summaryrefslogtreecommitdiff
path: root/lib/crypto/aes_ccm_128.c
blob: ac8e01f631df910bbcf9b5a09d192172c1206513 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
   AES-CCM-128 (rfc 3610)

   Copyright (C) Stefan Metzmacher 2012

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "replace.h"
#include "../lib/crypto/crypto.h"
#include "lib/util/byteorder.h"

#define M_ ((AES_CCM_128_M - 2) / 2)
#define L_ (AES_CCM_128_L - 1)

static inline void aes_ccm_128_xor(const uint8_t in1[AES_BLOCK_SIZE],
				   const uint8_t in2[AES_BLOCK_SIZE],
				   uint8_t out[AES_BLOCK_SIZE])
{
	uint8_t i;

	for (i = 0; i < AES_BLOCK_SIZE; i++) {
		out[i] = in1[i] ^ in2[i];
	}
}

void aes_ccm_128_init(struct aes_ccm_128_context *ctx,
		      const uint8_t K[AES_BLOCK_SIZE],
		      const uint8_t N[AES_CCM_128_NONCE_SIZE],
		      size_t a_total, size_t m_total)
{
	uint8_t B_0[AES_BLOCK_SIZE];

	ZERO_STRUCTP(ctx);

	AES_set_encrypt_key(K, 128, &ctx->aes_key);
	memcpy(ctx->nonce, N, AES_CCM_128_NONCE_SIZE);
	ctx->a_remain = a_total;
	ctx->m_remain = m_total;

	/*
	 * prepare B_0
	 */
	B_0[0]  = L_;
	B_0[0] += 8 * M_;
	if (a_total > 0) {
		B_0[0] += 64;
	}
	memcpy(&B_0[1], ctx->nonce, AES_CCM_128_NONCE_SIZE);
	RSIVAL(B_0, (AES_BLOCK_SIZE - AES_CCM_128_L), m_total);

	/*
	 * prepare X_1
	 */
	AES_encrypt(B_0, ctx->X_i, &ctx->aes_key);

	/*
	 * prepare B_1
	 */
	if (a_total >= UINT32_MAX) {
		RSSVAL(ctx->B_i, 0, 0xFFFF);
		RSBVAL(ctx->B_i, 2, a_total);
		ctx->B_i_ofs = 10;
	} else if (a_total >= 0xFF00) {
		RSSVAL(ctx->B_i, 0, 0xFFFE);
		RSIVAL(ctx->B_i, 2, a_total);
		ctx->B_i_ofs = 6;
	} else if (a_total > 0) {
		RSSVAL(ctx->B_i, 0, a_total);
		ctx->B_i_ofs = 2;
	}

	ctx->S_i_ofs = AES_BLOCK_SIZE;
}

void aes_ccm_128_update(struct aes_ccm_128_context *ctx,
			const uint8_t *v, size_t v_len)
{
	size_t *remain;

	if (ctx->a_remain > 0) {
		remain = &ctx->a_remain;
	} else {
		remain = &ctx->m_remain;
	}

	while (v_len > 0) {
		size_t n = MIN(AES_BLOCK_SIZE - ctx->B_i_ofs, v_len);
		bool more = true;

		memcpy(&ctx->B_i[ctx->B_i_ofs], v, n);
		v += n;
		v_len -= n;
		ctx->B_i_ofs += n;
		*remain -= n;

		if (ctx->B_i_ofs == AES_BLOCK_SIZE) {
			more = false;
		} else if (*remain == 0) {
			more = false;
		}

		if (more) {
			continue;
		}

		aes_ccm_128_xor(ctx->X_i, ctx->B_i, ctx->B_i);
		AES_encrypt(ctx->B_i, ctx->X_i, &ctx->aes_key);

		ZERO_STRUCT(ctx->B_i);
		ctx->B_i_ofs = 0;
	}
}

static void aes_ccm_128_S_i(struct aes_ccm_128_context *ctx,
			    uint8_t S_i[AES_BLOCK_SIZE],
			    size_t i)
{
	uint8_t A_i[AES_BLOCK_SIZE];

	A_i[0]  = L_;
	memcpy(&A_i[1], ctx->nonce, AES_CCM_128_NONCE_SIZE);
	RSIVAL(A_i, (AES_BLOCK_SIZE - AES_CCM_128_L), i);

	AES_encrypt(A_i, S_i, &ctx->aes_key);
}

void aes_ccm_128_crypt(struct aes_ccm_128_context *ctx,
		       uint8_t *m, size_t m_len)
{
	while (m_len > 0) {
		if (ctx->S_i_ofs == AES_BLOCK_SIZE) {
			ctx->S_i_ctr += 1;
			aes_ccm_128_S_i(ctx, ctx->S_i, ctx->S_i_ctr);
			ctx->S_i_ofs = 0;
		}

		m[0] ^= ctx->S_i[ctx->S_i_ofs];
		m += 1;
		m_len -= 1;
		ctx->S_i_ofs += 1;
	}
}

void aes_ccm_128_digest(struct aes_ccm_128_context *ctx,
			uint8_t digest[AES_BLOCK_SIZE])
{
	uint8_t S_0[AES_BLOCK_SIZE];

	aes_ccm_128_S_i(ctx, S_0, 0);

	/*
	 * note X_i is T here
	 */
	aes_ccm_128_xor(ctx->X_i, S_0, digest);

	ZERO_STRUCT(S_0);
	ZERO_STRUCTP(ctx);
}