1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
#if MEM_MAN
/* a simple memory manager. All allocates and frees should go through here */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#define MEM_MAN_MAIN
#include "mem_man.h"
#ifdef MEM_SIGNAL_HANDLER
#include <signal.h>
#endif
/*
this module is stand alone. typically a define will occur in a C file
like this
#define malloc(x) smb_mem_malloc(x,__FILE__,__LINE__)
#define free(x) smb_mem_free(x,__FILE__,__LINE__)
which redirects all calls to malloc and free through this module
Various configuration options can be set in mem_man.h. This file also
includes the defines above - so the complete system can be implemented
with just one include call.
*/
extern FILE *dbf;
/*
ACCESSING the memory manager :
mem_init_memory_manager() :
initialises internal data structures of memory manager
void *malloc(size_t size) :
allocates memory as per usual. also records lots of info
int free(void *ptr) :
frees some memory as per usual. writes errors if necessary.
void *smb_mem_resize(void *ptr,size_t newsize) :
changes the memory assignment size of a pointer. note it may return a
different pointer than the one given. memory can be sized up or down.
int smb_mem_query_size(void *ptr) :
returns the size of the allocated memory.
int smb_mem_query_real_size(void *ptr) :
returns the actual amount of memory allocated to a pointer.
char *smb_mem_query_file(void *ptr) :
returns the name of the file where the pointer was allocated.
int smb_mem_query_line(void *ptr) :
returns the line of the file where the memory was allocated.
void smb_mem_write_status(FILE *outfile) :
writes short summary of memory stats on the stream.
void smb_mem_write_verbose(FILE *outfile) :
writes lots of info on current allocations to stream.
void smb_mem_write_errors(FILE *outfile) :
writes info on error blocks
void smb_mem_write_info(void *ptr,FILE *outfile)
writes info on one pointer to outfile
int smb_mem_test(void *ptr) :
returns true if the pointer is OK - false if it is not.
void smb_mem_set_multiplier(int multiplier) :
sets defaults amount of memory allocated to multiplier times
amount requested.
int smb_mem_total_errors(void) :
returns the total number of error blocks
void smb_mem_check_buffers(void) :
checks all buffers for corruption. It marks them as corrupt if they are.
kill -USR1 <pid> :
this will send a signal to the memory manager to do a mem_write_verbose
it also checks them for corruption. Note that the signal number can be
set in the header file mem_man.h. This can also be turned off.
*/
void smb_mem_write_errors(FILE *outfile);
void smb_mem_write_verbose(FILE *outfile);
void smb_mem_write_status(FILE *outfile);
static void mem_check_buffers(void);
#define FREE_FAILURE 0
#define FREE_SUCCESS 1
#define FN
#define True (0==0)
#define False (!True)
#define BUF_SIZE (MEM_CORRUPT_BUFFER * sizeof(char) * 2)
#define BUF_OFFSET (BUF_SIZE/2)
typedef struct
{
void *pointer;
size_t present_size;
size_t allocated_size;
unsigned char status;
short error_number;
char file[MEM_FILE_STR_LENGTH];
unsigned short line;
} memory_struct;
/* the order of this enum is important. everything greater than
S_ALLOCATED is considered an error */
enum status_types {S_UNALLOCATED,S_ALLOCATED,
S_ERROR_UNALLOCATED,S_ERROR_FREEING,
S_CORRUPT_FRONT,S_CORRUPT_BACK,S_CORRUPT_FRONT_BACK};
/* here is the data memory */
static memory_struct *memory_blocks=NULL; /* these hold the allocation data */
static int mem_blocks_allocated=0; /* how many mem blocks are allocated */
static int mem_multiplier; /* this is the current multiplier mor over allocation */
static int mem_manager_initialised=False; /* has it been initialised ? */
static int last_block_allocated=0; /* a speed up method - this will contain the
index of the last block allocated or freed
to cut down searching time for a new block */
typedef struct
{
int status;
char *label;
} stat_str_type;
static stat_str_type stat_str_struct[] =
{
{S_UNALLOCATED,"S_UNALLOCATED"},
{S_ALLOCATED,"S_ALLOCATED"},
{S_ERROR_UNALLOCATED,"S_ERROR_UNALLOCATED"},
{S_ERROR_FREEING,"S_ERROR_FREEING"},
{S_CORRUPT_FRONT,"S_CORRUPT_FRONT"},
{S_CORRUPT_BACK,"S_CORRUPT_BACK"},
{S_CORRUPT_FRONT_BACK,"S_CORRUPT_FRONT_BACK"},
{-1,NULL}
};
#define INIT_MANAGER() if (!mem_manager_initialised) mem_init_memory_manager()
/*******************************************************************
returns a pointer to a static string for each status
********************************************************************/
static char *status_to_str(int status)
{
int i=0;
while (stat_str_struct[i].label != NULL)
{
if (stat_str_struct[i].status == status)
return(stat_str_struct[i].label);
i++;
}
return(NULL);
}
#ifdef MEM_SIGNAL_HANDLER
/*******************************************************************
this handles signals - causes a mem_write_verbose on stderr
********************************************************************/
static void mem_signal_handler()
{
mem_check_buffers();
smb_mem_write_verbose(dbf);
signal(MEM_SIGNAL_VECTOR,mem_signal_handler);
}
#endif
#ifdef MEM_SIGNAL_HANDLER
/*******************************************************************
this handles error signals - causes a mem_write_verbose on stderr
********************************************************************/
static void error_signal_handler()
{
fprintf(dbf,"Received error signal!\n");
mem_check_buffers();
smb_mem_write_status(dbf);
smb_mem_write_errors(dbf);
abort();
}
#endif
/*******************************************************************
initialise memory manager data structures
********************************************************************/
static void mem_init_memory_manager(void)
{
int i;
/* allocate the memory_blocks array */
mem_blocks_allocated = MEM_MAX_MEM_OBJECTS;
while (mem_blocks_allocated > 0)
{
memory_blocks = (memory_struct *)
calloc(mem_blocks_allocated,sizeof(memory_struct));
if (memory_blocks != NULL) break;
mem_blocks_allocated /= 2;
}
if (memory_blocks == NULL)
{
fprintf(dbf,"Panic ! can't allocate mem manager blocks!\n");
abort();
}
/* just loop setting status flag to unallocated */
for (i=0;i<mem_blocks_allocated;i++)
memory_blocks[i].status = S_UNALLOCATED;
/* also set default mem multiplier */
mem_multiplier = MEM_DEFAULT_MEM_MULTIPLIER;
mem_manager_initialised=True;
#ifdef MEM_SIGNAL_HANDLER
signal(MEM_SIGNAL_VECTOR,mem_signal_handler);
signal(SIGSEGV,error_signal_handler);
signal(SIGBUS,error_signal_handler);
#endif
}
/*******************************************************************
finds first available slot in memory blocks
********************************************************************/
static int mem_first_avail_slot(void)
{
int i;
for (i=last_block_allocated;i<mem_blocks_allocated;i++)
if (memory_blocks[i].status == S_UNALLOCATED)
return(last_block_allocated=i);
for (i=0;i<last_block_allocated;i++)
if (memory_blocks[i].status == S_UNALLOCATED)
return(last_block_allocated=i);
return(-1);
}
/*******************************************************************
find which Index a pointer refers to
********************************************************************/
static int mem_find_Index(void *ptr)
{
int i;
int start = last_block_allocated+mem_blocks_allocated/50;
if (start > mem_blocks_allocated-1) start = mem_blocks_allocated-1;
for (i=start;i>=0;i--)
if ((memory_blocks[i].status == S_ALLOCATED) &&
(memory_blocks[i].pointer == ptr))
return(i);
for (i=(start+1);i<mem_blocks_allocated;i++)
if ((memory_blocks[i].status == S_ALLOCATED) &&
(memory_blocks[i].pointer == ptr))
return(i);
/* it's not there! */
return(-1);
}
/*******************************************************************
fill the buffer areas of a mem block
********************************************************************/
static void mem_fill_bytes(void *p,int size,int Index)
{
memset(p,Index%256,size);
}
/*******************************************************************
fill the buffer areas of a mem block
********************************************************************/
static void mem_fill_buffer(int Index)
{
char *iptr,*tailptr;
int i;
int seed;
/* fill the front and back ends */
seed = MEM_CORRUPT_SEED;
iptr = (char *)((char *)memory_blocks[Index].pointer - BUF_OFFSET);
tailptr = (char *)((char *)memory_blocks[Index].pointer +
memory_blocks[Index].present_size);
for (i=0;i<MEM_CORRUPT_BUFFER;i++)
{
iptr[i] = seed;
tailptr[i] = seed;
seed += MEM_SEED_INCREMENT;
}
}
/*******************************************************************
check if a mem block is corrupt
********************************************************************/
static int mem_buffer_ok(int Index)
{
char *iptr;
int i;
int corrupt_front = False;
int corrupt_back = False;
/* check the front end */
iptr = (char *)((char *)memory_blocks[Index].pointer - BUF_OFFSET);
for (i=0;i<MEM_CORRUPT_BUFFER;i++)
if (iptr[i] != (char)(MEM_CORRUPT_SEED + i*MEM_SEED_INCREMENT))
corrupt_front = True;
/* now check the tail end */
iptr = (char *)((char *)memory_blocks[Index].pointer +
memory_blocks[Index].present_size);
for (i=0;i<MEM_CORRUPT_BUFFER;i++)
if (iptr[i] != (char)(MEM_CORRUPT_SEED + i*MEM_SEED_INCREMENT))
corrupt_back = True;
if (corrupt_front && !corrupt_back)
memory_blocks[Index].status = S_CORRUPT_FRONT;
if (corrupt_back && !corrupt_front)
memory_blocks[Index].status = S_CORRUPT_BACK;
if (corrupt_front && corrupt_back)
memory_blocks[Index].status = S_CORRUPT_FRONT_BACK;
if (!corrupt_front && !corrupt_back)
return(True);
return(False);
}
/*******************************************************************
check all buffers for corruption
********************************************************************/
static void mem_check_buffers(void)
{
int i;
for (i=0;i<mem_blocks_allocated;i++)
if (memory_blocks[i].status == S_ALLOCATED)
mem_buffer_ok(i);
}
/*******************************************************************
record stats and alloc memory
********************************************************************/
void *smb_mem_malloc(size_t size,char *file,int line)
{
int Index;
INIT_MANAGER();
/* find an open spot */
Index = mem_first_avail_slot();
if (Index<0) return(NULL);
/* record some info */
memory_blocks[Index].present_size = size;
memory_blocks[Index].allocated_size = size*mem_multiplier;
memory_blocks[Index].line = line;
strncpy(memory_blocks[Index].file,file,MEM_FILE_STR_LENGTH);
memory_blocks[Index].file[MEM_FILE_STR_LENGTH-1] = 0;
memory_blocks[Index].error_number = 0;
/* now try and actually get the memory */
memory_blocks[Index].pointer = malloc(size*mem_multiplier + BUF_SIZE);
/* if that failed then try and get exactly what was actually requested */
if (memory_blocks[Index].pointer == NULL)
{
memory_blocks[Index].allocated_size = size;
memory_blocks[Index].pointer = malloc(size + BUF_SIZE);
}
/* if it failed then return NULL */
if (memory_blocks[Index].pointer == NULL) return(NULL);
/* it succeeded - set status flag and return */
memory_blocks[Index].status = S_ALLOCATED;
/* add an offset */
memory_blocks[Index].pointer =
(void *)((char *)memory_blocks[Index].pointer + BUF_OFFSET);
/* fill the buffer appropriately */
mem_fill_buffer(Index);
/* and set the fill byte */
mem_fill_bytes(memory_blocks[Index].pointer,memory_blocks[Index].present_size,Index);
/* return the allocated memory */
return(memory_blocks[Index].pointer);
}
/*******************************************************************
dup a string
********************************************************************/
char *smb_mem_strdup(char *s, char *file, int line)
{
char *ret = (char *)smb_mem_malloc(strlen(s)+1, file, line);
strcpy(ret, s);
return ret;
}
/*******************************************************************
free some memory
********************************************************************/
int smb_mem_free(void *ptr,char *file,int line)
{
int Index;
int free_ret;
static int count;
INIT_MANAGER();
if (count % 100 == 0) {
smb_mem_write_errors(dbf);
}
count++;
Index = mem_find_Index(ptr);
if (Index<0) /* we are freeing a pointer that hasn't been allocated ! */
{
/* set up an error block */
Index = mem_first_avail_slot();
if (Index < 0) /* I can't even allocate an Error! */
{
fprintf(dbf,"Panic in memory manager - can't allocate error block!\n");
fprintf(dbf,"freeing un allocated pointer at %s(%d)\n",file,line);
abort();
}
/* fill in error block */
memory_blocks[Index].present_size = 0;
memory_blocks[Index].allocated_size = 0;
memory_blocks[Index].line = line;
strncpy(memory_blocks[Index].file,file,MEM_FILE_STR_LENGTH);
memory_blocks[Index].file[MEM_FILE_STR_LENGTH-1] = 0;
memory_blocks[Index].status = S_ERROR_UNALLOCATED;
memory_blocks[Index].pointer = ptr;
return(FREE_FAILURE);
}
/* it is a valid pointer - check for corruption */
if (!mem_buffer_ok(Index))
/* it's bad ! return an error */
return(FREE_FAILURE);
/* the pointer is OK - try to free it */
#ifdef MEM_FREE_RETURNS_INT
free_ret = free((char *)ptr - BUF_OFFSET);
#else
free((char *)ptr - BUF_OFFSET);
free_ret = FREE_SUCCESS;
#endif
/* if this failed then make an error block again */
if (free_ret == FREE_FAILURE)
{
memory_blocks[Index].present_size = 0;
memory_blocks[Index].allocated_size = 0;
memory_blocks[Index].line = line;
strncpy(memory_blocks[Index].file,file,MEM_FILE_STR_LENGTH);
memory_blocks[Index].file[MEM_FILE_STR_LENGTH-1] = 0;
memory_blocks[Index].status = S_ERROR_FREEING;
memory_blocks[Index].pointer = ptr;
memory_blocks[Index].error_number = errno;
return(FREE_FAILURE);
}
/* all is OK - set status and return */
memory_blocks[Index].status = S_UNALLOCATED;
/* this is a speedup - if it is freed then it can be allocated again ! */
last_block_allocated = Index;
return(FREE_SUCCESS);
}
/*******************************************************************
writes info on just one Index
it must not be un allocated to do this
********************************************************************/
static void mem_write_Index_info(int Index,FILE *outfile)
{
if (memory_blocks[Index].status != S_UNALLOCATED)
fprintf(outfile,"block %d file %s(%d) : size %d, alloc size %d, status %s\n",
Index,memory_blocks[Index].file,memory_blocks[Index].line,
memory_blocks[Index].present_size,
memory_blocks[Index].allocated_size,
status_to_str(memory_blocks[Index].status));
}
/*******************************************************************
writes info on one pointer
********************************************************************/
void smb_mem_write_info(void *ptr,FILE *outfile)
{
int Index;
INIT_MANAGER();
Index = mem_find_Index(ptr);
if (Index<0) return;
mem_write_Index_info(Index,outfile);
}
/*******************************************************************
return the size of the mem block
********************************************************************/
size_t smb_mem_query_size(void *ptr)
{
int Index;
INIT_MANAGER();
Index = mem_find_Index(ptr);
if (Index<0) return(0);
return(memory_blocks[Index].present_size);
}
/*******************************************************************
return the allocated size of the mem block
********************************************************************/
size_t smb_mem_query_real_size(void *ptr)
{
int Index;
INIT_MANAGER();
Index = mem_find_Index(ptr);
if (Index<0) return(0);
return(memory_blocks[Index].allocated_size);
}
/*******************************************************************
return the file of caller of the mem block
********************************************************************/
char *smb_mem_query_file(void *ptr)
{
int Index;
INIT_MANAGER();
Index = mem_find_Index(ptr);
if (Index<0) return(NULL);
return(memory_blocks[Index].file);
}
/*******************************************************************
return the line in the file of caller of the mem block
********************************************************************/
int smb_mem_query_line(void *ptr)
{
int Index;
INIT_MANAGER();
Index = mem_find_Index(ptr);
if (Index<0) return(0);
return(memory_blocks[Index].line);
}
/*******************************************************************
return True if the pointer is OK
********************************************************************/
int smb_mem_test(void *ptr)
{
int Index;
INIT_MANAGER();
Index = mem_find_Index(ptr);
if (Index<0) return(False);
return(mem_buffer_ok(Index));
}
/*******************************************************************
write brief info on mem status
********************************************************************/
void smb_mem_write_status(FILE *outfile)
{
int num_allocated=0;
int total_size=0;
int total_alloc_size=0;
int num_errors=0;
int i;
INIT_MANAGER();
mem_check_buffers();
for (i=0;i<mem_blocks_allocated;i++)
switch (memory_blocks[i].status)
{
case S_UNALLOCATED :
break;
case S_ALLOCATED :
num_allocated++;
total_size += memory_blocks[i].present_size;
total_alloc_size += memory_blocks[i].allocated_size;
break;
case S_ERROR_UNALLOCATED :
case S_ERROR_FREEING :
case S_CORRUPT_BACK :
case S_CORRUPT_FRONT :
num_errors++;
break;
}
fprintf(outfile,
"Mem Manager : %d blocks, allocation %dK, real allocation %dK, %d errors\n",
num_allocated,(int)(total_size/1024),(int)(total_alloc_size/1024),
num_errors);
fflush(outfile);
}
/*******************************************************************
write verbose info on allocated blocks
********************************************************************/
void smb_mem_write_verbose(FILE *outfile)
{
int Index;
/* first write a summary */
INIT_MANAGER();
smb_mem_write_status(outfile);
/* just loop writing info on relevant indices */
for (Index=0;Index<mem_blocks_allocated;Index++)
if (memory_blocks[Index].status != S_UNALLOCATED)
mem_write_Index_info(Index,outfile);
}
/*******************************************************************
write verbose info on error blocks
********************************************************************/
void smb_mem_write_errors(FILE *outfile)
{
int Index;
INIT_MANAGER();
mem_check_buffers();
/* just loop writing info on relevant indices */
for (Index=0;Index<mem_blocks_allocated;Index++)
if (((int)memory_blocks[Index].status) > ((int)S_ALLOCATED))
mem_write_Index_info(Index,outfile);
}
/*******************************************************************
sets the memory multiplier
********************************************************************/
void smb_mem_set_multiplier(int multiplier)
{
/* check it is valid */
if (multiplier < 1) return;
mem_multiplier = multiplier;
}
/*******************************************************************
increases or decreases the memory assigned to a pointer
********************************************************************/
void *smb_mem_resize(void *ptr,size_t newsize)
{
int Index;
size_t allocsize;
void *temp_ptr;
INIT_MANAGER();
Index = mem_find_Index(ptr);
/* if invalid return NULL */
if (Index<0)
{
#ifdef BUG
int Error();
Error("Invalid mem_resize to size %d\n",newsize);
#endif
return(NULL);
}
/* now - will it fit in the current allocation ? */
if (newsize <= memory_blocks[Index].allocated_size)
{
memory_blocks[Index].present_size = newsize;
mem_fill_buffer(Index);
return(ptr);
}
/* can it be allocated ? */
allocsize = newsize*mem_multiplier;
temp_ptr = malloc(newsize*mem_multiplier + BUF_SIZE);
/* no? try with just the size asked for */
if (temp_ptr == NULL)
{
allocsize=newsize;
temp_ptr = malloc(newsize + BUF_SIZE);
}
/* if it's still NULL give up */
if (temp_ptr == NULL)
return(NULL);
/* copy the old data to the new memory area */
memcpy(temp_ptr,(char *)memory_blocks[Index].pointer - BUF_OFFSET,
memory_blocks[Index].allocated_size + BUF_SIZE);
/* fill the extra space */
mem_fill_bytes((char *)temp_ptr + BUF_OFFSET + memory_blocks[Index].present_size,newsize - memory_blocks[Index].present_size,Index);
/* free the old mem and set vars */
free((char *)ptr - BUF_OFFSET);
memory_blocks[Index].pointer = (void *)((char *)temp_ptr + BUF_OFFSET);
memory_blocks[Index].present_size = newsize;
memory_blocks[Index].allocated_size = allocsize;
/* fill the buffer appropriately */
mem_fill_buffer(Index);
/* now return the new pointer */
return((char *)temp_ptr + BUF_OFFSET);
}
#else
void dummy_mem_man(void) {}
#endif
|