1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
|
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE chapter PUBLIC "-//Samba-Team//DTD DocBook V4.2-Based Variant V1.0//EN" "http://www.samba.org/samba/DTD/samba-doc">
<chapter id="samba-pdc">
<chapterinfo>
&author.jht;
&author.jerry;
&author.dbannon;
<author>&person.gd; <contrib>LDAP updates</contrib></author>
</chapterinfo>
<title>Domain Control</title>
<para>
There are many who approach MS Windows networking with incredible misconceptions.
That's okay, because it gives the rest of us plenty of opportunity to be of assistance.
Those who really want help are well advised to become familiar with information
that is already available.
</para>
<para>
You are advised not to tackle this section without having first understood
and mastered some basics. MS Windows networking is not particularly forgiving of
misconfiguration. Users of MS Windows networking are likely to complain
of persistent niggles that may be caused by a broken network configuration.
To a great many people, however, MS Windows networking starts with a domain controller
that in some magical way is expected to solve all network operational ills.
</para>
<para>
<link linkend="domain-example">The Example Domain illustration</link> shows a typical MS Windows domain security
network environment. Workstations A, B, and C are representative of many physical MS Windows
network clients.
</para>
<figure id="domain-example">
<title>An Example Domain.</title>
<imagefile scale="50">domain</imagefile>
</figure>
<para>
From the Samba mailing list we can readily identify many common networking issues.
If you are not clear on the following subjects, then it will do much good to read the
sections of this HOWTO that deal with it. These are the most common causes of MS Windows
networking problems:
</para>
<itemizedlist>
<listitem><para>Basic TCP/IP configuration.</para></listitem>
<listitem><para>NetBIOS name resolution.</para></listitem>
<listitem><para>Authentication configuration.</para></listitem>
<listitem><para>User and group configuration.</para></listitem>
<listitem><para>Basic file and directory permission control in UNIX/Linux.</para></listitem>
<listitem><para>Understanding how MS Windows clients interoperate in a network
environment.</para></listitem>
</itemizedlist>
<para>
Do not be put off; on the surface of it MS Windows networking seems so simple that anyone
can do it. In fact, it is not a good idea to set up an MS Windows network with
inadequate training and preparation. But let's get our first indelible principle out of the
way: <emphasis>It is perfectly okay to make mistakes!</emphasis> In the right place and at
the right time, mistakes are the essence of learning. It is very much not okay to make
mistakes that cause loss of productivity and impose an avoidable financial burden on an
organization.
</para>
<para>
Where is the right place to make mistakes? Only out of harms way. If you are going to
make mistakes, then please do it on a test network, away from users, and in such a way as
to not inflict pain on others. Do your learning on a test network.
</para>
<sect1>
<title>Features and Benefits</title>
<para>
<indexterm><primary>domain security</primary></indexterm>
<emphasis>What is the key benefit of Microsoft Domain Security?</emphasis>
</para>
<para>
In a word, <emphasis>single sign-on</emphasis>, or SSO for short. To many, this is the Holy
Grail of MS Windows NT and beyond networking. SSO allows users in a well-designed network
to log onto any workstation that is a member of the domain that their user account is in
(or in a domain that has an appropriate trust relationship with the domain they are visiting)
and they will be able to log onto the network and access resources (shares, files, and printers)
as if they are sitting at their home (personal) workstation. This is a feature of the domain
security protocols.
</para>
<para>
<indexterm><primary>SID</primary></indexterm>
The benefits of domain security are available to those sites that deploy a Samba PDC.
A domain provides a unique network security identifier (SID). Domain user and group security
identifiers are comprised of the network SID plus a relative identifier (RID) that is unique to
the account. User and group SIDs (the network SID plus the RID) can be used to create access control
lists (ACLs) attached to network resources to provide organizational access control. UNIX systems
recognize only local security identifiers.
</para>
<note><para>
Network clients of an MS Windows domain security environment must be domain members to be
able to gain access to the advanced features provided. Domain membership involves more than just
setting the workgroup name to the domain name. It requires the creation of a domain trust account
for the workstation (called a machine account). Refer to <link linkend="domain-member">Domain Membership</link>
for more information.
</para></note>
<para>
The following functionalities are new to the Samba-3 release:
</para>
<itemizedlist>
<listitem><para>
Windows NT4 domain trusts.
</para></listitem>
<listitem><para>
<indexterm><primary>Nexus.exe</primary></indexterm>
Adding users via the User Manager for Domains. This can be done on any MS Windows
client using the <filename>Nexus.exe</filename> toolkit for Windows 9x/Me, or using
the SRVTOOLS.EXE package for MS Windows NT4/200x/XP platforms. These packages are
available from Microsoft's Web site.
</para></listitem>
<listitem><para>
Introduces replaceable and multiple user account (authentication)
backends. In the case where the backend is placed in an LDAP database,
Samba-3 confers the benefits of a backend that can be distributed and replicated
and is highly scalable.
</para></listitem>
<listitem><para>
Implements full Unicode support. This simplifies cross-locale internationalization
support. It also opens up the use of protocols that Samba-2.2.x had but could not use due
to the need to fully support Unicode.
</para></listitem>
</itemizedlist>
<para>
The following functionalities are not provided by Samba-3:
</para>
<itemizedlist>
<listitem><para>
<indexterm><primary>SAM</primary></indexterm>
<indexterm><primary>replication</primary></indexterm>
SAM replication with Windows NT4 domain controllers
(i.e., a Samba PDC and a Windows NT BDC, or vice versa). This means Samba
cannot operate as a BDC when the PDC is Microsoft-based or
replicate account data to Windows BDCs.
</para></listitem>
<listitem><para>
Acting as a Windows 2000 domain controller (i.e., Kerberos and
Active Directory). In point of fact, Samba-3 does have some
Active Directory domain control ability that is at this time
purely experimental. That is certain to change as it becomes a
fully supported feature some time during the Samba-3 (or later)
life cycle. However, Active Directory is more then just SMB &smbmdash;
it's also LDAP, Kerberos, DHCP, and other protocols (with proprietary
extensions, of course).
</para></listitem>
<listitem><para>
The Windows 200x/XP Microsoft Management Console (MMC) cannot be used
to manage a Samba-3 server. For this you can use only the MS Windows NT4
Domain Server Manager and the MS Windows NT4 Domain User Manager. Both are
part of the SVRTOOLS.EXE package mentioned later.
</para></listitem>
</itemizedlist>
<para>
Windows 9x/Me/XP Home clients are not true members of a domain for reasons outlined
in this chapter. The protocol for support of Windows 9x/Me-style network (domain) logons
is completely different from NT4/Windows 200x-type domain logons and has been officially supported
for some time. These clients use the old LanMan network logon facilities that are supported
in Samba since approximately the Samba-1.9.15 series.
</para>
<para>
Samba-3 implements group mapping between Windows NT groups
and UNIX groups (this is really quite complicated to explain in a short space). This is
discussed more fully in <link linkend="groupmapping">Group Mapping: MS Windows and UNIX</link>.
</para>
<para>
<indexterm><primary>Machine Trust Accounts</primary></indexterm>
Samba-3, like an MS Windows NT4 PDC or a Windows 200x Active Directory, needs to store user and Machine Trust
Account information in a suitable backend data-store. Refer to <link linkend="machine-trust-accounts">MS
Windows Workstation/Server Machine Trust Accounts</link>. With Samba-3 there can be multiple backends for
this. A complete discussion of account database backends can be found in <link linkend="passdb">Account
Information Databases</link>.
</para>
</sect1>
<sect1>
<title>Basics of Domain Control</title>
<para>
Over the years, public perceptions of what domain control really is has taken on an
almost mystical nature. Before we branch into a brief overview of domain control,
there are three basic types of domain controllers.
</para>
<sect2>
<title>Domain Controller Types</title>
<itemizedlist>
<listitem><para>Primary Domain Controller</para></listitem>
<listitem><para>Backup Domain Controller</para></listitem>
<listitem><para>ADS Domain Controller</para></listitem>
</itemizedlist>
<para>
The <emphasis>Primary Domain Controller</emphasis> or PDC plays an important role in MS Windows NT4. In
Windows 200x domain control architecture, this role is held by domain controllers. Folklore dictates that
because of its role in the MS Windows network, the domain controller should be the most powerful and most
capable machine in the network. As strange as it may seem to say this here, good overall network performance
dictates that the entire infrastructure needs to be balanced. It is advisable to invest more in standalone
(domain member) servers than in the domain controllers.
</para>
<para>
<indexterm><primary>SAM</primary></indexterm>
In the case of MS Windows NT4-style domains, it is the PDC that initiates a new domain control database.
This forms a part of the Windows registry called the Security Account Manager (SAM). It plays a key
part in NT4-type domain user authentication and in synchronization of the domain authentication
database with BDCs.
</para>
<para>
With MS Windows 200x Server-based Active Directory domains, one domain controller initiates a potential
hierarchy of domain controllers, each with its own area of delegated control. The master domain
controller has the ability to override any downstream controller, but a downline controller has
control only over its downline. With Samba-3, this functionality can be implemented using an
LDAP-based user and machine account backend.
</para>
<para>
New to Samba-3 is the ability to use a backend database that holds the same type of data as the NT4-style SAM
database (one of the registry files)<footnote><para>See also <link linkend="passdb">Account Information
Databases</link>.</para>.</footnote>
</para>
<para>
The <emphasis>Backup Domain Controller</emphasis> or BDC plays a key role in servicing network
authentication requests. The BDC is biased to answer logon requests in preference to the PDC.
On a network segment that has a BDC and a PDC, the BDC will most likely service network
logon requests. The PDC will answer network logon requests when the BDC is too busy (high load).
A BDC can be promoted to a PDC. If the PDC is online at the time that a BDC is promoted to
PDC, the previous PDC is automatically demoted to a BDC. With Samba-3, this is not an automatic
operation; the PDC and BDC must be manually configured, and changes also need to be made.
</para>
<para>
With MS Windows NT4, a decision is made at installation to determine what type of machine the server will be.
It is possible to promote a BDC to a PDC, and vice versa. The only way to convert a domain controller to a
domain member server or a standalone server is to reinstall it. The install time choices offered are:
</para>
<itemizedlist>
<listitem><para><emphasis>Primary Domain Controller</emphasis> &smbmdash; the one that seeds the domain SAM.</para></listitem>
<listitem><para><emphasis>Backup Domain Controller</emphasis> &smbmdash; one that obtains a copy of the domain SAM.</para></listitem>
<listitem><para><emphasis>Domain Member Server</emphasis> &smbmdash; one that has no copy of the domain SAM; rather
it obtains authentication from a domain controller for all access controls.</para></listitem>
<listitem><para><emphasis>Standalone Server</emphasis> &smbmdash; one that plays no part in SAM synchronization,
has its own authentication database, and plays no role in domain security.</para></listitem>
</itemizedlist>
<para>
With MS Windows 2000, the configuration of domain control is done after the server has been
installed. Samba-3 is capable of acting fully as a native member of a Windows 200x server
Active Directory domain.
</para>
<para>
<indexterm><primary>replication</primary><secondary>SAM</secondary></indexterm>
New to Samba-3 is the ability to function fully as an MS Windows NT4-style domain controller,
excluding the SAM replication components. However, please be aware that Samba-3 also supports the
MS Windows 200x domain control protocols.
</para>
<para>
At this time any appearance that Samba-3 is capable of acting as a
<emphasis>domain controller</emphasis> in native ADS mode is limited and experimental in nature.
This functionality should not be used until the Samba Team offers formal support for it.
At such a time, the documentation will be revised to duly reflect all configuration and
management requirements. Samba can act as a NT4-style domain controller in a Windows 2000/XP
environment. However, there are certain compromises:
<itemizedlist>
<listitem><para>No machine policy files.</para></listitem>
<listitem><para>No Group Policy Objects.</para></listitem>
<listitem><para>No synchronously executed Active Directory logon scripts.</para></listitem>
<listitem><para>Can't use Active Directory management tools to manage users and machines.</para></listitem>
<listitem><para>Registry changes tattoo the main registry, while with Active Directory they do not leave permanent changes in effect.</para></listitem>
<listitem><para>Without Active Directory you cannot perform the function of exporting specific applications to specific users or groups.</para></listitem>
</itemizedlist>
</para>
</sect2>
<sect2>
<title>Preparing for Domain Control</title>
<para>
There are two ways that MS Windows machines may interact with each other, with other servers,
and with domain controllers: either as <emphasis>standalone</emphasis> systems, more commonly
called <emphasis>workgroup</emphasis> members, or as full participants in a security system,
more commonly called <emphasis>domain</emphasis> members.
</para>
<para>
It should be noted that workgroup membership involves no special configuration
other than the machine being configured so the network configuration has a commonly used name
for its workgroup entry. It is not uncommon for the name WORKGROUP to be used for this. With this
mode of configuration, there are no Machine Trust Accounts, and any concept of membership as such
is limited to the fact that all machines appear in the network neighborhood to be logically
grouped together. Again, just to be clear: <emphasis>workgroup mode does not involve security machine
accounts</emphasis>.
</para>
<para>
Domain member machines have a machine account in the domain accounts database. A special procedure
must be followed on each machine to effect domain membership. This procedure, which can be done
only by the local machine Administrator account, creates the domain machine account (if it does
not exist), and then initializes that account. When the client first logs onto the
domain, it triggers a machine password change.
</para>
<note><para>
When Samba is configured as a domain controller, secure network operation demands that
all MS Windows NT4/200x/XP Professional clients should be configured as domain members.
If a machine is not made a member of the domain, then it will operate like a workgroup
(standalone) machine. Please refer to <link linkend="domain-member">Domain Membership</link>, for
information regarding domain membership.
</para></note>
<para>
The following are necessary for configuring Samba-3 as an MS Windows NT4-style PDC for MS Windows
NT4/200x/XP clients:
</para>
<itemizedlist>
<listitem><para>Configuration of basic TCP/IP and MS Windows networking.</para></listitem>
<listitem><para>Correct designation of the server role (<smbconfoption name="security">user</smbconfoption>).</para></listitem>
<listitem><para>Consistent configuration of name resolution.<footnote><para>See <link linkend="NetworkBrowsing">Network Browsing</link>, and
<link linkend="integrate-ms-networks">Integrating MS Windows Networks with Samba</link>.</para></footnote></para></listitem>
<listitem><para>Domain logons for Windows NT4/200x/XP Professional clients.</para></listitem>
<listitem><para>Configuration of roaming profiles or explicit configuration to force local profile usage.</para></listitem>
<listitem><para>Configuration of network/system policies.</para></listitem>
<listitem><para>Adding and managing domain user accounts.</para></listitem>
<listitem><para>Configuring MS Windows client machines to become domain members.</para></listitem>
</itemizedlist>
<para>
The following provisions are required to serve MS Windows 9x/Me clients:
</para>
<itemizedlist>
<listitem><para>Configuration of basic TCP/IP and MS Windows networking.</para></listitem>
<listitem><para>Correct designation of the server role (<smbconfoption name="security">user</smbconfoption>).</para></listitem>
<listitem><para>Network logon configuration (since Windows 9x/Me/XP Home are not technically domain
members, they do not really participate in the security aspects of Domain logons as such).</para></listitem>
<listitem><para>Roaming profile configuration.</para></listitem>
<listitem><para>Configuration of system policy handling.</para></listitem>
<listitem><para>Installation of the network driver <quote>Client for MS Windows Networks</quote> and configuration
to log onto the domain.</para></listitem>
<listitem><para>Placing Windows 9x/Me clients in user-level security &smbmdash; if it is desired to allow
all client-share access to be controlled according to domain user/group identities.</para></listitem>
<listitem><para>Adding and managing domain user accounts.</para></listitem>
</itemizedlist>
<note><para>
Roaming profiles and system/network policies are advanced network administration topics
that are covered in <link linkend="ProfileMgmt">Desktop Profile Management</link> and
<link linkend="PolicyMgmt">System and Account Policies</link> of this document. However, these are not
necessarily specific to a Samba PDC as much as they are related to Windows NT networking concepts.
</para></note>
<para>
A domain controller is an SMB/CIFS server that:
</para>
<itemizedlist>
<listitem><para>
Registers and advertises itself as a domain controller (through NetBIOS broadcasts
as well as by way of name registrations either by Mailslot Broadcasts over UDP broadcast,
to a WINS server over UDP unicast, or via DNS and Active Directory).
</para></listitem>
<listitem><para>
Provides the NETLOGON service. (This is actually a collection of services that runs over
multiple protocols. These include the LanMan logon service, the Netlogon service,
the Local Security Account service, and variations of them.)
</para></listitem>
<listitem><para>
Provides a share called NETLOGON.
</para></listitem>
</itemizedlist>
<para>
It is rather easy to configure Samba to provide these. Each Samba domain controller must provide the NETLOGON
service that Samba calls the <smbconfoption name="domain logons"/> functionality (after the name of the
parameter in the &smb.conf; file). Additionally, one server in a Samba-3 domain must advertise itself as the
domain master browser.<footnote><para>See <link linkend="NetworkBrowsing">Network
Browsing</link>.</para></footnote> This causes the PDC to claim a domain-specific NetBIOS name that identifies
it as a DMB for its given domain or workgroup. Local master browsers (LMBs) in the same domain or workgroup on
broadcast-isolated subnets then ask for a complete copy of the browse list for the whole wide-area network.
Browser clients then contact their LMB, and will receive the domain-wide browse list instead of just the list
for their broadcast-isolated subnet.
</para>
</sect2>
</sect1>
<sect1>
<title>Domain Control: Example Configuration</title>
<para>
The first step in creating a working Samba PDC is to understand the parameters necessary
in &smb.conf;. An example &smb.conf; for acting as a PDC can be found in <link linkend="pdc-example">the
smb.conf for being a PDC</link>.
</para>
<example id="pdc-example">
<title>smb.conf for being a PDC</title>
<smbconfblock>
<smbconfsection name="[global]"/>
<smbconfoption name="netbios name"><replaceable>BELERIAND</replaceable></smbconfoption>
<smbconfoption name="workgroup"><replaceable>&example.workgroup;</replaceable></smbconfoption>
<smbconfoption name="passdb backend">tdbsam</smbconfoption>
<smbconfoption name="os level">33</smbconfoption>
<smbconfoption name="preferred master">yes</smbconfoption>
<smbconfoption name="domain master">yes</smbconfoption>
<smbconfoption name="local master">yes</smbconfoption>
<smbconfoption name="security">user</smbconfoption>
<smbconfoption name="domain logons">yes</smbconfoption>
<smbconfoption name="logon path">\\%N\profiles\%U</smbconfoption>
<smbconfoption name="logon drive">H:</smbconfoption>
<smbconfoption name="logon home">\\homeserver\%U\winprofile</smbconfoption>
<smbconfoption name="logon script">logon.cmd</smbconfoption>
<smbconfsection name="[netlogon]"/>
<smbconfoption name="path">/var/lib/samba/netlogon</smbconfoption>
<smbconfoption name="read only">yes</smbconfoption>
<smbconfoption name="write list"><replaceable>ntadmin</replaceable></smbconfoption>
<smbconfsection name="[profiles]"/>
<smbconfoption name="path">/var/lib/samba/profiles</smbconfoption>
<smbconfoption name="read only">no</smbconfoption>
<smbconfoption name="create mask">0600</smbconfoption>
<smbconfoption name="directory mask">0700</smbconfoption>
</smbconfblock>
</example>
<para>
The basic options shown in <link linkend="pdc-example">this example</link> are explained as follows:
</para>
<variablelist>
<varlistentry><term>passdb backend </term>
<listitem><para>
This contains all the user and group account information. Acceptable values for a PDC
are: <emphasis>smbpasswd, tdbsam, and ldapsam</emphasis>. The <quote>guest</quote> entry provides
default accounts and is included by default, there is no need to add it explicitly.</para>
<para>
Where use of BDCs is intended, the only logical choice is
to use LDAP so the passdb backend can be distributed. The tdbsam and smbpasswd files
cannot effectively be distributed and therefore should not be used.
</para></listitem>
</varlistentry>
<varlistentry><term>Domain Control Parameters </term>
<listitem><para>
The parameters <emphasis>os level, preferred master, domain master, security,
encrypt passwords</emphasis>, and <emphasis>domain logons</emphasis> play a central role in assuring domain
control and network logon support.</para>
<para>
The <emphasis>os level</emphasis> must be set at or above a value of 32. A domain controller
must be the DMB, must be set in <emphasis>user</emphasis> mode security,
must support Microsoft-compatible encrypted passwords, and must provide the network logon
service (domain logons). Encrypted passwords must be enabled. For more details on how
to do this, refer to <link linkend="passdb">Account Information Databases</link>.
</para></listitem>
</varlistentry>
<varlistentry><term>Environment Parameters </term>
<listitem><para>
The parameters <emphasis>logon path, logon home, logon drive</emphasis>, and <emphasis>logon script</emphasis> are
environment support settings that help to facilitate client logon operations and that help
to provide automated control facilities to ease network management overheads. Please refer
to the man page information for these parameters.
</para></listitem>
</varlistentry>
<varlistentry><term>NETLOGON Share </term>
<listitem><para>
The NETLOGON share plays a central role in domain logon and domain membership support.
This share is provided on all Microsoft domain controllers. It is used to provide logon
scripts, to store group policy files (NTConfig.POL), as well as to locate other common
tools that may be needed for logon processing. This is an essential share on a domain controller.
</para></listitem>
</varlistentry>
<varlistentry><term>PROFILE Share </term>
<listitem><para>
This share is used to store user desktop profiles. Each user must have a directory at the root
of this share. This directory must be write-enabled for the user and must be globally read-enabled.
Samba-3 has a VFS module called <quote>fake_permissions</quote> that may be installed on this share. This will
allow a Samba administrator to make the directory read-only to everyone. Of course this is useful
only after the profile has been properly created.
</para></listitem>
</varlistentry>
</variablelist>
<note><para>
The above parameters make for a full set of parameters that may define the server's mode
of operation. The following &smb.conf; parameters are the essentials alone:
</para>
<para>
<smbconfblock>
<smbconfoption name="netbios name">BELERIAND</smbconfoption>
<smbconfoption name="workgroup">&example.workgroup;</smbconfoption>
<smbconfoption name="domain logons">Yes</smbconfoption>
<smbconfoption name="domain master">Yes</smbconfoption>
<smbconfoption name="security">User</smbconfoption>
</smbconfblock>
</para>
<para>
The additional parameters shown in the longer listing in this section just make for
a more complete explanation.
</para></note>
</sect1>
<sect1>
<title>Samba ADS Domain Control</title>
<para>
Samba-3 is not, and cannot act as, an Active Directory server. It cannot truly function as
an Active Directory PDC. The protocols for some of the functionality
of Active Directory domain controllers has been partially implemented on an experimental
only basis. Please do not expect Samba-3 to support these protocols. Do not depend
on any such functionality either now or in the future. The Samba Team may remove these
experimental features or may change their behavior. This is mentioned for the benefit of those
who have discovered secret capabilities in Samba-3 and who have asked when this functionality will be
completed. The answer is maybe someday or maybe never!
</para>
<para>
To be sure, Samba-3 is designed to provide most of the functionality that Microsoft Windows NT4-style
domain controllers have. Samba-3 does not have all the capabilities of Windows NT4, but it does have
a number of features that Windows NT4 domain controllers do not have. In short, Samba-3 is not NT4 and it
is not Windows Server 200x: it is not an Active Directory server. We hope this is plain and simple
enough for all to understand.
</para>
</sect1>
<sect1>
<title>Domain and Network Logon Configuration</title>
<para>
The subject of network or domain logons is discussed here because it forms
an integral part of the essential functionality that is provided by a domain controller.
</para>
<sect2>
<title>Domain Network Logon Service</title>
<para>
All domain controllers must run the netlogon service (<emphasis>domain logons</emphasis>
in Samba). One domain controller must be configured with <smbconfoption name="domain master">Yes</smbconfoption>
(the PDC); on all BDCs <smbconfoption name="domain master">No</smbconfoption>
must be set.
</para>
<sect3>
<title>Example Configuration</title>
<example id="PDC-config">
<title>smb.conf for being a PDC</title>
<smbconfblock>
<smbconfsection name="[global]"/>
<smbconfoption name="domain logons">Yes</smbconfoption>
<smbconfoption name="domain master">(Yes on PDC, No on BDCs)</smbconfoption>
<smbconfsection name="[netlogon]"/>
<smbconfoption name="comment">Network Logon Service</smbconfoption>
<smbconfoption name="path">/var/lib/samba/netlogon</smbconfoption>
<smbconfoption name="guest ok">Yes</smbconfoption>
<smbconfoption name="browseable">No</smbconfoption>
</smbconfblock>
</example>
</sect3>
<sect3>
<title>The Special Case of MS Windows XP Home Edition</title>
<para>
To be completely clear: If you want MS Windows XP Home Edition to integrate with your
MS Windows NT4 or Active Directory domain security, understand it cannot be done.
The only option is to purchase the upgrade from MS Windows XP Home Edition to
MS Windows XP Professional.
</para>
<note><para>
MS Windows XP Home Edition does not have the ability to join any type of domain
security facility. Unlike MS Windows 9x/Me, MS Windows XP Home Edition also completely
lacks the ability to log onto a network.
</para></note>
<para>
Now that this has been said, please do not ask the mailing list or email any of the
Samba Team members with your questions asking how to make this work. It can't be done.
If it can be done, then to do so would violate your software license agreement with
Microsoft, and we recommend that you do not do that.
</para>
</sect3>
<sect3>
<title>The Special Case of Windows 9x/Me</title>
<para>
A domain and a workgroup are exactly the same in terms of network
browsing. The difference is that a distributable authentication
database is associated with a domain, for secure login access to a
network. Also, different access rights can be granted to users if they
successfully authenticate against a domain logon server. Samba-3 does this
now in the same way as MS Windows NT/200x.
</para>
<para>
The SMB client logging on to a domain has an expectation that every other
server in the domain should accept the same authentication information.
Network browsing functionality of domains and workgroups is identical and
is explained in this documentation under the browsing discussions.
It should be noted that browsing is totally orthogonal to logon support.
</para>
<para>
Issues related to the single-logon network model are discussed in this
section. Samba supports domain logons, network logon scripts, and user
profiles for MS Windows for Workgroups and MS Windows 9x/Me clients,
which are the focus of this section.
</para>
<para>
When an SMB client in a domain wishes to log on, it broadcasts requests for a
logon server. The first one to reply gets the job and validates its
password using whatever mechanism the Samba administrator has installed.
It is possible (but ill advised) to create a domain where the user
database is not shared between servers; that is, they are effectively workgroup
servers advertising themselves as participating in a domain. This
demonstrates how authentication is quite different from but closely
involved with domains.
</para>
<para>
Using these features, you can make your clients verify their logon via
the Samba server, make clients run a batch file when they log on to
the network and download their preferences, desktop, and start menu.
</para>
<para><emphasis>
MS Windows XP Home edition is not able to join a domain and does not permit
the use of domain logons.
</emphasis></para>
<para>
Before launching into the configuration instructions, it is
worthwhile to look at how a Windows 9x/Me client performs a logon:
</para>
<orderedlist>
<listitem>
<para>
The client broadcasts (to the IP broadcast address of the subnet it is in)
a NetLogon request. This is sent to the NetBIOS name DOMAIN<#1c> at the
NetBIOS layer. The client chooses the first response it receives, which
contains the NetBIOS name of the logon server to use in the format of
<filename>\\SERVER</filename>.
</para>
</listitem>
<listitem>
<para>
The client connects to that server, logs on (does an SMBsessetupX) and
then connects to the IPC$ share (using an SMBtconX).
</para>
</listitem>
<listitem>
<para>
The client does a NetWkstaUserLogon request, which retrieves the name
of the user's logon script.
</para>
</listitem>
<listitem>
<para>
The client then connects to the NetLogon share and searches for said script.
If it is found and can be read, it is retrieved and executed by the client.
After this, the client disconnects from the NetLogon share.
</para>
</listitem>
<listitem>
<para>
The client sends a NetUserGetInfo request to the server to retrieve
the user's home share, which is used to search for profiles. Since the
response to the NetUserGetInfo request does not contain much more than
the user's home share, profiles for Windows 9x clients must reside in the user
home directory.
</para>
</listitem>
<listitem>
<para>
The client connects to the user's home share and searches for the
user's profile. As it turns out, you can specify the user's home share as
a share name and path. For example, <filename>\\server\fred\.winprofile</filename>.
If the profiles are found, they are implemented.
</para>
</listitem>
<listitem>
<para>
The client then disconnects from the user's home share and reconnects to
the NetLogon share and looks for <filename>CONFIG.POL</filename>, the policies file. If this is
found, it is read and implemented.
</para>
</listitem>
</orderedlist>
<para>
The main difference between a PDC and a Windows 9x/Me logon server configuration is:
</para>
<itemizedlist>
<listitem><para>
Password encryption is not required for a Windows 9x/Me logon server. But note
that beginning with MS Windows 98 the default setting is that plaintext
password support is disabled. It can be re-enabled with the registry
changes that are documented in <link linkend="PolicyMgmt">System and Account Policies</link>.
</para></listitem>
<listitem><para>
Windows 9x/Me clients do not require and do not use Machine Trust Accounts.
</para></listitem>
</itemizedlist>
<para>
A Samba PDC will act as a Windows 9x/Me logon server; after all, it does provide the
network logon services that MS Windows 9x/Me expect to find.
</para>
<note><para>
Use of plaintext passwords is strongly discouraged. Where used they are easily detected
using a sniffer tool to examine network traffic.
</para></note>
</sect3>
</sect2>
<sect2>
<title>Security Mode and Master Browsers</title>
<para>
There are a few comments to make in order to tie up some loose ends. There has been
much debate over the issue of whether it is okay to configure Samba as a domain
controller in security modes other than user. The only security mode that will
not work due to technical reasons is share-mode security. Domain and server mode
security are really just a variation on SMB user-level security.
</para>
<para>
Actually, this issue is also closely tied to the debate on whether Samba must be the DMB for its workgroup
when operating as a domain controller. While it may technically be possible to configure a server as such
(after all, browsing and domain logons are two distinctly different functions), it is not a good idea to do
so. You should remember that the domain controller must register the DOMAIN<#1b> NetBIOS name. This is
the name used by Windows clients to locate the domain controller. Windows clients do not distinguish between
the domain controller and the DMB. A DMB is a Domain Master Browser &smbmdash; see <link
linkend="NetworkBrowsing">The Network Browsing Chapter</link>, <link linkend="DMB">Configuring WORKGROUP
Browsing</link> section. For this reason, it is wise to configure the Samba domain controller as the DMB.
</para>
<para>
Now back to the issue of configuring a Samba domain controller to use a mode other than
<smbconfoption name="security">user</smbconfoption>. If a Samba host is
configured to use another SMB server or domain controller in order to validate user connection requests,
it is a fact that some other machine on the network (the <smbconfoption name="password server"/>)
knows more about the user than the Samba host. About 99 percent of the time, this other host is
a domain controller. Now to operate in domain mode security, the <smbconfoption name="workgroup"/>
parameter must be set to the name of the Windows NT domain (which already has a domain controller).
If the domain does not already have a domain controller, you do not yet have a domain.
</para>
<para>
Configuring a Samba box as a domain controller for a domain that already by definition has a
PDC is asking for trouble. Therefore, you should always configure the Samba domain controller
to be the DMB for its domain and set <smbconfoption name="security">user</smbconfoption>.
This is the only officially supported mode of operation.
</para>
</sect2>
</sect1>
<sect1>
<title>Common Errors</title>
<sect2>
<title><quote>$</quote> Cannot Be Included in Machine Name</title>
<para>
A machine account, typically stored in <filename>/etc/passwd</filename>, takes the form of the machine
name with a <quote>$</quote> appended. Some BSD systems will not create a user with a <quote>$</quote> in the name.
Recent versions of FreeBSD have removed this limitation, but older releases are still in common use.
</para>
<para>
The problem is only in the program used to make the entry. Once made, it works perfectly.
Create a user without the <quote>$</quote>. Then use <command>vipw</command> to edit the entry, adding
the <quote>$</quote>. Or create the whole entry with vipw if you like; make sure you use a unique user login ID.
</para>
<note><para>The machine account must have the exact name that the workstation has.</para></note>
<note><para>
The UNIX tool <command>vipw</command> is a common tool for directly editing the <filename>/etc/passwd</filename> file.
</para></note>
</sect2>
<sect2>
<title>Joining Domain Fails Because of Existing Machine Account</title>
<para>
<quote>I get told, `You already have a connection to the Domain....' or `Cannot join domain, the
credentials supplied conflict with an existing set...' when creating a Machine Trust Account.</quote>
</para>
<para>
This happens if you try to create a Machine Trust Account from the machine itself and already have a
connection (e.g., mapped drive) to a share (or IPC$) on the Samba PDC. The following command
will remove all network drive connections:
<screen>
&dosprompt;<userinput>net use * /d</userinput>
</screen>
</para>
<para>
Further, if the machine is already a <quote>member of a workgroup</quote> that
is the same name as the domain you are joining (bad idea), you will
get this message. Change the workgroup name to something else &smbmdash; it
does not matter what &smbmdash; reboot, and try again.
</para>
</sect2>
<sect2>
<title>The System Cannot Log You On (C000019B)</title>
<para><quote>I joined the domain successfully but after upgrading
to a newer version of the Samba code I get the message, <errorname>`The system
cannot log you on (C000019B). Please try again or consult your
system administrator</errorname> when attempting to logon.'</quote>
</para>
<para>
<indexterm><primary>SID</primary></indexterm>
This occurs when the domain SID stored in the secrets.tdb database
is changed. The most common cause of a change in domain SID is when
the domain name and/or the server name (NetBIOS name) is changed.
The only way to correct the problem is to restore the original domain
SID or remove the domain client from the domain and rejoin. The domain
SID may be reset using either the net or rpcclient utilities.
</para>
<para>
To reset or change the domain SID you can use the net command as follows:
<screen>
&rootprompt;<userinput>net getlocalsid 'OLDNAME'</userinput>
&rootprompt;<userinput>net setlocalsid 'SID'</userinput>
</screen>
</para>
<para>
Workstation Machine Trust Accounts work only with the domain (or network) SID. If this SID changes,
domain members (workstations) will not be able to log onto the domain. The original domain SID
can be recovered from the secrets.tdb file. The alternative is to visit each workstation to rejoin
it to the domain.
</para>
</sect2>
<sect2>
<title>The Machine Trust Account Is Not Accessible</title>
<para>
<quote>When I try to join the domain I get the message, <errorname>"The machine account
for this computer either does not exist or is not accessible</errorname>." What's
wrong?</quote>
</para>
<para>
This problem is caused by the PDC not having a suitable Machine Trust Account.
If you are using the <smbconfoption name="add machine script"/> method to create
accounts, then this would indicate that it has not worked. Ensure the domain
admin user system is working.
</para>
<para>
Alternately, if you are creating account entries manually, then they
have not been created correctly. Make sure that you have the entry
correct for the Machine Trust Account in <filename>smbpasswd</filename> file on the Samba PDC.
If you added the account using an editor rather than using the smbpasswd
utility, make sure that the account name is the machine NetBIOS name
with a <quote>$</quote> appended to it (i.e., computer_name$). There must be an entry
in both /etc/passwd and the smbpasswd file.
</para>
<para>
Some people have also reported that inconsistent subnet masks between the Samba server and the NT
client can cause this problem. Make sure that these are consistent for both client and server.
</para>
</sect2>
<sect2>
<title>Account Disabled</title>
<para><quote>When I attempt to log in to a Samba domain from a NT4/W200x workstation,
I get a message about my account being disabled.</quote></para>
<para>
Enable the user accounts with <userinput>smbpasswd -e <replaceable>username</replaceable>
</userinput>. This is normally done as an account is created.
</para>
</sect2>
<sect2>
<title>Domain Controller Unavailable</title>
<para><quote>Until a few minutes after Samba has started, clients get the error `Domain Controller Unavailable'</quote></para>
<para>
A domain controller has to announce its role on the network. This usually takes a while. Be patient for up to 15 minutes,
then try again.
</para>
</sect2>
<sect2>
<title>Cannot Log onto Domain Member Workstation After Joining Domain</title>
<para>
<indexterm><primary>schannel</primary></indexterm>
<indexterm><primary>signing</primary></indexterm>
After successfully joining the domain, user logons fail with one of two messages: one to the
effect that the domain controller cannot be found; the other claims that the account does not
exist in the domain or that the password is incorrect. This may be due to incompatible
settings between the Windows client and the Samba-3 server for <emphasis>schannel</emphasis>
(secure channel) settings or <emphasis>smb signing</emphasis> settings. Check your Samba
settings for <emphasis>client schannel</emphasis>, <emphasis>server schannel</emphasis>,
<emphasis>client signing</emphasis>, <emphasis>server signing</emphasis> by executing:
<screen>
<command>testparm -v | more</command> and looking for the value of these parameters.
</screen>
</para>
<para>
Also use the MMC &smbmdash; Local Security Settings. This tool is available from the
Control Panel. The Policy settings are found in the Local Policies/Security Options area and are prefixed by
<emphasis>Secure Channel:..., and Digitally sign...</emphasis>.
</para>
<para>
It is important that these be set consistently with the Samba-3 server settings.
</para>
</sect2>
</sect1>
</chapter>
|