For a local posix filesystem this will usually be a combination
of the device and inode numbers of the file, but it can be anything
that uniquely idetifies a file for locking purposes, as long
as it is applied consistently.
*/
/* this struct is typicaly attached to tcon */
struct brl_context {
struct tdb_wrap *w;
struct server_id server;
struct imessaging_context *imessaging_ctx;
};
/*
the lock context contains the elements that define whether one
lock is the same as another lock
*/
struct lock_context {
struct server_id server;
uint32_t smbpid;
struct brl_context *ctx;
};
/* The data in brlock records is an unsorted linear array of these
records. It is unnecessary to store the count as tdb provides the
size of the record */
struct lock_struct {
struct lock_context context;
struct ntvfs_handle *ntvfs;
uint64_t start;
uint64_t size;
enum brl_type lock_type;
void *notify_ptr;
};
/* this struct is attached to on oprn file handle */
struct brl_handle {
DATA_BLOB key;
struct ntvfs_handle *ntvfs;
struct lock_struct last_lock;
};
/* see if we have wrapped locks, which are no longer allowed (windows
* changed this in win7 */
static bool brl_invalid_lock_range(uint64_t start, uint64_t size)
{
return (size > 1 && (start + size < start));
}
/*
Open up the brlock.tdb database. Close it down using
talloc_free(). We need the imessaging_ctx to allow for
pending lock notifications.
*/
static struct brl_context *brl_tdb_init(TALLOC_CTX *mem_ctx, struct server_id server,
struct loadparm_context *lp_ctx,
struct imessaging_context *imessaging_ctx)
{
struct brl_context *brl;
brl = talloc(mem_ctx, struct brl_context);
if (brl == NULL) {
return NULL;
}
brl->w = cluster_tdb_tmp_open(brl, lp_ctx, "brlock.tdb", TDB_DEFAULT);
if (brl->w == NULL) {
talloc_free(brl);
return NULL;
}
brl->server = server;
brl->imessaging_ctx = imessaging_ctx;
return brl;
}
static struct brl_handle *brl_tdb_create_handle(TALLOC_CTX *mem_ctx, struct ntvfs_handle *ntvfs,
DATA_BLOB *file_key)
{
struct brl_handle *brlh;
brlh = talloc(mem_ctx, struct brl_handle);
if (brlh == NULL) {
return NULL;
}
brlh->key = *file_key;
brlh->ntvfs = ntvfs;
ZERO_STRUCT(brlh->last_lock);
return brlh;
}
/*
see if two locking contexts are equal
*/
static bool brl_tdb_same_context(struct lock_context *ctx1, struct lock_context *ctx2)
{
return (cluster_id_equal(&ctx1->server, &ctx2->server) &&
ctx1->smbpid == ctx2->smbpid &&
ctx1->ctx == ctx2->ctx);
}
/*
see if lck1 and lck2 overlap
lck1 is the existing lock. lck2 is the new lock we are
looking at adding
*/
static bool brl_tdb_overlap(struct lock_struct *lck1,
struct lock_struct *lck2)
{
/* this extra check is not redundant - it copes with locks
that go beyond the end of 64 bit file space */
if (lck1->size != 0 &&
lck1->start == lck2->start &&
lck1->size == lck2->size) {
return true;
}
if (lck1->start >= (lck2->start+lck2->size) ||
lck2->start >= (lck1->start+lck1->size)) {
return false;
}
/* we have a conflict. Now check to see if lck1 really still
* exists, which involves checking if the process still
* exists. We leave this test to last as its the most
* expensive test, especially when we are clustered */
/* TODO: need to do this via a server_id_exists() call, which
* hasn't been written yet. When clustered this will need to
* call into ctdb */
return true;
}
/*
See if lock2 can be added when lock1 is in place.
*/
static bool brl_tdb_conflict(struct lock_struct *lck1,
struct lock_struct *lck2)
{
/* pending locks don't conflict with anything */
if (lck1->lock_type >= PENDING_READ_LOCK ||
lck2->lock_type >= PENDING_READ_LOCK) {
return false;
}
if (lck1->lock_type == READ_LOCK && lck2->lock_type == READ_LOCK) {
return false;
}
if (brl_tdb_same_context(&lck1->context, &lck2->context) &&
lck2->lock_type == READ_LOCK && lck1->ntvfs == lck2->ntvfs) {
return false;
}
return brl_tdb_overlap(lck1, lck2);
}
/*
Check to see if this lock conflicts, but ignore our own locks on the
same fnum only.
*/
static bool brl_tdb_conflict_other(struct lock_struct *lck1, struct lock_struct *lck2)
{
/* pending locks don't conflict with anything */
if (lck1->lock_type >= PENDING_READ_LOCK ||
lck2->lock_type >= PENDING_READ_LOCK) {
return false;
}
if (lck1->lock_type == READ_LOCK && lck2->lock_type == READ_LOCK)
return false;
/*
* note that incoming write calls conflict with existing READ
* locks even if the context is the same. JRA. See LOCKTEST7
* in smbtorture.
*/
if (brl_tdb_same_context(&lck1->context, &lck2->context) &&
lck1->ntvfs == lck2->ntvfs &&
(lck2->lock_type == READ_LOCK || lck1->lock_type == WRITE_LOCK)) {
return false;
}
return brl_tdb_overlap(lck1, lck2);
}
/*
amazingly enough, w2k3 "remembers" whether the last lock failure
is the same as this one and changes its error code. I wonder if any
app depends on this?
*/
static NTSTATUS brl_tdb_lock_failed(struct brl_handle *brlh, struct lock_struct *lock)
{
/*
* this function is only called for non pending lock!
*/
/* in SMB2 mode always return NT_STATUS_LOCK_NOT_GRANTED! */
if (lock->ntvfs->ctx->protocol >= PROTOCOL_SMB2_02) {
return NT_STATUS_LOCK_NOT_GRANTED;
}
/*
* if the notify_ptr is non NULL,
* it means that we're at the end of a pending lock
* and the real lock is requested after the timout went by
* In this case we need to remember the last_lock and always
* give FILE_LOCK_CONFLICT
*/
if (lock->notify_ptr) {
brlh->last_lock = *lock;
return NT_STATUS_FILE_LOCK_CONFLICT;
}
/*
* amazing the little things you learn with a test
* suite. Locks beyond this offset (as a 64 bit
* number!) always generate the conflict error code,
* unless the top bit is set
*/
if (lock->start >= 0xEF000000 && (lock->start >> 63) == 0) {
brlh->last_lock = *lock;
return NT_STATUS_FILE_LOCK_CONFLICT;
}
/*
* if the current lock matches the last failed lock on the file handle
* and starts at the same offset, then FILE_LOCK_CONFLICT should be returned
*/
if (cluster_id_equal(&lock->context.server, &brlh->last_lock.context.server) &&
lock->context.ctx == brlh->last_lock.context.ctx &&
lock->ntvfs == brlh->last_lock.ntvfs &&
lock->start == brlh->last_lock.start) {
return NT_STATUS_FILE_LOCK_CONFLICT;
}
brlh->last_lock = *lock;
return NT_STATUS_LOCK_NOT_GRANTED;
}
/*
Lock a range of bytes. The lock_type can be a PENDING_*_LOCK, in
which case a real lock is first tried, and if that fails then a
pending lock is created. When the pending lock is triggered (by
someone else closing an overlapping lock range) a messaging
notification is sent, identified by the notify_ptr
*/
static NTSTATUS brl_tdb_lock(struct brl_context *brl,
struct brl_handle *brlh,
uint32_t smbpid,
uint64_t start, uint64_t size,
enum brl_type lock_type,
void *notify_ptr)
{
TDB_DATA kbuf, dbuf;
int count=0, i;
struct lock_struct lock, *locks=NULL;
NTSTATUS status;
kbuf.dptr = brlh->key.data;
kbuf.dsize = brlh->key.length;
if (brl_invalid_lock_range(start, size)) {
return NT_STATUS_INVALID_LOCK_RANGE;
}
if (tdb_chainlock(brl->w->tdb, kbuf) != 0) {
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
/* if this is a pending lock, then with the chainlock held we
try to get the real lock. If we succeed then we don't need
to make it pending. This prevents a possible race condition
where the pending lock gets created after the lock that is
preventing the real lock gets removed */
if (lock_type >= PENDING_READ_LOCK) {
enum brl_type rw = (lock_type==PENDING_READ_LOCK? READ_LOCK : WRITE_LOCK);
/* here we need to force that the last_lock isn't overwritten */
lock = brlh->last_lock;
status = brl_tdb_lock(brl, brlh, smbpid, start, size, rw, NULL);
brlh->last_lock = lock;
if (NT_STATUS_IS_OK(status)) {
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_OK;
}
}
dbuf = tdb_fetch_compat(brl->w->tdb, kbuf);
lock.context.smbpid = smbpid;
lock.context.server = brl->server;
lock.context.ctx = brl;
lock.ntvfs = brlh->ntvfs;
lock.context.ctx = brl;
lock.start = start;
lock.size = size;
lock.lock_type = lock_type;
lock.notify_ptr = notify_ptr;
if (dbuf.dptr) {
/* there are existing locks - make sure they don't conflict */
locks = (struct lock_struct *)dbuf.dptr;
count = dbuf.dsize / sizeof(*locks);
for (i=0; iw->tdb, kbuf, dbuf, TDB_REPLACE) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
goto fail;
}
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
/* the caller needs to know if the real lock was granted. If
we have reached here then it must be a pending lock that
was granted, so tell them the lock failed */
if (lock_type >= PENDING_READ_LOCK) {
return NT_STATUS_LOCK_NOT_GRANTED;
}
return NT_STATUS_OK;
fail:
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return status;
}
/*
we are removing a lock that might be holding up a pending lock. Scan for pending
locks that cover this range and if we find any then notify the server that it should
retry the lock
*/
static void brl_tdb_notify_unlock(struct brl_context *brl,
struct lock_struct *locks, int count,
struct lock_struct *removed_lock)
{
int i, last_notice;
/* the last_notice logic is to prevent stampeding on a lock
range. It prevents us sending hundreds of notifies on the
same range of bytes. It doesn't prevent all possible
stampedes, but it does prevent the most common problem */
last_notice = -1;
for (i=0;i= PENDING_READ_LOCK &&
brl_tdb_overlap(&locks[i], removed_lock)) {
if (last_notice != -1 && brl_tdb_overlap(&locks[i], &locks[last_notice])) {
continue;
}
if (locks[i].lock_type == PENDING_WRITE_LOCK) {
last_notice = i;
}
imessaging_send_ptr(brl->imessaging_ctx, locks[i].context.server,
MSG_BRL_RETRY, locks[i].notify_ptr);
}
}
}
/*
send notifications for all pending locks - the file is being closed by this
user
*/
static void brl_tdb_notify_all(struct brl_context *brl,
struct lock_struct *locks, int count)
{
int i;
for (i=0;ilock_type >= PENDING_READ_LOCK) {
brl_tdb_notify_unlock(brl, locks, count, &locks[i]);
}
}
}
/*
Unlock a range of bytes.
*/
static NTSTATUS brl_tdb_unlock(struct brl_context *brl,
struct brl_handle *brlh,
uint32_t smbpid,
uint64_t start, uint64_t size)
{
TDB_DATA kbuf, dbuf;
int count, i;
struct lock_struct *locks, *lock;
struct lock_context context;
NTSTATUS status;
kbuf.dptr = brlh->key.data;
kbuf.dsize = brlh->key.length;
if (brl_invalid_lock_range(start, size)) {
return NT_STATUS_INVALID_LOCK_RANGE;
}
if (tdb_chainlock(brl->w->tdb, kbuf) != 0) {
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
dbuf = tdb_fetch_compat(brl->w->tdb, kbuf);
if (!dbuf.dptr) {
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_RANGE_NOT_LOCKED;
}
context.smbpid = smbpid;
context.server = brl->server;
context.ctx = brl;
/* there are existing locks - find a match */
locks = (struct lock_struct *)dbuf.dptr;
count = dbuf.dsize / sizeof(*locks);
for (i=0; icontext, &context) &&
lock->ntvfs == brlh->ntvfs &&
lock->start == start &&
lock->size == size &&
lock->lock_type == WRITE_LOCK) {
break;
}
}
if (i < count) goto found;
for (i=0; icontext, &context) &&
lock->ntvfs == brlh->ntvfs &&
lock->start == start &&
lock->size == size &&
lock->lock_type < PENDING_READ_LOCK) {
break;
}
}
found:
if (i < count) {
/* found it - delete it */
if (count == 1) {
if (tdb_delete(brl->w->tdb, kbuf) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
goto fail;
}
} else {
struct lock_struct removed_lock = *lock;
if (i < count-1) {
memmove(&locks[i], &locks[i+1],
sizeof(*locks)*((count-1) - i));
}
count--;
/* send notifications for any relevant pending locks */
brl_tdb_notify_unlock(brl, locks, count, &removed_lock);
dbuf.dsize = count * sizeof(*locks);
if (tdb_store(brl->w->tdb, kbuf, dbuf, TDB_REPLACE) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
goto fail;
}
}
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_OK;
}
/* we didn't find it */
status = NT_STATUS_RANGE_NOT_LOCKED;
fail:
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return status;
}
/*
remove a pending lock. This is called when the caller has either
given up trying to establish a lock or when they have succeeded in
getting it. In either case they no longer need to be notified.
*/
static NTSTATUS brl_tdb_remove_pending(struct brl_context *brl,
struct brl_handle *brlh,
void *notify_ptr)
{
TDB_DATA kbuf, dbuf;
int count, i;
struct lock_struct *locks;
NTSTATUS status;
kbuf.dptr = brlh->key.data;
kbuf.dsize = brlh->key.length;
if (tdb_chainlock(brl->w->tdb, kbuf) != 0) {
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
dbuf = tdb_fetch_compat(brl->w->tdb, kbuf);
if (!dbuf.dptr) {
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_RANGE_NOT_LOCKED;
}
/* there are existing locks - find a match */
locks = (struct lock_struct *)dbuf.dptr;
count = dbuf.dsize / sizeof(*locks);
for (i=0; ilock_type >= PENDING_READ_LOCK &&
lock->notify_ptr == notify_ptr &&
cluster_id_equal(&lock->context.server, &brl->server)) {
/* found it - delete it */
if (count == 1) {
if (tdb_delete(brl->w->tdb, kbuf) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
goto fail;
}
} else {
if (i < count-1) {
memmove(&locks[i], &locks[i+1],
sizeof(*locks)*((count-1) - i));
}
count--;
dbuf.dsize = count * sizeof(*locks);
if (tdb_store(brl->w->tdb, kbuf, dbuf, TDB_REPLACE) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
goto fail;
}
}
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_OK;
}
}
/* we didn't find it */
status = NT_STATUS_RANGE_NOT_LOCKED;
fail:
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return status;
}
/*
Test if we are allowed to perform IO on a region of an open file
*/
static NTSTATUS brl_tdb_locktest(struct brl_context *brl,
struct brl_handle *brlh,
uint32_t smbpid,
uint64_t start, uint64_t size,
enum brl_type lock_type)
{
TDB_DATA kbuf, dbuf;
int count, i;
struct lock_struct lock, *locks;
kbuf.dptr = brlh->key.data;
kbuf.dsize = brlh->key.length;
if (brl_invalid_lock_range(start, size)) {
return NT_STATUS_INVALID_LOCK_RANGE;
}
dbuf = tdb_fetch_compat(brl->w->tdb, kbuf);
if (dbuf.dptr == NULL) {
return NT_STATUS_OK;
}
lock.context.smbpid = smbpid;
lock.context.server = brl->server;
lock.context.ctx = brl;
lock.ntvfs = brlh->ntvfs;
lock.start = start;
lock.size = size;
lock.lock_type = lock_type;
/* there are existing locks - make sure they don't conflict */
locks = (struct lock_struct *)dbuf.dptr;
count = dbuf.dsize / sizeof(*locks);
for (i=0; ikey.data;
kbuf.dsize = brlh->key.length;
if (tdb_chainlock(brl->w->tdb, kbuf) != 0) {
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
dbuf = tdb_fetch_compat(brl->w->tdb, kbuf);
if (!dbuf.dptr) {
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_OK;
}
/* there are existing locks - remove any for this fnum */
locks = (struct lock_struct *)dbuf.dptr;
count = dbuf.dsize / sizeof(*locks);
for (i=0; icontext.ctx == brl &&
cluster_id_equal(&lock->context.server, &brl->server) &&
lock->ntvfs == brlh->ntvfs) {
/* found it - delete it */
if (count > 1 && i < count-1) {
memmove(&locks[i], &locks[i+1],
sizeof(*locks)*((count-1) - i));
}
count--;
i--;
dcount++;
}
}
status = NT_STATUS_OK;
if (count == 0) {
if (tdb_delete(brl->w->tdb, kbuf) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
}
} else if (dcount != 0) {
/* tell all pending lock holders for this file that
they have a chance now. This is a bit indiscriminant,
but works OK */
brl_tdb_notify_all(brl, locks, count);
dbuf.dsize = count * sizeof(*locks);
if (tdb_store(brl->w->tdb, kbuf, dbuf, TDB_REPLACE) != 0) {
status = NT_STATUS_INTERNAL_DB_CORRUPTION;
}
}
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return status;
}
static NTSTATUS brl_tdb_count(struct brl_context *brl, struct brl_handle *brlh,
int *count)
{
TDB_DATA kbuf, dbuf;
kbuf.dptr = brlh->key.data;
kbuf.dsize = brlh->key.length;
*count = 0;
if (tdb_chainlock(brl->w->tdb, kbuf) != 0) {
return NT_STATUS_INTERNAL_DB_CORRUPTION;
}
dbuf = tdb_fetch_compat(brl->w->tdb, kbuf);
if (!dbuf.dptr) {
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_OK;
}
*count = dbuf.dsize / sizeof(struct lock_struct);
free(dbuf.dptr);
tdb_chainunlock(brl->w->tdb, kbuf);
return NT_STATUS_OK;
}
static const struct brlock_ops brlock_tdb_ops = {
.brl_init = brl_tdb_init,
.brl_create_handle = brl_tdb_create_handle,
.brl_lock = brl_tdb_lock,
.brl_unlock = brl_tdb_unlock,
.brl_remove_pending = brl_tdb_remove_pending,
.brl_locktest = brl_tdb_locktest,
.brl_close = brl_tdb_close,
.brl_count = brl_tdb_count
};
void brl_tdb_init_ops(void)
{
brlock_set_ops(&brlock_tdb_ops);
}