1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
<?xml version="1.0"?>
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN" "http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd">
<refentry>
<refmeta>
<refentrytitle>talloc</refentrytitle>
<manvolnum>3</manvolnum>
</refmeta>
<refnamediv>
<refname>talloc</refname>
<refpurpose>hierarchical reference counted memory pool system with destructors</refpurpose>
</refnamediv>
<refsynopsisdiv>
<synopsis>#include <talloc/talloc.h></synopsis>
</refsynopsisdiv>
<refsect1><title>DESCRIPTION</title>
<para>
If you are used to talloc from Samba3 then please read this
carefully, as talloc has changed a lot.
</para>
<para>
The new talloc is a hierarchical, reference counted memory pool
system with destructors. Quite a mouthful really, but not too bad
once you get used to it.
</para>
<para>
Perhaps the biggest change from Samba3 is that there is no
distinction between a "talloc context" and a "talloc pointer". Any
pointer returned from talloc() is itself a valid talloc context.
This means you can do this:
</para>
<programlisting>
struct foo *X = talloc(mem_ctx, struct foo);
X->name = talloc_strdup(X, "foo");
</programlisting>
<para>
and the pointer <literal role="code">X->name</literal>
would be a "child" of the talloc context <literal
role="code">X</literal> which is itself a child of
<literal role="code">mem_ctx</literal>. So if you do
<literal role="code">talloc_free(mem_ctx)</literal> then
it is all destroyed, whereas if you do <literal
role="code">talloc_free(X)</literal> then just <literal
role="code">X</literal> and <literal
role="code">X->name</literal> are destroyed, and if
you do <literal
role="code">talloc_free(X->name)</literal> then just
the name element of <literal role="code">X</literal> is
destroyed.
</para>
<para>
If you think about this, then what this effectively gives you is an
n-ary tree, where you can free any part of the tree with
talloc_free().
</para>
<para>
If you find this confusing, then I suggest you run the <literal
role="code">testsuite</literal> program to watch talloc
in action. You may also like to add your own tests to <literal
role="code">testsuite.c</literal> to clarify how some
particular situation is handled.
</para>
</refsect1>
<refsect1><title>TALLOC API</title>
<para>
The following is a complete guide to the talloc API. Read it all at
least twice.
</para>
<refsect2><title>(type *)talloc(const void *ctx, type);</title>
<para>
The talloc() macro is the core of the talloc library. It takes a
memory <emphasis role="italic">ctx</emphasis> and a <emphasis
role="italic">type</emphasis>, and returns a pointer to a new
area of memory of the given <emphasis
role="italic">type</emphasis>.
</para>
<para>
The returned pointer is itself a talloc context, so you can use
it as the <emphasis role="italic">ctx</emphasis> argument to more
calls to talloc() if you wish.
</para>
<para>
The returned pointer is a "child" of the supplied context. This
means that if you talloc_free() the <emphasis
role="italic">ctx</emphasis> then the new child disappears as
well. Alternatively you can free just the child.
</para>
<para>
The <emphasis role="italic">ctx</emphasis> argument to talloc()
can be NULL, in which case a new top level context is created.
</para>
</refsect2>
<refsect2><title>void *talloc_size(const void *ctx, size_t size);</title>
<para>
The function talloc_size() should be used when you don't have a
convenient type to pass to talloc(). Unlike talloc(), it is not
type safe (as it returns a void *), so you are on your own for
type checking.
</para>
</refsect2>
<refsect2><title>(typeof(ptr)) talloc_ptrtype(const void *ctx, ptr);</title>
<para>
The talloc_ptrtype() macro should be used when you have a pointer and
want to allocate memory to point at with this pointer. When compiling
with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_size()
and talloc_get_name() will return the current location in the source file.
and not the type.
</para>
</refsect2>
<refsect2><title>int talloc_free(void *ptr);</title>
<para>
The talloc_free() function frees a piece of talloc memory, and
all its children. You can call talloc_free() on any pointer
returned by talloc().
</para>
<para>
The return value of talloc_free() indicates success or failure,
with 0 returned for success and -1 for failure. The only
possible failure condition is if <emphasis
role="italic">ptr</emphasis> had a destructor attached to it and
the destructor returned -1. See <link
linkend="talloc_set_destructor"><quote>talloc_set_destructor()</quote></link>
for details on destructors.
</para>
<para>
If this pointer has an additional parent when talloc_free() is
called then the memory is not actually released, but instead the
most recently established parent is destroyed. See <link
linkend="talloc_reference"><quote>talloc_reference()</quote></link>
for details on establishing additional parents.
</para>
<para>
For more control on which parent is removed, see <link
linkend="talloc_unlink"><quote>talloc_unlink()</quote></link>.
</para>
<para>
talloc_free() operates recursively on its children.
</para>
</refsect2>
<refsect2 id="talloc_reference"><title>void *talloc_reference(const void *ctx, const void *ptr);</title>
<para>
The talloc_reference() function makes <emphasis
role="italic">ctx</emphasis> an additional parent of <emphasis
role="italic">ptr</emphasis>.
</para>
<para>
The return value of talloc_reference() is always the original
pointer <emphasis role="italic">ptr</emphasis>, unless talloc ran
out of memory in creating the reference in which case it will
return NULL (each additional reference consumes around 48 bytes
of memory on intel x86 platforms).
</para>
<para>
If <emphasis role="italic">ptr</emphasis> is NULL, then the
function is a no-op, and simply returns NULL.
</para>
<para>
After creating a reference you can free it in one of the
following ways:
</para>
<para>
<itemizedlist>
<listitem>
<para>
you can talloc_free() any parent of the original pointer.
That will reduce the number of parents of this pointer by 1,
and will cause this pointer to be freed if it runs out of
parents.
</para>
</listitem>
<listitem>
<para>
you can talloc_free() the pointer itself. That will destroy
the most recently established parent to the pointer and leave
the pointer as a child of its current parent.
</para>
</listitem>
</itemizedlist>
</para>
<para>
For more control on which parent to remove, see <link
linkend="talloc_unlink"><quote>talloc_unlink()</quote></link>.
</para>
</refsect2>
<refsect2 id="talloc_unlink"><title>int talloc_unlink(const void *ctx, const void *ptr);</title>
<para>
The talloc_unlink() function removes a specific parent from
<emphasis role="italic">ptr</emphasis>. The <emphasis
role="italic">ctx</emphasis> passed must either be a context used
in talloc_reference() with this pointer, or must be a direct
parent of ptr.
</para>
<para>
Note that if the parent has already been removed using
talloc_free() then this function will fail and will return -1.
Likewise, if <emphasis role="italic">ptr</emphasis> is NULL, then
the function will make no modifications and return -1.
</para>
<para>
Usually you can just use talloc_free() instead of
talloc_unlink(), but sometimes it is useful to have the
additional control on which parent is removed.
</para>
</refsect2>
<refsect2 id="talloc_set_destructor"><title>void talloc_set_destructor(const void *ptr, int (*destructor)(void *));</title>
<para>
The function talloc_set_destructor() sets the <emphasis
role="italic">destructor</emphasis> for the pointer <emphasis
role="italic">ptr</emphasis>. A <emphasis
role="italic">destructor</emphasis> is a function that is called
when the memory used by a pointer is about to be released. The
destructor receives <emphasis role="italic">ptr</emphasis> as an
argument, and should return 0 for success and -1 for failure.
</para>
<para>
The <emphasis role="italic">destructor</emphasis> can do anything
it wants to, including freeing other pieces of memory. A common
use for destructors is to clean up operating system resources
(such as open file descriptors) contained in the structure the
destructor is placed on.
</para>
<para>
You can only place one destructor on a pointer. If you need more
than one destructor then you can create a zero-length child of
the pointer and place an additional destructor on that.
</para>
<para>
To remove a destructor call talloc_set_destructor() with NULL for
the destructor.
</para>
<para>
If your destructor attempts to talloc_free() the pointer that it
is the destructor for then talloc_free() will return -1 and the
free will be ignored. This would be a pointless operation
anyway, as the destructor is only called when the memory is just
about to go away.
</para>
</refsect2>
<refsect2><title>int talloc_increase_ref_count(const void *<emphasis role="italic">ptr</emphasis>);</title>
<para>
The talloc_increase_ref_count(<emphasis
role="italic">ptr</emphasis>) function is exactly equivalent to:
</para>
<programlisting>talloc_reference(NULL, ptr);</programlisting>
<para>
You can use either syntax, depending on which you think is
clearer in your code.
</para>
<para>
It returns 0 on success and -1 on failure.
</para>
</refsect2>
<refsect2><title>size_t talloc_reference_count(const void *<emphasis role="italic">ptr</emphasis>);</title>
<para>
Return the number of references to the pointer.
</para>
</refsect2>
<refsect2 id="talloc_set_name"><title>void talloc_set_name(const void *ptr, const char *fmt, ...);</title>
<para>
Each talloc pointer has a "name". The name is used principally
for debugging purposes, although it is also possible to set and
get the name on a pointer in as a way of "marking" pointers in
your code.
</para>
<para>
The main use for names on pointer is for "talloc reports". See
<link
linkend="talloc_report"><quote>talloc_report_depth_cb()</quote></link>,
<link
linkend="talloc_report"><quote>talloc_report_depth_file()</quote></link>,
<link
linkend="talloc_report"><quote>talloc_report()</quote></link>
<link
linkend="talloc_report"><quote>talloc_report()</quote></link>
and <link
linkend="talloc_report_full"><quote>talloc_report_full()</quote></link>
for details. Also see <link
linkend="talloc_enable_leak_report"><quote>talloc_enable_leak_report()</quote></link>
and <link
linkend="talloc_enable_leak_report_full"><quote>talloc_enable_leak_report_full()</quote></link>.
</para>
<para>
The talloc_set_name() function allocates memory as a child of the
pointer. It is logically equivalent to:
</para>
<programlisting>talloc_set_name_const(ptr, talloc_asprintf(ptr, fmt, ...));</programlisting>
<para>
Note that multiple calls to talloc_set_name() will allocate more
memory without releasing the name. All of the memory is released
when the ptr is freed using talloc_free().
</para>
</refsect2>
<refsect2><title>void talloc_set_name_const(const void *<emphasis role="italic">ptr</emphasis>, const char *<emphasis role="italic">name</emphasis>);</title>
<para>
The function talloc_set_name_const() is just like
talloc_set_name(), but it takes a string constant, and is much
faster. It is extensively used by the "auto naming" macros, such
as talloc_p().
</para>
<para>
This function does not allocate any memory. It just copies the
supplied pointer into the internal representation of the talloc
ptr. This means you must not pass a <emphasis
role="italic">name</emphasis> pointer to memory that will
disappear before <emphasis role="italic">ptr</emphasis> is freed
with talloc_free().
</para>
</refsect2>
<refsect2><title>void *talloc_named(const void *<emphasis role="italic">ctx</emphasis>, size_t <emphasis role="italic">size</emphasis>, const char *<emphasis role="italic">fmt</emphasis>, ...);</title>
<para>
The talloc_named() function creates a named talloc pointer. It
is equivalent to:
</para>
<programlisting>ptr = talloc_size(ctx, size);
talloc_set_name(ptr, fmt, ....);</programlisting>
</refsect2>
<refsect2><title>void *talloc_named_const(const void *<emphasis role="italic">ctx</emphasis>, size_t <emphasis role="italic">size</emphasis>, const char *<emphasis role="italic">name</emphasis>);</title>
<para>
This is equivalent to:
</para>
<programlisting>ptr = talloc_size(ctx, size);
talloc_set_name_const(ptr, name);</programlisting>
</refsect2>
<refsect2><title>const char *talloc_get_name(const void *<emphasis role="italic">ptr</emphasis>);</title>
<para>
This returns the current name for the given talloc pointer,
<emphasis role="italic">ptr</emphasis>. See <link
linkend="talloc_set_name"><quote>talloc_set_name()</quote></link>
for details.
</para>
</refsect2>
<refsect2><title>void *talloc_init(const char *<emphasis role="italic">fmt</emphasis>, ...);</title>
<para>
This function creates a zero length named talloc context as a top
level context. It is equivalent to:
</para>
<programlisting>talloc_named(NULL, 0, fmt, ...);</programlisting>
</refsect2>
<refsect2><title>void *talloc_new(void *<emphasis role="italic">ctx</emphasis>);</title>
<para>
This is a utility macro that creates a new memory context hanging
off an exiting context, automatically naming it "talloc_new:
__location__" where __location__ is the source line it is called
from. It is particularly useful for creating a new temporary
working context.
</para>
</refsect2>
<refsect2><title>(<emphasis role="italic">type</emphasis> *)talloc_realloc(const void *<emphasis role="italic">ctx</emphasis>, void *<emphasis role="italic">ptr</emphasis>, <emphasis role="italic">type</emphasis>, <emphasis role="italic">count</emphasis>);</title>
<para>
The talloc_realloc() macro changes the size of a talloc pointer.
It has the following equivalences:
</para>
<programlisting>talloc_realloc(ctx, NULL, type, 1) ==> talloc(ctx, type);
talloc_realloc(ctx, ptr, type, 0) ==> talloc_free(ptr);</programlisting>
<para>
The <emphasis role="italic">ctx</emphasis> argument is only used
if <emphasis role="italic">ptr</emphasis> is not NULL, otherwise
it is ignored.
</para>
<para>
talloc_realloc() returns the new pointer, or NULL on failure.
The call will fail either due to a lack of memory, or because the
pointer has more than one parent (see <link
linkend="talloc_reference"><quote>talloc_reference()</quote></link>).
</para>
</refsect2>
<refsect2><title>void *talloc_realloc_size(const void *ctx, void *ptr, size_t size);</title>
<para>
the talloc_realloc_size() function is useful when the type is not
known so the type-safe talloc_realloc() cannot be used.
</para>
</refsect2>
<refsect2><title>TYPE *talloc_steal(const void *<emphasis role="italic">new_ctx</emphasis>, const TYPE *<emphasis role="italic">ptr</emphasis>);</title>
<para>
The talloc_steal() function changes the parent context of a
talloc pointer. It is typically used when the context that the
pointer is currently a child of is going to be freed and you wish
to keep the memory for a longer time.
</para>
<para>
The talloc_steal() function returns the pointer that you pass it.
It does not have any failure modes.
</para>
<para>
NOTE: It is possible to produce loops in the parent/child
relationship if you are not careful with talloc_steal(). No
guarantees are provided as to your sanity or the safety of your
data if you do this.
</para>
</refsect2>
<refsect2><title>TYPE *talloc_move(const void *<emphasis role="italic">new_ctx</emphasis>, TYPE **<emphasis role="italic">ptr</emphasis>);</title>
<para>
The talloc_move() function is a wrapper around
talloc_steal() which zeros the source pointer after the
move. This avoids a potential source of bugs where a
programmer leaves a pointer in two structures, and uses the
pointer from the old structure after it has been moved to a
new one.
</para>
</refsect2>
<refsect2><title>size_t talloc_total_size(const void *<emphasis role="italic">ptr</emphasis>);</title>
<para>
The talloc_total_size() function returns the total size in bytes
used by this pointer and all child pointers. Mostly useful for
debugging.
</para>
<para>
Passing NULL is allowed, but it will only give a meaningful
result if talloc_enable_leak_report() or
talloc_enable_leak_report_full() has been called.
</para>
</refsect2>
<refsect2><title>size_t talloc_total_blocks(const void *<emphasis role="italic">ptr</emphasis>);</title>
<para>
The talloc_total_blocks() function returns the total memory block
count used by this pointer and all child pointers. Mostly useful
for debugging.
</para>
<para>
Passing NULL is allowed, but it will only give a meaningful
result if talloc_enable_leak_report() or
talloc_enable_leak_report_full() has been called.
</para>
</refsect2>
<refsect2 id="talloc_report"><title>void talloc_report(const void *ptr, FILE *f);</title>
<para>
The talloc_report() function prints a summary report of all
memory used by <emphasis role="italic">ptr</emphasis>. One line
of report is printed for each immediate child of ptr, showing the
total memory and number of blocks used by that child.
</para>
<para>
You can pass NULL for the pointer, in which case a report is
printed for the top level memory context, but only if
talloc_enable_leak_report() or talloc_enable_leak_report_full()
has been called.
</para>
</refsect2>
<refsect2 id="talloc_report_full"><title>void talloc_report_full(const void *<emphasis role="italic">ptr</emphasis>, FILE *<emphasis role="italic">f</emphasis>);</title>
<para>
This provides a more detailed report than talloc_report(). It
will recursively print the entire tree of memory referenced by
the pointer. References in the tree are shown by giving the name
of the pointer that is referenced.
</para>
<para>
You can pass NULL for the pointer, in which case a report is
printed for the top level memory context, but only if
talloc_enable_leak_report() or talloc_enable_leak_report_full()
has been called.
</para>
</refsect2>
<refsect2 id="talloc_report_depth_cb">
<funcsynopsis><funcprototype>
<funcdef>void <function>talloc_report_depth_cb</function></funcdef>
<paramdef><parameter>const void *ptr</parameter></paramdef>
<paramdef><parameter>int depth</parameter></paramdef>
<paramdef><parameter>int max_depth</parameter></paramdef>
<paramdef><parameter>void (*callback)(const void *ptr, int depth, int max_depth, int is_ref, void *priv)</parameter></paramdef>
<paramdef><parameter>void *priv</parameter></paramdef>
</funcprototype></funcsynopsis>
<para>
This provides a more flexible reports than talloc_report(). It
will recursively call the callback for the entire tree of memory
referenced by the pointer. References in the tree are passed with
<emphasis role="italic">is_ref = 1</emphasis> and the pointer that is referenced.
</para>
<para>
You can pass NULL for the pointer, in which case a report is
printed for the top level memory context, but only if
talloc_enable_leak_report() or talloc_enable_leak_report_full()
has been called.
</para>
<para>
The recursion is stopped when depth >= max_depth.
max_depth = -1 means only stop at leaf nodes.
</para>
</refsect2>
<refsect2 id="talloc_report_depth_file">
<funcsynopsis><funcprototype>
<funcdef>void <function>talloc_report_depth_file</function></funcdef>
<paramdef><parameter>const void *ptr</parameter></paramdef>
<paramdef><parameter>int depth</parameter></paramdef>
<paramdef><parameter>int max_depth</parameter></paramdef>
<paramdef><parameter>FILE *f</parameter></paramdef>
</funcprototype></funcsynopsis>
<para>
This provides a more flexible reports than talloc_report(). It
will let you specify the depth and max_depth.
</para>
</refsect2>
<refsect2 id="talloc_enable_leak_report"><title>void talloc_enable_leak_report(void);</title>
<para>
This enables calling of talloc_report(NULL, stderr) when the
program exits. In Samba4 this is enabled by using the
--leak-report command line option.
</para>
<para>
For it to be useful, this function must be called before any
other talloc function as it establishes a "null context" that
acts as the top of the tree. If you don't call this function
first then passing NULL to talloc_report() or
talloc_report_full() won't give you the full tree printout.
</para>
<para>
Here is a typical talloc report:
</para>
<screen format="linespecific">talloc report on 'null_context' (total 267 bytes in 15 blocks)
libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
iconv(UTF8,CP850) contains 42 bytes in 2 blocks
libcli/auth/spnego_parse.c:55 contains 31 bytes in 2 blocks
iconv(CP850,UTF8) contains 42 bytes in 2 blocks
iconv(UTF8,UTF-16LE) contains 45 bytes in 2 blocks
iconv(UTF-16LE,UTF8) contains 45 bytes in 2 blocks
</screen>
</refsect2>
<refsect2 id="talloc_enable_leak_report_full"><title>void talloc_enable_leak_report_full(void);</title>
<para>
This enables calling of talloc_report_full(NULL, stderr) when the
program exits. In Samba4 this is enabled by using the
--leak-report-full command line option.
</para>
<para>
For it to be useful, this function must be called before any
other talloc function as it establishes a "null context" that
acts as the top of the tree. If you don't call this function
first then passing NULL to talloc_report() or
talloc_report_full() won't give you the full tree printout.
</para>
<para>
Here is a typical full report:
</para>
<screen format="linespecific">full talloc report on 'root' (total 18 bytes in 8 blocks)
p1 contains 18 bytes in 7 blocks (ref 0)
r1 contains 13 bytes in 2 blocks (ref 0)
reference to: p2
p2 contains 1 bytes in 1 blocks (ref 1)
x3 contains 1 bytes in 1 blocks (ref 0)
x2 contains 1 bytes in 1 blocks (ref 0)
x1 contains 1 bytes in 1 blocks (ref 0)
</screen>
</refsect2>
<refsect2><title>(<emphasis role="italic">type</emphasis> *)talloc_zero(const void *<emphasis role="italic">ctx</emphasis>, <emphasis role="italic">type</emphasis>);</title>
<para>
The talloc_zero() macro is equivalent to:
</para>
<programlisting>ptr = talloc(ctx, type);
if (ptr) memset(ptr, 0, sizeof(type));</programlisting>
</refsect2>
<refsect2><title>void *talloc_zero_size(const void *<emphasis role="italic">ctx</emphasis>, size_t <emphasis role="italic">size</emphasis>)</title>
<para>
The talloc_zero_size() function is useful when you don't have a
known type.
</para>
</refsect2>
<refsect2><title>void *talloc_memdup(const void *<emphasis role="italic">ctx</emphasis>, const void *<emphasis role="italic">p</emphasis>, size_t size);</title>
<para>
The talloc_memdup() function is equivalent to:
</para>
<programlisting>ptr = talloc_size(ctx, size);
if (ptr) memcpy(ptr, p, size);</programlisting>
</refsect2>
<refsect2><title>char *talloc_strdup(const void *<emphasis role="italic">ctx</emphasis>, const char *<emphasis role="italic">p</emphasis>);</title>
<para>
The talloc_strdup() function is equivalent to:
</para>
<programlisting>ptr = talloc_size(ctx, strlen(p)+1);
if (ptr) memcpy(ptr, p, strlen(p)+1);</programlisting>
<para>
This function sets the name of the new pointer to the passed
string. This is equivalent to:
</para>
<programlisting>talloc_set_name_const(ptr, ptr)</programlisting>
</refsect2>
<refsect2><title>char *talloc_strndup(const void *<emphasis role="italic">t</emphasis>, const char *<emphasis role="italic">p</emphasis>, size_t <emphasis role="italic">n</emphasis>);</title>
<para>
The talloc_strndup() function is the talloc equivalent of the C
library function strndup(3).
</para>
<para>
This function sets the name of the new pointer to the passed
string. This is equivalent to:
</para>
<programlisting>talloc_set_name_const(ptr, ptr)</programlisting>
</refsect2>
<refsect2><title>char *talloc_vasprintf(const void *<emphasis role="italic">t</emphasis>, const char *<emphasis role="italic">fmt</emphasis>, va_list <emphasis role="italic">ap</emphasis>);</title>
<para>
The talloc_vasprintf() function is the talloc equivalent of the C
library function vasprintf(3).
</para>
</refsect2>
<refsect2><title>char *talloc_asprintf(const void *<emphasis role="italic">t</emphasis>, const char *<emphasis role="italic">fmt</emphasis>, ...);</title>
<para>
The talloc_asprintf() function is the talloc equivalent of the C
library function asprintf(3).
</para>
<para>
This function sets the name of the new pointer to the passed
string. This is equivalent to:
</para>
<programlisting>talloc_set_name_const(ptr, ptr)</programlisting>
</refsect2>
<refsect2><title>char *talloc_asprintf_append(char *s, const char *fmt, ...);</title>
<para>
The talloc_asprintf_append() function appends the given formatted
string to the given string.
</para>
</refsect2>
<refsect2><title>(type *)talloc_array(const void *ctx, type, uint_t count);</title>
<para>
The talloc_array() macro is equivalent to:
</para>
<programlisting>(type *)talloc_size(ctx, sizeof(type) * count);</programlisting>
<para>
except that it provides integer overflow protection for the
multiply, returning NULL if the multiply overflows.
</para>
</refsect2>
<refsect2><title>void *talloc_array_size(const void *ctx, size_t size, uint_t count);</title>
<para>
The talloc_array_size() function is useful when the type is not
known. It operates in the same way as talloc_array(), but takes a
size instead of a type.
</para>
</refsect2>
<refsect2><title>(typeof(ptr)) talloc_array_ptrtype(const void *ctx, ptr, uint_t count);</title>
<para>
The talloc_ptrtype() macro should be used when you have a pointer to an array
and want to allocate memory of an array to point at with this pointer. When compiling
with gcc >= 3 it is typesafe. Note this is a wrapper of talloc_array_size()
and talloc_get_name() will return the current location in the source file.
and not the type.
</para>
</refsect2>
<refsect2><title>void *talloc_realloc_fn(const void *ctx, void *ptr, size_t size)</title>
<para>
This is a non-macro version of talloc_realloc(), which is useful
as libraries sometimes want a realloc function pointer. A
realloc(3) implementation encapsulates the functionality of
malloc(3), free(3) and realloc(3) in one call, which is why it is
useful to be able to pass around a single function pointer.
</para>
</refsect2>
<refsect2><title>void *talloc_autofree_context(void);</title>
<para>
This is a handy utility function that returns a talloc context
which will be automatically freed on program exit. This can be
used to reduce the noise in memory leak reports.
</para>
</refsect2>
<refsect2><title>void *talloc_check_name(const void *ptr, const char *name);</title>
<para>
This function checks if a pointer has the specified <emphasis
role="italic">name</emphasis>. If it does then the pointer is
returned. It it doesn't then NULL is returned.
</para>
</refsect2>
<refsect2><title>(type *)talloc_get_type(const void *ptr, type);</title>
<para>
This macro allows you to do type checking on talloc pointers. It
is particularly useful for void* private pointers. It is
equivalent to this:
</para>
<programlisting>(type *)talloc_check_name(ptr, #type)</programlisting>
</refsect2>
<refsect2><title>talloc_set_type(const void *ptr, type);</title>
<para>
This macro allows you to force the name of a pointer to be a
particular <emphasis>type</emphasis>. This can be
used in conjunction with talloc_get_type() to do type checking on
void* pointers.
</para>
<para>
It is equivalent to this:
</para>
<programlisting>talloc_set_name_const(ptr, #type)</programlisting>
</refsect2>
</refsect1>
<refsect1><title>PERFORMANCE</title>
<para>
All the additional features of talloc(3) over malloc(3) do come at a
price. We have a simple performance test in Samba4 that measures
talloc() versus malloc() performance, and it seems that talloc() is
about 10% slower than malloc() on my x86 Debian Linux box. For
Samba, the great reduction in code complexity that we get by using
talloc makes this worthwhile, especially as the total overhead of
talloc/malloc in Samba is already quite small.
</para>
</refsect1>
<refsect1><title>SEE ALSO</title>
<para>
malloc(3), strndup(3), vasprintf(3), asprintf(3),
<ulink url="http://talloc.samba.org/"/>
</para>
</refsect1>
<refsect1><title>COPYRIGHT/LICENSE</title>
<para>
Copyright (C) Andrew Tridgell 2004
</para>
<para>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
</para>
<para>
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
</para>
<para>
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
</para>
</refsect1>
</refentry>
|