1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
/* Licensed under LGPLv3+ - see LICENSE file for details */
#include <ccan/tally/tally.h>
#include <ccan/build_assert/build_assert.h>
#include <ccan/likely/likely.h>
#include <stdint.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#define SIZET_BITS (sizeof(size_t)*CHAR_BIT)
/* We use power of 2 steps. I tried being tricky, but it got buggy. */
struct tally {
ssize_t min, max;
size_t total[2];
/* This allows limited frequency analysis. */
unsigned buckets, step_bits;
size_t counts[1 /* Actually: [buckets] */ ];
};
struct tally *tally_new(unsigned buckets)
{
struct tally *tally;
/* There is always 1 bucket. */
if (buckets == 0) {
buckets = 1;
}
/* Overly cautious check for overflow. */
if (sizeof(*tally) * buckets / sizeof(*tally) != buckets) {
return NULL;
}
tally = (struct tally *)malloc(
sizeof(*tally) + sizeof(tally->counts[0])*(buckets-1));
if (tally == NULL) {
return NULL;
}
tally->max = ((size_t)1 << (SIZET_BITS - 1));
tally->min = ~tally->max;
tally->total[0] = tally->total[1] = 0;
tally->buckets = buckets;
tally->step_bits = 0;
memset(tally->counts, 0, sizeof(tally->counts[0])*buckets);
return tally;
}
static unsigned bucket_of(ssize_t min, unsigned step_bits, ssize_t val)
{
/* Don't over-shift. */
if (step_bits == SIZET_BITS) {
return 0;
}
assert(step_bits < SIZET_BITS);
return (size_t)(val - min) >> step_bits;
}
/* Return the min value in bucket b. */
static ssize_t bucket_min(ssize_t min, unsigned step_bits, unsigned b)
{
/* Don't over-shift. */
if (step_bits == SIZET_BITS)
return min;
assert(step_bits < SIZET_BITS);
return min + ((ssize_t)b << step_bits);
}
/* Does shifting by this many bits truncate the number? */
static bool shift_overflows(size_t num, unsigned bits)
{
if (bits == 0)
return false;
return ((num << bits) >> 1) != (num << (bits - 1));
}
/* When min or max change, we may need to shuffle the frequency counts. */
static void renormalize(struct tally *tally,
ssize_t new_min, ssize_t new_max)
{
size_t range, spill;
unsigned int i, old_min;
/* Uninitialized? Don't do anything... */
if (tally->max < tally->min)
goto update;
/* If we don't have sufficient range, increase step bits until
* buckets cover entire range of ssize_t anyway. */
range = (new_max - new_min) + 1;
while (!shift_overflows(tally->buckets, tally->step_bits)
&& range > ((size_t)tally->buckets << tally->step_bits)) {
/* Collapse down. */
for (i = 1; i < tally->buckets; i++) {
tally->counts[i/2] += tally->counts[i];
tally->counts[i] = 0;
}
tally->step_bits++;
}
/* Now if minimum has dropped, move buckets up. */
old_min = bucket_of(new_min, tally->step_bits, tally->min);
memmove(tally->counts + old_min,
tally->counts,
sizeof(tally->counts[0]) * (tally->buckets - old_min));
memset(tally->counts, 0, sizeof(tally->counts[0]) * old_min);
/* If we moved boundaries, adjust buckets to that ratio. */
spill = (tally->min - new_min) % (1 << tally->step_bits);
for (i = 0; i < tally->buckets-1; i++) {
size_t adjust = (tally->counts[i] >> tally->step_bits) * spill;
tally->counts[i] -= adjust;
tally->counts[i+1] += adjust;
}
update:
tally->min = new_min;
tally->max = new_max;
}
void tally_add(struct tally *tally, ssize_t val)
{
ssize_t new_min = tally->min, new_max = tally->max;
bool need_renormalize = false;
if (val < tally->min) {
new_min = val;
need_renormalize = true;
}
if (val > tally->max) {
new_max = val;
need_renormalize = true;
}
if (need_renormalize)
renormalize(tally, new_min, new_max);
/* 128-bit arithmetic! If we didn't want exact mean, we could just
* pull it out of counts. */
if (val > 0 && tally->total[0] + val < tally->total[0])
tally->total[1]++;
else if (val < 0 && tally->total[0] + val > tally->total[0])
tally->total[1]--;
tally->total[0] += val;
tally->counts[bucket_of(tally->min, tally->step_bits, val)]++;
}
size_t tally_num(const struct tally *tally)
{
size_t i, num = 0;
for (i = 0; i < tally->buckets; i++)
num += tally->counts[i];
return num;
}
ssize_t tally_min(const struct tally *tally)
{
return tally->min;
}
ssize_t tally_max(const struct tally *tally)
{
return tally->max;
}
/* FIXME: Own ccan module please! */
static unsigned fls64(uint64_t val)
{
#if HAVE_BUILTIN_CLZL
if (val <= ULONG_MAX) {
/* This is significantly faster! */
return val ? sizeof(long) * CHAR_BIT - __builtin_clzl(val) : 0;
} else {
#endif
uint64_t r = 64;
if (!val)
return 0;
if (!(val & 0xffffffff00000000ull)) {
val <<= 32;
r -= 32;
}
if (!(val & 0xffff000000000000ull)) {
val <<= 16;
r -= 16;
}
if (!(val & 0xff00000000000000ull)) {
val <<= 8;
r -= 8;
}
if (!(val & 0xf000000000000000ull)) {
val <<= 4;
r -= 4;
}
if (!(val & 0xc000000000000000ull)) {
val <<= 2;
r -= 2;
}
if (!(val & 0x8000000000000000ull)) {
val <<= 1;
r -= 1;
}
return r;
#if HAVE_BUILTIN_CLZL
}
#endif
}
/* This is stolen straight from Hacker's Delight. */
static uint64_t divlu64(uint64_t u1, uint64_t u0, uint64_t v)
{
const uint64_t b = 4294967296ULL; // Number base (32 bits).
uint32_t un[4], // Dividend and divisor
vn[2]; // normalized and broken
// up into halfwords.
uint32_t q[2]; // Quotient as halfwords.
uint64_t un1, un0, // Dividend and divisor
vn0; // as fullwords.
uint64_t qhat; // Estimated quotient digit.
uint64_t rhat; // A remainder.
uint64_t p; // Product of two digits.
int64_t s, i, j, t, k;
if (u1 >= v) // If overflow, return the largest
return (uint64_t)-1; // possible quotient.
s = 64 - fls64(v); // 0 <= s <= 63.
vn0 = v << s; // Normalize divisor.
vn[1] = vn0 >> 32; // Break divisor up into
vn[0] = vn0 & 0xFFFFFFFF; // two 32-bit halves.
// Shift dividend left.
un1 = ((u1 << s) | (u0 >> (64 - s))) & (-s >> 63);
un0 = u0 << s;
un[3] = un1 >> 32; // Break dividend up into
un[2] = un1; // four 32-bit halfwords
un[1] = un0 >> 32; // Note: storing into
un[0] = un0; // halfwords truncates.
for (j = 1; j >= 0; j--) {
// Compute estimate qhat of q[j].
qhat = (un[j+2]*b + un[j+1])/vn[1];
rhat = (un[j+2]*b + un[j+1]) - qhat*vn[1];
again:
if (qhat >= b || qhat*vn[0] > b*rhat + un[j]) {
qhat = qhat - 1;
rhat = rhat + vn[1];
if (rhat < b) goto again;
}
// Multiply and subtract.
k = 0;
for (i = 0; i < 2; i++) {
p = qhat*vn[i];
t = un[i+j] - k - (p & 0xFFFFFFFF);
un[i+j] = t;
k = (p >> 32) - (t >> 32);
}
t = un[j+2] - k;
un[j+2] = t;
q[j] = qhat; // Store quotient digit.
if (t < 0) { // If we subtracted too
q[j] = q[j] - 1; // much, add back.
k = 0;
for (i = 0; i < 2; i++) {
t = un[i+j] + vn[i] + k;
un[i+j] = t;
k = t >> 32;
}
un[j+2] = un[j+2] + k;
}
} // End j.
return q[1]*b + q[0];
}
static int64_t divls64(int64_t u1, uint64_t u0, int64_t v)
{
int64_t q, uneg, vneg, diff, borrow;
uneg = u1 >> 63; // -1 if u < 0.
if (uneg) { // Compute the absolute
u0 = -u0; // value of the dividend u.
borrow = (u0 != 0);
u1 = -u1 - borrow;
}
vneg = v >> 63; // -1 if v < 0.
v = (v ^ vneg) - vneg; // Absolute value of v.
if ((uint64_t)u1 >= (uint64_t)v)
goto overflow;
q = divlu64(u1, u0, v);
diff = uneg ^ vneg; // Negate q if signs of
q = (q ^ diff) - diff; // u and v differed.
if ((diff ^ q) < 0 && q != 0) { // If overflow, return the largest
overflow: // possible neg. quotient.
q = 0x8000000000000000ULL;
}
return q;
}
ssize_t tally_mean(const struct tally *tally)
{
size_t count = tally_num(tally);
if (!count)
return 0;
if (sizeof(tally->total[0]) == sizeof(uint32_t)) {
/* Use standard 64-bit arithmetic. */
int64_t total = tally->total[0]
| (((uint64_t)tally->total[1]) << 32);
return total / count;
}
return divls64(tally->total[1], tally->total[0], count);
}
ssize_t tally_total(const struct tally *tally, ssize_t *overflow)
{
if (overflow) {
*overflow = tally->total[1];
return tally->total[0];
}
/* If result is negative, make sure we can represent it. */
if (tally->total[1] & ((size_t)1 << (SIZET_BITS-1))) {
/* Must have only underflowed once, and must be able to
* represent result at ssize_t. */
if ((~tally->total[1])+1 != 0
|| (ssize_t)tally->total[0] >= 0) {
/* Underflow, return minimum. */
return (ssize_t)((size_t)1 << (SIZET_BITS - 1));
}
} else {
/* Result is positive, must not have overflowed, and must be
* able to represent as ssize_t. */
if (tally->total[1] || (ssize_t)tally->total[0] < 0) {
/* Overflow. Return maximum. */
return (ssize_t)~((size_t)1 << (SIZET_BITS - 1));
}
}
return tally->total[0];
}
static ssize_t bucket_range(const struct tally *tally, unsigned b, size_t *err)
{
ssize_t min, max;
min = bucket_min(tally->min, tally->step_bits, b);
if (b == tally->buckets - 1)
max = tally->max;
else
max = bucket_min(tally->min, tally->step_bits, b+1) - 1;
/* FIXME: Think harder about cumulative error; is this enough?. */
*err = (max - min + 1) / 2;
/* Avoid overflow. */
return min + (max - min) / 2;
}
ssize_t tally_approx_median(const struct tally *tally, size_t *err)
{
size_t count = tally_num(tally), total = 0;
unsigned int i;
for (i = 0; i < tally->buckets; i++) {
total += tally->counts[i];
if (total * 2 >= count)
break;
}
return bucket_range(tally, i, err);
}
ssize_t tally_approx_mode(const struct tally *tally, size_t *err)
{
unsigned int i, min_best = 0, max_best = 0;
for (i = 0; i < tally->buckets; i++) {
if (tally->counts[i] > tally->counts[min_best]) {
min_best = max_best = i;
} else if (tally->counts[i] == tally->counts[min_best]) {
max_best = i;
}
}
/* We can have more than one best, making our error huge. */
if (min_best != max_best) {
ssize_t min, max;
min = bucket_range(tally, min_best, err);
max = bucket_range(tally, max_best, err);
max += *err;
*err += (size_t)(max - min);
return min + (max - min) / 2;
}
return bucket_range(tally, min_best, err);
}
static unsigned get_max_bucket(const struct tally *tally)
{
unsigned int i;
for (i = tally->buckets; i > 0; i--)
if (tally->counts[i-1])
break;
return i;
}
char *tally_histogram(const struct tally *tally,
unsigned width, unsigned height)
{
unsigned int i, count, max_bucket, largest_bucket;
struct tally *tmp;
char *graph, *p;
assert(width >= TALLY_MIN_HISTO_WIDTH);
assert(height >= TALLY_MIN_HISTO_HEIGHT);
/* Ignore unused buckets. */
max_bucket = get_max_bucket(tally);
/* FIXME: It'd be nice to smooth here... */
if (height >= max_bucket) {
height = max_bucket;
tmp = NULL;
} else {
/* We create a temporary then renormalize so < height. */
/* FIXME: Antialias properly! */
tmp = tally_new(tally->buckets);
if (!tmp)
return NULL;
tmp->min = tally->min;
tmp->max = tally->max;
tmp->step_bits = tally->step_bits;
memcpy(tmp->counts, tally->counts,
sizeof(tally->counts[0]) * tmp->buckets);
while ((max_bucket = get_max_bucket(tmp)) >= height)
renormalize(tmp, tmp->min, tmp->max * 2);
/* Restore max */
tmp->max = tally->max;
tally = tmp;
height = max_bucket;
}
/* Figure out longest line, for scale. */
largest_bucket = 0;
for (i = 0; i < tally->buckets; i++) {
if (tally->counts[i] > largest_bucket)
largest_bucket = tally->counts[i];
}
p = graph = (char *)malloc(height * (width + 1) + 1);
if (!graph) {
free(tmp);
return NULL;
}
for (i = 0; i < height; i++) {
unsigned covered = 1, row;
/* People expect minimum at the bottom. */
row = height - i - 1;
count = (double)tally->counts[row] / largest_bucket * (width-1)+1;
if (row == 0)
covered = snprintf(p, width, "%zi", tally->min);
else if (row == height - 1)
covered = snprintf(p, width, "%zi", tally->max);
else if (row == bucket_of(tally->min, tally->step_bits, 0))
*p = '+';
else
*p = '|';
if (covered > width)
covered = width;
p += covered;
if (count > covered)
count -= covered;
else
count = 0;
memset(p, '*', count);
p += count;
*p = '\n';
p++;
}
*p = '\0';
free(tmp);
return graph;
}
|