1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
/*
* Unix SMB/CIFS implementation.
* threadpool implementation based on pthreads
* Copyright (C) Volker Lendecke 2009,2011
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __PTHREADPOOL_H__
#define __PTHREADPOOL_H__
struct pthreadpool;
/**
* @defgroup pthreadpool The pthreadpool API
*
* This API provides a way to run threadsafe functions in a helper
* thread. It is initially intended to run getaddrinfo asynchronously.
*/
/**
* @brief Create a pthreadpool
*
* A struct pthreadpool is the basis for for running threads in the
* background.
*
* @param[in] max_threads Maximum parallelism in this pool
* @param[out] presult Pointer to the threadpool returned
* @return success: 0, failure: errno
*
* max_threads=0 means unlimited parallelism. The caller has to take
* care to not overload the system.
*/
int pthreadpool_init(unsigned max_threads, struct pthreadpool **presult);
/**
* @brief Destroy a pthreadpool
*
* Destroy a pthreadpool. If jobs are still active, this returns
* EBUSY.
*
* @param[in] pool The pool to destroy
* @return success: 0, failure: errno
*/
int pthreadpool_destroy(struct pthreadpool *pool);
/**
* @brief Add a job to a pthreadpool
*
* This adds a job to a pthreadpool. The job can be identified by
* job_id. This integer will be returned from
* pthreadpool_finished_job() then the job is completed.
*
* @param[in] pool The pool to run the job on
* @param[in] job_id A custom identifier
* @param[in] fn The function to run asynchronously
* @param[in] private_data Pointer passed to fn
* @return success: 0, failure: errno
*/
int pthreadpool_add_job(struct pthreadpool *pool, int job_id,
void (*fn)(void *private_data), void *private_data);
/**
* @brief Get the signalling fd from a pthreadpool
*
* Completion of a job is indicated by readability of the fd retuned
* by pthreadpool_signal_fd().
*
* @param[in] pool The pool in question
* @return The fd to listen on for readability
*/
int pthreadpool_signal_fd(struct pthreadpool *pool);
/**
* @brief Get the job_id of a finished job
*
* This blocks until a job has finished unless the fd returned by
* pthreadpool_signal_fd() is readable.
*
* @param[in] pool The pool to query for finished jobs
* @param[out] pjobid The job_id of the finished job
* @return success: 0, failure: errno
*/
int pthreadpool_finished_job(struct pthreadpool *pool, int *jobid);
#endif
|