1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
|
/* ========================================================================== **
* ubi_AVLtree.c
*
* Copyright (C) 1991-1997 by Christopher R. Hertel
*
* Email: crh@ubiqx.mn.org
* -------------------------------------------------------------------------- **
*
* This module provides an implementation of AVL height balanced binary
* trees. (Adelson-Velskii, Landis 1962)
*
* This file implements the core of the height-balanced (AVL) tree management
* routines. The header file, ubi_AVLtree.h, contains function prototypes
* for all "exported" functions.
*
* -------------------------------------------------------------------------- **
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* -------------------------------------------------------------------------- **
*
* Log: ubi_AVLtree.c,v
* Revision 2.5 1997/12/23 04:00:42 crh
* In this version, all constants & macros defined in the header file have
* the ubi_tr prefix. Also cleaned up anything that gcc complained about
* when run with '-pedantic -fsyntax-only -Wall'.
*
* Revision 2.4 1997/07/26 04:36:20 crh
* Andrew Leppard, aka "Grazgur", discovered that I still had my brains tied
* on backwards with respect to node deletion. I did some more digging and
* discovered that I was not changing the balance values correctly in the
* single rotation functions. Double rotation was working correctly because
* the formula for changing the balance values is the same for insertion or
* deletion. Not so for single rotation.
*
* I have tested the fix by loading the tree with over 44 thousand names,
* deleting 2,629 of them (all those in which the second character is 'u')
* and then walking the tree recursively to verify that the balance factor of
* each node is correct. Passed.
*
* Thanks Andrew!
*
* Also:
* + Changed ubi_TRUE and ubi_FALSE to ubi_trTRUE and ubi_trFALSE.
* + Rewrote the ubi_tr<func> macros because they weren't doing what I'd
* hoped they would do (see the bottom of the header file). They work now.
*
* Revision 2.3 1997/06/03 04:41:35 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid causing
* problems.
*
* Revision 2.2 1995/10/03 22:16:01 CRH
* Ubisized!
*
* Revision 2.1 95/03/09 23:45:59 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/03/05 14:10:51 CRH
* This revision of ubi_AVLtree coincides with revision 2.0 of ubi_BinTree,
* and so includes all of the changes to that module. In addition, a bug in
* the node deletion process has been fixed.
*
* After rewriting the Locate() function in ubi_BinTree, I decided that it was
* time to overhaul this module. In the process, I discovered a bug related
* to node deletion. To fix the bug, I wrote function Debalance(). A quick
* glance will show that it is very similar to the Rebalance() function. In
* previous versions of this module, I tried to include the functionality of
* Debalance() within Rebalance(), with poor results.
*
* Revision 1.0 93/10/15 22:58:56 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
*
* So, I have added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
* datatype names for the module that you are using. Just remember to
* include the header for that module in your program file. Because these
* names are handled by the preprocessor, there is no added run-time
* overhead.
*
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
*
* V0.0 - May, 1990 - Written by Christopher R. Hertel (CRH).
*
* ========================================================================= **
*/
#include "ubi_AVLtree.h" /* Header for THIS module. */
#include <stdlib.h> /* Standard C definitions, etc. */
/* ========================================================================== **
* Static data.
*/
static char ModuleID[] = "ubi_AVLtree\n\
\tRevision: 2.5\n\
\tDate: 1997/12/23 04:00:42\n\
\tAuthor: crh\n";
/* ========================================================================== **
* The next set of functions are the AVL balancing routines. There are left
* and right, single and double rotations. The rotation routines handle the
* rotations and reconnect all tree pointers that might get confused by the
* rotations. A pointer to the new subtree root node is returned.
*
* Note that L1 and R1 are identical, except that all the RIGHTs and LEFTs
* are reversed. The same is true for L2 and R2. I'm sure that there is
* a clever way to reduce the amount of code by combining these functions,
* but it might involve additional overhead, and it would probably be a pain
* to read, debug, etc.
* -------------------------------------------------------------------------- **
*/
static ubi_avlNodePtr L1( ubi_avlNodePtr p )
/* ------------------------------------------------------------------------ **
* Single rotate left.
*
* Input: p - Pointer to the root of a tree (possibly a subtree).
* Output: A pointer to the new root of the same subtree (now that node
* p has been moved).
* ------------------------------------------------------------------------ **
*/
{
ubi_avlNodePtr tmp;
tmp = p->Link[ubi_trRIGHT];
p->Link[ubi_trRIGHT] = tmp->Link[ubi_trLEFT];
tmp->Link[ubi_trLEFT] = p;
tmp->Link[ubi_trPARENT] = p->Link[ubi_trPARENT];
tmp->gender = p->gender;
if(tmp->Link[ubi_trPARENT])
(tmp->Link[ubi_trPARENT])->Link[(int)(tmp->gender)] = tmp;
p->Link[ubi_trPARENT] = tmp;
p->gender = ubi_trLEFT;
if( p->Link[ubi_trRIGHT] )
{
p->Link[ubi_trRIGHT]->Link[ubi_trPARENT] = p;
(p->Link[ubi_trRIGHT])->gender = ubi_trRIGHT;
}
p->balance -= ubi_trNormalize( tmp->balance );
(tmp->balance)--;
return( tmp );
} /* L1 */
static ubi_avlNodePtr R1( ubi_avlNodePtr p )
/* ------------------------------------------------------------------------ **
* Single rotate right.
*
* Input: p - Pointer to the root of a tree (possibly a subtree).
* Output: A pointer to the new root of the same subtree (now that node
* p has been moved).
* ------------------------------------------------------------------------ **
*/
{
ubi_avlNodePtr tmp;
tmp = p->Link[ubi_trLEFT];
p->Link[ubi_trLEFT] = tmp->Link[ubi_trRIGHT];
tmp->Link[ubi_trRIGHT] = p;
tmp->Link[ubi_trPARENT] = p->Link[ubi_trPARENT];
tmp->gender = p->gender;
if(tmp->Link[ubi_trPARENT])
(tmp->Link[ubi_trPARENT])->Link[(int)(tmp->gender)] = tmp;
p->Link[ubi_trPARENT] = tmp;
p->gender = ubi_trRIGHT;
if(p->Link[ubi_trLEFT])
{
p->Link[ubi_trLEFT]->Link[ubi_trPARENT] = p;
p->Link[ubi_trLEFT]->gender = ubi_trLEFT;
}
p->balance -= ubi_trNormalize( tmp->balance );
(tmp->balance)++;
return( tmp );
} /* R1 */
static ubi_avlNodePtr L2( ubi_avlNodePtr tree )
/* ------------------------------------------------------------------------ **
* Double rotate left.
*
* Input: p - Pointer to the root of a tree (possibly a subtree).
* Output: A pointer to the new root of the same subtree (now that node
* p has been moved).
* ------------------------------------------------------------------------ **
*/
{
ubi_avlNodePtr tmp, newroot;
tmp = tree->Link[ubi_trRIGHT];
newroot = tmp->Link[ubi_trLEFT];
tmp->Link[ubi_trLEFT] = newroot->Link[ubi_trRIGHT];
newroot->Link[ubi_trRIGHT] = tmp;
tree->Link[ubi_trRIGHT] = newroot->Link[ubi_trLEFT];
newroot->Link[ubi_trLEFT] = tree;
newroot->Link[ubi_trPARENT] = tree->Link[ubi_trPARENT];
newroot->gender = tree->gender;
tree->Link[ubi_trPARENT] = newroot;
tree->gender = ubi_trLEFT;
tmp->Link[ubi_trPARENT] = newroot;
tmp->gender = ubi_trRIGHT;
if( tree->Link[ubi_trRIGHT] )
{
tree->Link[ubi_trRIGHT]->Link[ubi_trPARENT] = tree;
tree->Link[ubi_trRIGHT]->gender = ubi_trRIGHT;
}
if( tmp->Link[ubi_trLEFT] )
{
tmp->Link[ubi_trLEFT]->Link[ubi_trPARENT] = tmp;
tmp->Link[ubi_trLEFT]->gender = ubi_trLEFT;
}
if(newroot->Link[ubi_trPARENT])
newroot->Link[ubi_trPARENT]->Link[(int)(newroot->gender)] = newroot;
switch( newroot->balance )
{
case ubi_trLEFT :
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trRIGHT; break;
case ubi_trEQUAL:
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trEQUAL; break;
case ubi_trRIGHT:
tree->balance = ubi_trLEFT; tmp->balance = ubi_trEQUAL; break;
}
newroot->balance = ubi_trEQUAL;
return( newroot );
} /* L2 */
static ubi_avlNodePtr R2( ubi_avlNodePtr tree )
/* ------------------------------------------------------------------------ **
* Double rotate right.
*
* Input: p - Pointer to the root of a tree (possibly a subtree).
* Output: A pointer to the new root of the same subtree (now that node
* p has been moved).
* ------------------------------------------------------------------------ **
*/
{
ubi_avlNodePtr tmp, newroot;
tmp = tree->Link[ubi_trLEFT];
newroot = tmp->Link[ubi_trRIGHT];
tmp->Link[ubi_trRIGHT] = newroot->Link[ubi_trLEFT];
newroot->Link[ubi_trLEFT] = tmp;
tree->Link[ubi_trLEFT] = newroot->Link[ubi_trRIGHT];
newroot->Link[ubi_trRIGHT] = tree;
newroot->Link[ubi_trPARENT] = tree->Link[ubi_trPARENT];
newroot->gender = tree->gender;
tree->Link[ubi_trPARENT] = newroot;
tree->gender = ubi_trRIGHT;
tmp->Link[ubi_trPARENT] = newroot;
tmp->gender = ubi_trLEFT;
if( tree->Link[ubi_trLEFT] )
{
tree->Link[ubi_trLEFT]->Link[ubi_trPARENT] = tree;
tree->Link[ubi_trLEFT]->gender = ubi_trLEFT;
}
if( tmp->Link[ubi_trRIGHT] )
{
tmp->Link[ubi_trRIGHT]->Link[ubi_trPARENT] = tmp;
tmp->Link[ubi_trRIGHT]->gender = ubi_trRIGHT;
}
if(newroot->Link[ubi_trPARENT])
newroot->Link[ubi_trPARENT]->Link[(int)(newroot->gender)] = newroot;
switch( newroot->balance )
{
case ubi_trLEFT :
tree->balance = ubi_trRIGHT; tmp->balance = ubi_trEQUAL; break;
case ubi_trEQUAL :
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trEQUAL; break;
case ubi_trRIGHT :
tree->balance = ubi_trEQUAL; tmp->balance = ubi_trLEFT; break;
}
newroot->balance = ubi_trEQUAL;
return( newroot );
} /* R2 */
static ubi_avlNodePtr Adjust( ubi_avlNodePtr p, char LorR )
/* ------------------------------------------------------------------------ **
* Adjust the balance value at node *p. If necessary, rotate the subtree
* rooted at p.
*
* Input: p - A pointer to the node to be adjusted. One of the
* subtrees of this node has changed height, so the
* balance value at this node must be adjusted, possibly
* by rotating the tree at this node.
* LorR - Indicates the TALLER subtree.
*
* Output: A pointer to the (possibly new) root node of the subtree.
*
* Notes: This function may be called after a node has been added *or*
* deleted, so LorR indicates the TALLER subtree.
* ------------------------------------------------------------------------ **
*/
{
if( p->balance != LorR )
p->balance += ubi_trNormalize(LorR);
else
{
char tallerbal; /* Balance value of the root of the taller subtree of p. */
tallerbal = p->Link[(int)LorR]->balance;
if( ( ubi_trEQUAL == tallerbal ) || ( p->balance == tallerbal ) )
p = ( (ubi_trLEFT==LorR) ? R1(p) : L1(p) ); /* single rotation */
else
p = ( (ubi_trLEFT==LorR) ? R2(p) : L2(p) ); /* double rotation */
}
return( p );
} /* Adjust */
static ubi_avlNodePtr Rebalance( ubi_avlNodePtr Root,
ubi_avlNodePtr subtree,
char LorR )
/* ------------------------------------------------------------------------ **
* Rebalance the tree following an insertion.
*
* Input: Root - A pointer to the root node of the whole tree.
* subtree - A pointer to the node that has just gained a new
* child.
* LorR - Gender of the child that has just been gained.
*
* Output: A pointer to the (possibly new) root of the AVL tree.
* Rebalancing the tree moves nodes around a bit, so the node
* that *was* the root, may not be the root when we're finished.
*
* Notes: Rebalance() must walk up the tree from where we are (which is
* where the latest change occurred), rebalancing the subtrees
* along the way. The rebalancing operation can stop if the
* change at the current subtree root won't affect the rest of
* the tree. In the case of an addition, if a subtree root's
* balance becomes EQUAL, then we know that the height of that
* subtree has not changed, so we can exit.
* ------------------------------------------------------------------------ **
*/
{
while( subtree )
{
subtree = Adjust( subtree, LorR );
if( ubi_trPARENT == subtree->gender )
return( subtree );
if( ubi_trEQUAL == subtree->balance )
return( Root );
LorR = subtree->gender;
subtree = subtree->Link[ubi_trPARENT];
}
return( Root );
} /* Rebalance */
static ubi_avlNodePtr Debalance( ubi_avlNodePtr Root,
ubi_avlNodePtr subtree,
char LorR )
/* ------------------------------------------------------------------------ **
* Rebalance the tree following a deletion.
*
* Input: Root - A pointer to the root node of the whole tree.
* subtree - A pointer to the node who's child has just "left the
* nest".
* LorR - Gender of the child that left.
*
* Output: A pointer to the (possibly new) root of the AVL tree.
* Rebalancing the tree moves nodes around a bit, so the node
* that *was* the root, may not be the root when we're finished.
*
* Notes: Debalance() is subtly different from Rebalance() (above) in
* two respects.
* * When it calls Adjust(), it passes the *opposite* of LorR.
* This is because LorR, as passed into Debalance() indicates
* the shorter subtree. As we move up the tree, LorR is
* assigned the gender of the node that we are leaving (i.e.,
* the subtree that we just rebalanced).
* * We know that a subtree has not changed height if the
* balance becomes LEFT or RIGHT. This is the *opposite* of
* what happens in Rebalance().
* ------------------------------------------------------------------------ **
*/
{
while( subtree )
{
subtree = Adjust( subtree, ubi_trRevWay(LorR) );
if( ubi_trPARENT == subtree->gender )
return( subtree );
if( ubi_trEQUAL != subtree->balance )
return( Root );
LorR = subtree->gender;
subtree = subtree->Link[ubi_trPARENT];
}
return( Root );
} /* Debalance */
/* -------------------------------------------------------------------------- **
* The next two functions are used for general tree manipulation. They are
* each slightly different from their ubi_BinTree counterparts.
* -------------------------------------------------------------------------- **
*/
static void ReplaceNode( ubi_avlNodePtr *parent,
ubi_avlNodePtr oldnode,
ubi_avlNodePtr newnode )
/* ------------------------------------------------------------------------ **
* Remove node oldnode from the tree, replacing it with node newnode.
*
* Input:
* parent - A pointer to he parent pointer of the node to be
* replaced. <parent> may point to the Link[] field of
* a parent node, or it may indicate the root pointer at
* the top of the tree.
* oldnode - A pointer to the node that is to be replaced.
* newnode - A pointer to the node that is to be installed in the
* place of <*oldnode>.
*
* Notes: Don't forget to free oldnode.
* The only difference between this function and the ubi_bt
* version is that the node size is sizeof( ubi_avlNode ), not
* sizeof( ubi_btNode ).
* ------------------------------------------------------------------------ **
*/
{
register int i;
register int avlNodeSize = sizeof( ubi_avlNode );
for( i = 0; i < avlNodeSize; i++ )
((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
(*parent) = newnode;
if(oldnode->Link[ubi_trLEFT ] )
(oldnode->Link[ubi_trLEFT ])->Link[ubi_trPARENT] = newnode;
if(oldnode->Link[ubi_trRIGHT] )
(oldnode->Link[ubi_trRIGHT])->Link[ubi_trPARENT] = newnode;
} /* ReplaceNode */
static void SwapNodes( ubi_btRootPtr RootPtr,
ubi_avlNodePtr Node1,
ubi_avlNodePtr Node2 )
/* ------------------------------------------------------------------------ **
* This function swaps two nodes in the tree. Node1 will take the place of
* Node2, and Node2 will fill in the space left vacant by Node 1.
*
* Input:
* RootPtr - pointer to the tree header structure for this tree.
* Node1 - \
* > These are the two nodes which are to be swapped.
* Node2 - /
*
* Notes:
* This function does a three step swap, using a dummy node as a place
* holder. This function is used by ubi_avlRemove().
* The only difference between this function and its ubi_bt counterpart
* is that the nodes are ubi_avlNodes, not ubi_btNodes.
* ------------------------------------------------------------------------ **
*/
{
ubi_avlNodePtr *Parent;
ubi_avlNode dummy;
ubi_avlNodePtr dummy_p = &dummy;
if( Node1->Link[ubi_trPARENT] )
Parent = &((Node1->Link[ubi_trPARENT])->Link[(int)(Node1->gender)]);
else
Parent = (ubi_avlNodePtr *)&(RootPtr->root);
ReplaceNode( Parent, Node1, dummy_p );
if( Node2->Link[ubi_trPARENT] )
Parent = &((Node2->Link[ubi_trPARENT])->Link[(int)(Node2->gender)]);
else
Parent = (ubi_avlNodePtr *)&(RootPtr->root);
ReplaceNode( Parent, Node2, Node1 );
if( dummy_p->Link[ubi_trPARENT] )
Parent = &((dummy_p->Link[ubi_trPARENT])->Link[(int)(dummy_p->gender)]);
else
Parent = (ubi_avlNodePtr *)&(RootPtr->root);
ReplaceNode( Parent, dummy_p, Node2 );
} /* SwapNodes */
/* ========================================================================== **
* Public, exported (ie. not static-ly declared) functions...
* -------------------------------------------------------------------------- **
*/
ubi_avlNodePtr ubi_avlInitNode( ubi_avlNodePtr NodePtr )
/* ------------------------------------------------------------------------ **
* Initialize a tree node.
*
* Input: NodePtr - pointer to a ubi_btNode structure to be
* initialized.
* Output: a pointer to the initialized ubi_avlNode structure (ie. the
* same as the input pointer).
* ------------------------------------------------------------------------ **
*/
{
(void)ubi_btInitNode( (ubi_btNodePtr)NodePtr );
NodePtr->balance = ubi_trEQUAL;
return( NodePtr );
} /* ubi_avlInitNode */
ubi_trBool ubi_avlInsert( ubi_btRootPtr RootPtr,
ubi_avlNodePtr NewNode,
ubi_btItemPtr ItemPtr,
ubi_avlNodePtr *OldNode )
/* ------------------------------------------------------------------------ **
* This function uses a non-recursive algorithm to add a new element to
* the tree.
*
* Input: RootPtr - a pointer to the ubi_btRoot structure that indicates
* the root of the tree to which NewNode is to be added.
* NewNode - a pointer to an ubi_avlNode structure that is NOT
* part of any tree.
* ItemPtr - A pointer to the sort key that is stored within
* *NewNode. ItemPtr MUST point to information stored
* in *NewNode or an EXACT DUPLICATE. The key data
* indicated by ItemPtr is used to place the new node
* into the tree.
* OldNode - a pointer to an ubi_btNodePtr. When searching
* the tree, a duplicate node may be found. If
* duplicates are allowed, then the new node will
* be simply placed into the tree. If duplicates
* are not allowed, however, then one of two things
* may happen.
* 1) if overwritting *is not* allowed, this
* function will return FALSE (indicating that
* the new node could not be inserted), and
* *OldNode will point to the duplicate that is
* still in the tree.
* 2) if overwritting *is* allowed, then this
* function will swap **OldNode for *NewNode.
* In this case, *OldNode will point to the node
* that was removed (thus allowing you to free
* the node).
* ** If you are using overwrite mode, ALWAYS **
* ** check the return value of this parameter! **
* Note: You may pass NULL in this parameter, the
* function knows how to cope. If you do this,
* however, there will be no way to return a
* pointer to an old (ie. replaced) node (which is
* a problem if you are using overwrite mode).
*
* Output: a boolean value indicating success or failure. The function
* will return FALSE if the node could not be added to the tree.
* Such failure will only occur if duplicates are not allowed,
* nodes cannot be overwritten, AND a duplicate key was found
* within the tree.
* ------------------------------------------------------------------------ **
*/
{
ubi_avlNodePtr OtherP;
if( !(OldNode) ) OldNode = &OtherP;
if( ubi_btInsert( RootPtr,
(ubi_btNodePtr)NewNode,
ItemPtr,
(ubi_btNodePtr *)OldNode ) )
{
if( (*OldNode) )
NewNode->balance = (*OldNode)->balance;
else
{
NewNode->balance = ubi_trEQUAL;
RootPtr->root = (ubi_btNodePtr)Rebalance( (ubi_avlNodePtr)RootPtr->root,
NewNode->Link[ubi_trPARENT],
NewNode->gender );
}
return( ubi_trTRUE );
}
return( ubi_trFALSE ); /* Failure: could not replace an existing node. */
} /* ubi_avlInsert */
ubi_avlNodePtr ubi_avlRemove( ubi_btRootPtr RootPtr,
ubi_avlNodePtr DeadNode )
/* ------------------------------------------------------------------------ **
* This function removes the indicated node from the tree, after which the
* tree is rebalanced.
*
* Input: RootPtr - A pointer to the header of the tree that contains
* the node to be removed.
* DeadNode - A pointer to the node that will be removed.
*
* Output: This function returns a pointer to the node that was removed
* from the tree (ie. the same as DeadNode).
*
* Note: The node MUST be in the tree indicated by RootPtr. If not,
* strange and evil things will happen to your trees.
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr p,
*parentp;
/* if the node has both left and right subtrees, then we have to swap
* it with another node.
*/
if( (DeadNode->Link[ubi_trLEFT]) && (DeadNode->Link[ubi_trRIGHT]) )
SwapNodes( RootPtr, DeadNode, ubi_trPrev( DeadNode ) );
/* The parent of the node to be deleted may be another node, or it may be
* the root of the tree. Since we're not sure, it's best just to have
* a pointer to the parent pointer, whatever it is.
*/
if( DeadNode->Link[ubi_trPARENT] )
parentp = (ubi_btNodePtr *)
&((DeadNode->Link[ubi_trPARENT])->Link[(int)(DeadNode->gender)]);
else
parentp = &( RootPtr->root );
/* Now link the parent to the only grand-child. Patch up the gender and
* such, and rebalance.
*/
if( ubi_trEQUAL == DeadNode->balance )
(*parentp) = NULL;
else
{
p = (ubi_btNodePtr)(DeadNode->Link[(int)(DeadNode->balance)]);
p->Link[ubi_trPARENT] = (ubi_btNodePtr)DeadNode->Link[ubi_trPARENT];
p->gender = DeadNode->gender;
(*parentp) = p;
}
RootPtr->root = (ubi_btNodePtr)Debalance( (ubi_avlNodePtr)RootPtr->root,
DeadNode->Link[ubi_trPARENT],
DeadNode->gender );
(RootPtr->count)--;
return( DeadNode );
} /* ubi_avlRemove */
int ubi_avlModuleID( int size, char *list[] )
/* ------------------------------------------------------------------------ **
* Returns a set of strings that identify the module.
*
* Input: size - The number of elements in the array <list>.
* list - An array of pointers of type (char *). This array
* should, initially, be empty. This function will fill
* in the array with pointers to strings.
* Output: The number of elements of <list> that were used. If this value
* is less than <size>, the values of the remaining elements are
* not guaranteed.
*
* Notes: Please keep in mind that the pointers returned indicate strings
* stored in static memory. Don't free() them, don't write over
* them, etc. Just read them.
* ------------------------------------------------------------------------ **
*/
{
if( size > 0 )
{
list[0] = ModuleID;
if( size > 1 )
return( 1 + ubi_btModuleID( --size, &(list[1]) ) );
return( 1 );
}
return( 0 );
} /* ubi_avlModuleID */
/* ============================== The End ============================== */
|