1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
|
/* ========================================================================== **
* ubi_BinTree.c
*
* Copyright (C) 1991-1997 by Christopher R. Hertel
*
* Email: crh@ubiqx.mn.org
* -------------------------------------------------------------------------- **
*
* ubi_BinTree manages a simple binary tree. Nothing fancy here. No height
* balancing, no restructuring. Still, a good tool for creating short, low-
* overhead sorted lists of things that need to be found in a hurry.
*
* In addition, this module provides a good basis for creating other types
* of binary tree handling modules.
*
* -------------------------------------------------------------------------- **
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* -------------------------------------------------------------------------- **
*
* $Log: ubi_BinTree.c,v $
* Revision 1.1 1997/10/10 14:46:38 crh
* This is the ubiqx binary tree and linked list library.
* This library is being included as part of the Samba distribution.
* (Hurray!)
*
* Revision 2.4 1997/07/26 04:11:10 crh
* + Just to be annoying I changed ubi_TRUE and ubi_FALSE to ubi_trTRUE
* and ubi_trFALSE.
* + There is now a type ubi_trBool to go with ubi_trTRUE and ubi_trFALSE.
* + There used to be something called "ubi_TypeDefs.h". I got rid of it.
* + Added function ubi_btLeafNode().
*
* Revision 2.3 1997/06/03 05:16:17 crh
* Changed TRUE and FALSE to ubi_TRUE and ubi_FALSE to avoid conflicts.
* Also changed the interface to function InitTree(). See the comments
* for this function for more information.
*
* Revision 2.2 1995/10/03 22:00:07 CRH
* Ubisized!
*
* Revision 2.1 95/03/09 23:37:10 CRH
* Added the ModuleID static string and function. These modules are now
* self-identifying.
*
* Revision 2.0 95/02/27 22:00:17 CRH
* Revision 2.0 of this program includes the following changes:
*
* 1) A fix to a major typo in the RepaceNode() function.
* 2) The addition of the static function Border().
* 3) The addition of the public functions FirstOf() and LastOf(), which
* use Border(). These functions are used with trees that allow
* duplicate keys.
* 4) A complete rewrite of the Locate() function. Locate() now accepts
* a "comparison" operator.
* 5) Overall enhancements to both code and comments.
*
* I decided to give this a new major rev number because the interface has
* changed. In particular, there are two new functions, and changes to the
* Locate() function.
*
* Revision 1.0 93/10/15 22:44:59 CRH
* With this revision, I have added a set of #define's that provide a single,
* standard API to all existing tree modules. Until now, each of the three
* existing modules had a different function and typedef prefix, as follows:
*
* Module Prefix
* ubi_BinTree ubi_bt
* ubi_AVLtree ubi_avl
* ubi_SplayTree ubi_spt
*
* To further complicate matters, only those portions of the base module
* (ubi_BinTree) that were superceeded in the new module had the new names.
* For example, if you were using ubi_AVLtree, the AVL node structure was
* named "ubi_avlNode", but the root structure was still "ubi_btRoot". Using
* SplayTree, the locate function was called "ubi_sptLocate", but the next
* and previous functions remained "ubi_btNext" and "ubi_btPrev".
*
* This was not too terrible if you were familiar with the modules and knew
* exactly which tree model you wanted to use. If you wanted to be able to
* change modules (for speed comparisons, etc), things could get messy very
* quickly.
*
* So, I have added a set of defined names that get redefined in any of the
* descendant modules. To use this standardized interface in your code,
* simply replace all occurances of "ubi_bt", "ubi_avl", and "ubi_spt" with
* "ubi_tr". The "ubi_tr" names will resolve to the correct function or
* datatype names for the module that you are using. Just remember to
* include the header for that module in your program file. Because these
* names are handled by the preprocessor, there is no added run-time
* overhead.
*
* Note that the original names do still exist, and can be used if you wish
* to write code directly to a specific module. This should probably only be
* done if you are planning to implement a new descendant type, such as
* red/black trees. CRH
*
* V0.0 - June, 1991 - Written by Christopher R. Hertel (CRH).
*
* ========================================================================== **
*/
#include "ubi_BinTree.h" /* Header for this module */
#include <stdlib.h> /* Standard C definitions. */
/* ========================================================================== **
* Static data.
*/
static char ModuleID[] = "ubi_BinTree\n\
\t$Revision: 1.1 $\n\
\t$Date: 1997/10/10 14:46:38 $\n\
\t$Author: crh $\n";
/* ========================================================================== **
* Internal (private) functions.
*/
static ubi_btNodePtr qFind( ubi_btCompFunc cmp,
ubi_btItemPtr FindMe,
register ubi_btNodePtr p )
/* ------------------------------------------------------------------------ **
* This function performs a non-recursive search of a tree for a node
* matching a specific key. It is called "qFind()" because it is
* faster that TreeFind (below).
*
* Input:
* cmp - a pointer to the tree's comparison function.
* FindMe - a pointer to the key value for which to search.
* p - a pointer to the starting point of the search. <p>
* is considered to be the root of a subtree, and only
* the subtree will be searched.
*
* Output:
* A pointer to a node with a key that matches the key indicated by
* FindMe, or NULL if no such node was found.
*
* Note: In a tree that allows duplicates, the pointer returned *might
* not* point to the (sequentially) first occurance of the
* desired key.
* ------------------------------------------------------------------------ **
*/
{
char tmp;
while( p && (( tmp = AbNormal((*cmp)(FindMe, p)) ) != EQUAL) )
p = p->Link[tmp];
return( p );
} /* qFind */
static ubi_btNodePtr TreeFind( ubi_btItemPtr findme,
ubi_btNodePtr p,
ubi_btNodePtr *parentp,
char *gender,
ubi_btCompFunc CmpFunc )
/* ------------------------------------------------------------------------ **
* TreeFind() searches a tree for a given value (findme). It will return a
* pointer to the target node, if found, or NULL if the target node was not
* found.
*
* TreeFind() also returns, via parameters, a pointer to the parent of the
* target node, and a LEFT or RIGHT value indicating which child of the
* parent is the target node. *If the target is not found*, then these
* values indicate the place at which the target *should be found*. This
* is useful when inserting a new node into a tree or searching for nodes
* "near" the target node.
*
* The parameters are:
*
* findme - is a pointer to the key information to be searched for.
* p - points to the root of the tree to be searched.
* parentp - will return a pointer to a pointer to the !parent! of the
* target node, which can be especially usefull if the target
* was not found.
* gender - returns LEFT or RIGHT to indicate which child of *parentp
* was last searched.
* CmpFunc - points to the comparison function.
*
* This function is called by ubi_btLocate() and ubi_btInsert().
* ------------------------------------------------------------------------ **
*/
{
register ubi_btNodePtr tmp_p = p;
ubi_btNodePtr tmp_pp = NULL;
char tmp_sex = EQUAL;
char tmp_cmp;
while( tmp_p && (EQUAL != (tmp_cmp = AbNormal((*CmpFunc)(findme, tmp_p)))) )
{
tmp_pp = tmp_p; /* Keep track of previous node. */
tmp_sex = tmp_cmp; /* Keep track of sex of child. */
tmp_p = tmp_p->Link[tmp_cmp]; /* Go to child. */
}
*parentp = tmp_pp; /* Return results. */
*gender = tmp_sex;
return( tmp_p );
} /* TreeFind */
static void ReplaceNode( ubi_btNodePtr *parent,
ubi_btNodePtr oldnode,
ubi_btNodePtr newnode )
/* ------------------------------------------------------------------ *
* Remove node oldnode from the tree, replacing it with node newnode.
*
* Input:
* parent - A pointer to he parent pointer of the node to be
* replaced. <parent> may point to the Link[] field of
* a parent node, or it may indicate the root pointer at
* the top of the tree.
* oldnode - A pointer to the node that is to be replaced.
* newnode - A pointer to the node that is to be installed in the
* place of <*oldnode>.
*
* Notes: Don't forget to free oldnode.
* Also, this function used to have a really nasty typo
* bug. "oldnode" and "newnode" were swapped in the line
* that now reads:
* ((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
* Bleah!
* ------------------------------------------------------------------ *
*/
{
register int i;
register int btNodeSize = sizeof( ubi_btNode );
for( i = 0; i < btNodeSize; i++ ) /* Copy node internals to new node. */
((unsigned char *)newnode)[i] = ((unsigned char *)oldnode)[i];
(*parent) = newnode; /* Old node's parent points to new child. */
/* Now tell the children about their new step-parent. */
if( oldnode->Link[LEFT ] ) (oldnode->Link[LEFT ])->Link[PARENT] = newnode;
if( oldnode->Link[RIGHT] ) (oldnode->Link[RIGHT])->Link[PARENT] = newnode;
} /* ReplaceNode */
static void SwapNodes( ubi_btRootPtr RootPtr,
ubi_btNodePtr Node1,
ubi_btNodePtr Node2 )
/* ------------------------------------------------------------------------ **
* This function swaps two nodes in the tree. Node1 will take the place of
* Node2, and Node2 will fill in the space left vacant by Node 1.
*
* Input:
* RootPtr - pointer to the tree header structure for this tree.
* Node1 - \
* > These are the two nodes which are to be swapped.
* Node2 - /
*
* Notes:
* This function does a three step swap, using a dummy node as a place
* holder. This function is used by ubi_btRemove().
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr *Parent;
ubi_btNode dummy;
ubi_btNodePtr dummy_p = &dummy;
/* Replace Node 1 with the dummy, thus removing Node1 from the tree. */
if( Node1->Link[PARENT] )
Parent = &((Node1->Link[PARENT])->Link[Node1->gender]);
else
Parent = &(RootPtr->root);
ReplaceNode( Parent, Node1, dummy_p );
/* Swap Node 1 with Node 2, placing Node 1 back into the tree. */
if( Node2->Link[PARENT] )
Parent = &((Node2->Link[PARENT])->Link[Node2->gender]);
else
Parent = &(RootPtr->root);
ReplaceNode( Parent, Node2, Node1 );
/* Swap Node 2 and the dummy, thus placing Node 2 back into the tree. */
if( dummy_p->Link[PARENT] )
Parent = &((dummy_p->Link[PARENT])->Link[dummy_p->gender]);
else
Parent = &(RootPtr->root);
ReplaceNode( Parent, dummy_p, Node2 );
} /* SwapNodes */
/* -------------------------------------------------------------------------- **
* These routines allow you to walk through the tree, forwards or backwards.
*/
static ubi_btNodePtr SubSlide( register ubi_btNodePtr P,
register char whichway )
/* ------------------------------------------------------------------------ **
* Slide down the side of a subtree.
*
* Given a starting node, this function returns a pointer to the LEFT-, or
* RIGHT-most descendent, *or* (if whichway is PARENT) to the tree root.
*
* Input: P - a pointer to a starting place.
* whichway - the direction (LEFT, RIGHT, or PARENT) in which to
* travel.
* Output: A pointer to a node that is either the root, or has no
* whichway-th child but is within the subtree of P. Note that
* the return value may be the same as P. The return value *will
* be* NULL if P is NULL.
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr Q = NULL;
while( P )
{
Q = P;
P = P->Link[ whichway ];
}
return( Q );
} /* SubSlide */
static ubi_btNodePtr Neighbor( register ubi_btNodePtr P,
register char whichway )
/* ------------------------------------------------------------------------ **
* Given starting point p, return the (key order) next or preceeding node
* in the tree.
*
* Input: P - Pointer to our starting place node.
* whichway - the direction in which to travel to find the
* neighbor, i.e., the RIGHT neighbor or the LEFT
* neighbor.
*
* Output: A pointer to the neighboring node, or NULL if P was NULL.
*
* Notes: If whichway is PARENT, the results are unpredictable.
* ------------------------------------------------------------------------ **
*/
{
if( P )
{
if( P->Link[ whichway ] )
return( SubSlide( P->Link[ whichway ], (char)RevWay(whichway) ) );
else
while( P->Link[ PARENT ] )
{
if( (P->Link[ PARENT ])->Link[ whichway ] == P )
P = P->Link[ PARENT ];
else
return( P->Link[ PARENT ] );
}
}
return( NULL );
} /* Neighbor */
static ubi_btNodePtr Border( ubi_btRootPtr RootPtr,
ubi_btItemPtr FindMe,
ubi_btNodePtr p,
char whichway )
/* ------------------------------------------------------------------------ **
* Given starting point p, which has a key value equal to *FindMe, locate
* the first (index order) node with the same key value.
*
* This function is useful in trees that have can have duplicate keys.
* For example, consider the following tree:
* Tree Traversal
* 2 If <p> points to the root and <whichway> is RIGHT, 3
* / \ then the return value will be a pointer to the / \
* 2 2 RIGHT child of the root node. The tree on 2 5
* / / \ the right shows the order of traversal. / / \
* 1 2 3 1 4 6
*
* Input: RootPtr - Pointer to the tree root structure.
* FindMe - Key value for comparisons.
* p - Pointer to the starting-point node.
* whichway - the direction in which to travel to find the
* neighbor, i.e., the RIGHT neighbor or the LEFT
* neighbor.
*
* Output: A pointer to the first (index, or "traversal", order) node with
* a Key value that matches *FindMe.
*
* Notes: If whichway is PARENT, or if the tree does not allow duplicate
* keys, this function will return <p>.
* ------------------------------------------------------------------------ **
*/
{
register ubi_btNodePtr q;
/* Exit if there's nothing that can be done. */
if( !Dups_OK( RootPtr ) || (PARENT == whichway) )
return( p );
/* First, if needed, move up the tree. We need to get to the root of the
* subtree that contains all of the matching nodes.
*/
q = p->Link[PARENT];
while( q && (EQUAL == AbNormal( (*(RootPtr->cmp))(FindMe, q) )) )
{
p = q;
q = p->Link[PARENT];
}
/* Next, move back down in the "whichway" direction. */
q = p->Link[whichway];
while( q )
{
if( q = qFind( RootPtr->cmp, FindMe, q ) )
{
p = q;
q = p->Link[whichway];
}
}
return( p );
} /* Border */
/* ========================================================================== **
* Exported utilities.
*/
long ubi_btSgn( register long x )
/* ------------------------------------------------------------------------ **
* Return the sign of x; {negative,zero,positive} ==> {-1, 0, 1}.
*
* Input: x - a signed long integer value.
*
* Output: the "sign" of x, represented as follows:
* -1 == negative
* 0 == zero (no sign)
* 1 == positive
*
* Note: This utility is provided in order to facilitate the conversion
* of C comparison function return values into BinTree direction
* values: {LEFT, PARENT, EQUAL}. It is INCORPORATED into the
* AbNormal() conversion macro!
*
* ------------------------------------------------------------------------ **
*/
{
return( (x)?((x>0)?(1):(-1)):(0) );
} /* ubi_btSgn */
ubi_btNodePtr ubi_btInitNode( ubi_btNodePtr NodePtr )
/* ------------------------------------------------------------------------ **
* Initialize a tree node.
*
* Input: a pointer to a ubi_btNode structure to be initialized.
* Output: a pointer to the initialized ubi_btNode structure (ie. the
* same as the input pointer).
* ------------------------------------------------------------------------ **
*/
{
NodePtr->Link[ LEFT ] = NULL;
NodePtr->Link[ PARENT ] = NULL;
NodePtr->Link[ RIGHT ] = NULL;
NodePtr->gender = EQUAL;
return( NodePtr );
} /* ubi_btInitNode */
ubi_btRootPtr ubi_btInitTree( ubi_btRootPtr RootPtr,
ubi_btCompFunc CompFunc,
unsigned char Flags )
/* ------------------------------------------------------------------------ **
* Initialize the fields of a Tree Root header structure.
*
* Input: RootPtr - a pointer to an ubi_btRoot structure to be
* initialized.
* CompFunc - a pointer to a comparison function that will be used
* whenever nodes in the tree must be compared against
* outside values.
* Flags - One bytes worth of flags. Flags include
* ubi_trOVERWRITE and ubi_trDUPKEY. See the header
* file for more info.
*
* Output: a pointer to the initialized ubi_btRoot structure (ie. the
* same value as RootPtr).
*
* Note: The interface to this function has changed from that of
* previous versions. The <Flags> parameter replaces two
* boolean parameters that had the same basic effect.
*
* ------------------------------------------------------------------------ **
*/
{
if( RootPtr )
{
RootPtr->root = NULL;
RootPtr->count = 0L;
RootPtr->cmp = CompFunc;
RootPtr->flags = (Flags & ubi_trDUPKEY) ? ubi_trDUPKEY : Flags;
} /* There are only two supported flags, and they are
* mutually exclusive. ubi_trDUPKEY takes precedence
* over ubi_trOVERWRITE.
*/
return( RootPtr );
} /* ubi_btInitTree */
ubi_trBool ubi_btInsert( ubi_btRootPtr RootPtr,
ubi_btNodePtr NewNode,
ubi_btItemPtr ItemPtr,
ubi_btNodePtr *OldNode )
/* ------------------------------------------------------------------------ **
* This function uses a non-recursive algorithm to add a new element to the
* tree.
*
* Input: RootPtr - a pointer to the ubi_btRoot structure that indicates
* the root of the tree to which NewNode is to be added.
* NewNode - a pointer to an ubi_btNode structure that is NOT
* part of any tree.
* ItemPtr - A pointer to the sort key that is stored within
* *NewNode. ItemPtr MUST point to information stored
* in *NewNode or an EXACT DUPLICATE. The key data
* indicated by ItemPtr is used to place the new node
* into the tree.
* OldNode - a pointer to an ubi_btNodePtr. When searching
* the tree, a duplicate node may be found. If
* duplicates are allowed, then the new node will
* be simply placed into the tree. If duplicates
* are not allowed, however, then one of two things
* may happen.
* 1) if overwritting *is not* allowed, this
* function will return FALSE (indicating that
* the new node could not be inserted), and
* *OldNode will point to the duplicate that is
* still in the tree.
* 2) if overwritting *is* allowed, then this
* function will swap **OldNode for *NewNode.
* In this case, *OldNode will point to the node
* that was removed (thus allowing you to free
* the node).
* ** If you are using overwrite mode, ALWAYS **
* ** check the return value of this parameter! **
* Note: You may pass NULL in this parameter, the
* function knows how to cope. If you do this,
* however, there will be no way to return a
* pointer to an old (ie. replaced) node (which is
* a problem if you are using overwrite mode).
*
* Output: a boolean value indicating success or failure. The function
* will return FALSE if the node could not be added to the tree.
* Such failure will only occur if duplicates are not allowed,
* nodes cannot be overwritten, AND a duplicate key was found
* within the tree.
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr OtherP,
parent = NULL;
char tmp;
if( !(OldNode) ) /* If they didn't give us a pointer, supply our own. */
OldNode = &OtherP;
(void)ubi_btInitNode( NewNode ); /* Init the new node's BinTree fields. */
/* Find a place for the new node. */
*OldNode = TreeFind(ItemPtr, (RootPtr->root), &parent, &tmp, (RootPtr->cmp));
/* Now add the node to the tree... */
if (!(*OldNode)) /* The easy one: we have a space for a new node! */
{
if (!(parent))
RootPtr->root = NewNode;
else
{
parent->Link[tmp] = NewNode;
NewNode->Link[PARENT] = parent;
NewNode->gender = tmp;
}
(RootPtr->count)++;
return( ubi_trTRUE );
}
/* If we reach this point, we know that a duplicate node exists. This
* section adds the node to the tree if duplicate keys are allowed.
*/
if( Dups_OK(RootPtr) ) /* Key exists, add duplicate */
{
ubi_btNodePtr q;
tmp = RIGHT;
q = (*OldNode);
*OldNode = NULL;
while( q )
{
parent = q;
if( tmp == EQUAL ) tmp = RIGHT;
q = q->Link[tmp];
if ( q )
tmp = AbNormal( (*(RootPtr->cmp))(ItemPtr, q) );
}
parent->Link[tmp] = NewNode;
NewNode->Link[PARENT] = parent;
NewNode->gender = tmp;
(RootPtr->count)++;
return( ubi_trTRUE );
}
/* If we get to *this* point, we know that we are not allowed to have
* duplicate nodes, but our node keys match, so... may we replace the
* old one?
*/
if( Ovwt_OK(RootPtr) ) /* Key exists, we replace */
{
if (!(parent))
ReplaceNode( &(RootPtr->root), *OldNode, NewNode );
else
ReplaceNode( &(parent->Link[(*OldNode)->gender]), *OldNode, NewNode );
return( ubi_trTRUE );
}
return( ubi_trFALSE ); /* Failure: could not replace an existing node. */
} /* ubi_btInsert */
ubi_btNodePtr ubi_btRemove( ubi_btRootPtr RootPtr,
ubi_btNodePtr DeadNode )
/* ------------------------------------------------------------------------ **
* This function removes the indicated node from the tree.
*
* Input: RootPtr - A pointer to the header of the tree that contains
* the node to be removed.
* DeadNode - A pointer to the node that will be removed.
*
* Output: This function returns a pointer to the node that was removed
* from the tree (ie. the same as DeadNode).
*
* Note: The node MUST be in the tree indicated by RootPtr. If not,
* strange and evil things will happen to your trees.
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr p,
*parentp;
char tmp;
/* if the node has both left and right subtrees, then we have to swap
* it with another node. The other node we choose will be the Prev()ious
* node, which is garunteed to have no RIGHT child.
*/
if( (DeadNode->Link[LEFT]) && (DeadNode->Link[RIGHT]) )
SwapNodes( RootPtr, DeadNode, ubi_btPrev( DeadNode ) );
/* The parent of the node to be deleted may be another node, or it may be
* the root of the tree. Since we're not sure, it's best just to have
* a pointer to the parent pointer, whatever it is.
*/
if (DeadNode->Link[PARENT])
parentp = &((DeadNode->Link[PARENT])->Link[DeadNode->gender]);
else
parentp = &( RootPtr->root );
/* Now link the parent to the only grand-child and patch up the gender. */
tmp = ((DeadNode->Link[LEFT])?LEFT:RIGHT);
p = (DeadNode->Link[tmp]);
if( p )
{
p->Link[PARENT] = DeadNode->Link[PARENT];
p->gender = DeadNode->gender;
}
(*parentp) = p;
/* Finished, reduce the node count and return. */
(RootPtr->count)--;
return( DeadNode );
} /* ubi_btRemove */
ubi_btNodePtr ubi_btLocate( ubi_btRootPtr RootPtr,
ubi_btItemPtr FindMe,
ubi_trCompOps CompOp )
/* ------------------------------------------------------------------------ **
* The purpose of ubi_btLocate() is to find a node or set of nodes given
* a target value and a "comparison operator". The Locate() function is
* more flexible and (in the case of trees that may contain dupicate keys)
* more precise than the ubi_btFind() function. The latter is faster,
* but it only searches for exact matches and, if the tree contains
* duplicates, Find() may return a pointer to any one of the duplicate-
* keyed records.
*
* Input:
* RootPtr - A pointer to the header of the tree to be searched.
* FindMe - An ubi_btItemPtr that indicates the key for which to
* search.
* CompOp - One of the following:
* CompOp Return a pointer to the node with
* ------ ---------------------------------
* ubi_trLT - the last key value that is less
* than FindMe.
* ubi_trLE - the first key matching FindMe, or
* the last key that is less than
* FindMe.
* ubi_trEQ - the first key matching FindMe.
* ubi_trGE - the first key matching FindMe, or the
* first key greater than FindMe.
* ubi_trGT - the first key greater than FindMe.
* Output:
* A pointer to the node matching the criteria listed above under
* CompOp, or NULL if no node matched the criteria.
*
* Notes:
* In the case of trees with duplicate keys, Locate() will behave as
* follows:
*
* Find: 3 Find: 3
* Keys: 1 2 2 2 3 3 3 3 3 4 4 Keys: 1 1 2 2 2 4 4 5 5 5 6
* ^ ^ ^ ^ ^
* LT EQ GT LE GE
*
* That is, when returning a pointer to a node with a key that is LESS
* THAN the target key (FindMe), Locate() will return a pointer to the
* LAST matching node.
* When returning a pointer to a node with a key that is GREATER
* THAN the target key (FindMe), Locate() will return a pointer to the
* FIRST matching node.
*
* See Also: ubi_btFind(), ubi_btFirstOf(), ubi_btLastOf().
* ------------------------------------------------------------------------ **
*/
{
register ubi_btNodePtr p;
ubi_btNodePtr parent;
char whichkid;
/* Start by searching for a matching node. */
p = TreeFind( FindMe,
RootPtr->root,
&parent,
&whichkid,
RootPtr->cmp );
if( p ) /* If we have found a match, we can resolve as follows: */
{
switch( CompOp )
{
case ubi_trLT: /* It's just a jump to the left... */
p = Border( RootPtr, FindMe, p, LEFT );
return( Neighbor( p, LEFT ) );
case ubi_trGT: /* ...and then a jump to the right. */
p = Border( RootPtr, FindMe, p, RIGHT );
return( Neighbor( p, RIGHT ) );
}
p = Border( RootPtr, FindMe, p, LEFT );
return( p );
}
/* Else, no match. */
if( ubi_trEQ == CompOp ) /* If we were looking for an exact match... */
return( NULL ); /* ...forget it. */
/* We can still return a valid result for GT, GE, LE, and LT.
* <parent> points to a node with a value that is either just before or
* just after the target value.
* Remaining possibilities are LT and GT (including LE & GE).
*/
if( (ubi_trLT == CompOp) || (ubi_trLE == CompOp) )
return( (LEFT == whichkid) ? Neighbor( parent, whichkid ) : parent );
else
return( (RIGHT == whichkid) ? Neighbor( parent, whichkid ) : parent );
} /* ubi_btLocate */
ubi_btNodePtr ubi_btFind( ubi_btRootPtr RootPtr,
ubi_btItemPtr FindMe )
/* ------------------------------------------------------------------------ **
* This function performs a non-recursive search of a tree for any node
* matching a specific key.
*
* Input:
* RootPtr - a pointer to the header of the tree to be searched.
* FindMe - a pointer to the key value for which to search.
*
* Output:
* A pointer to a node with a key that matches the key indicated by
* FindMe, or NULL if no such node was found.
*
* Note: In a tree that allows duplicates, the pointer returned *might
* not* point to the (sequentially) first occurance of the
* desired key. In such a tree, it may be more useful to use
* ubi_btLocate().
* ------------------------------------------------------------------------ **
*/
{
return( qFind( RootPtr->cmp, FindMe, RootPtr->root ) );
} /* ubi_btFind */
ubi_btNodePtr ubi_btNext( ubi_btNodePtr P )
/* ------------------------------------------------------------------------ **
* Given the node indicated by P, find the (sorted order) Next node in the
* tree.
* Input: P - a pointer to a node that exists in a binary tree.
* Output: A pointer to the "next" node in the tree, or NULL if P pointed
* to the "last" node in the tree or was NULL.
* ------------------------------------------------------------------------ **
*/
{
return( Neighbor( P, RIGHT ) );
} /* ubi_btNext */
ubi_btNodePtr ubi_btPrev( ubi_btNodePtr P )
/* ------------------------------------------------------------------------ **
* Given the node indicated by P, find the (sorted order) Previous node in
* the tree.
* Input: P - a pointer to a node that exists in a binary tree.
* Output: A pointer to the "previous" node in the tree, or NULL if P
* pointed to the "first" node in the tree or was NULL.
* ------------------------------------------------------------------------ **
*/
{
return( Neighbor( P, LEFT ) );
} /* ubi_btPrev */
ubi_btNodePtr ubi_btFirst( ubi_btNodePtr P )
/* ------------------------------------------------------------------------ **
* Given the node indicated by P, find the (sorted order) First node in the
* subtree of which *P is the root.
* Input: P - a pointer to a node that exists in a binary tree.
* Output: A pointer to the "first" node in a subtree that has *P as its
* root. This function will return NULL only if P is NULL.
* Note: In general, you will be passing in the value of the root field
* of an ubi_btRoot structure.
* ------------------------------------------------------------------------ **
*/
{
return( SubSlide( P, LEFT ) );
} /* ubi_btFirst */
ubi_btNodePtr ubi_btLast( ubi_btNodePtr P )
/* ------------------------------------------------------------------------ **
* Given the node indicated by P, find the (sorted order) Last node in the
* subtree of which *P is the root.
* Input: P - a pointer to a node that exists in a binary tree.
* Output: A pointer to the "last" node in a subtree that has *P as its
* root. This function will return NULL only if P is NULL.
* Note: In general, you will be passing in the value of the root field
* of an ubi_btRoot structure.
* ------------------------------------------------------------------------ **
*/
{
return( SubSlide( P, RIGHT ) );
} /* ubi_btLast */
ubi_btNodePtr ubi_btFirstOf( ubi_btRootPtr RootPtr,
ubi_btItemPtr MatchMe,
ubi_btNodePtr p )
/* ------------------------------------------------------------------------ **
* Given a tree that a allows duplicate keys, and a pointer to a node in
* the tree, this function will return a pointer to the first (traversal
* order) node with the same key value.
*
* Input: RootPtr - A pointer to the root of the tree.
* MatchMe - A pointer to the key value. This should probably
* point to the key within node *p.
* p - A pointer to a node in the tree.
* Output: A pointer to the first node in the set of nodes with keys
* matching <FindMe>.
* Notes: Node *p MUST be in the set of nodes with keys matching
* <FindMe>. If not, this function will return NULL.
* ------------------------------------------------------------------------ **
*/
{
/* If our starting point is invalid, return NULL. */
if( !p || AbNormal( (*(RootPtr->cmp))( MatchMe, p ) != EQUAL ) )
return( NULL );
return( Border( RootPtr, MatchMe, p, LEFT ) );
} /* ubi_btFirstOf */
ubi_btNodePtr ubi_btLastOf( ubi_btRootPtr RootPtr,
ubi_btItemPtr MatchMe,
ubi_btNodePtr p )
/* ------------------------------------------------------------------------ **
* Given a tree that a allows duplicate keys, and a pointer to a node in
* the tree, this function will return a pointer to the last (traversal
* order) node with the same key value.
*
* Input: RootPtr - A pointer to the root of the tree.
* MatchMe - A pointer to the key value. This should probably
* point to the key within node *p.
* p - A pointer to a node in the tree.
* Output: A pointer to the last node in the set of nodes with keys
* matching <FindMe>.
* Notes: Node *p MUST be in the set of nodes with keys matching
* <FindMe>. If not, this function will return NULL.
* ------------------------------------------------------------------------ **
*/
{
/* If our starting point is invalid, return NULL. */
if( !p || AbNormal( (*(RootPtr->cmp))( MatchMe, p ) != EQUAL ) )
return( NULL );
return( Border( RootPtr, MatchMe, p, RIGHT ) );
} /* ubi_btLastOf */
ubi_trBool ubi_btTraverse( ubi_btRootPtr RootPtr,
ubi_btActionRtn EachNode,
void *UserData )
/* ------------------------------------------------------------------------ **
* Traverse a tree in sorted order (non-recursively). At each node, call
* (*EachNode)(), passing a pointer to the current node, and UserData as the
* second parameter.
* Input: RootPtr - a pointer to an ubi_btRoot structure that indicates
* the tree to be traversed.
* EachNode - a pointer to a function to be called at each node
* as the node is visited.
* UserData - a generic pointer that may point to anything that
* you choose.
* Output: A boolean value. FALSE if the tree is empty, otherwise TRUE.
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr p;
if( !(p = ubi_btFirst( RootPtr->root )) ) return( ubi_trFALSE );
while( p )
{
EachNode( p, UserData );
p = ubi_btNext( p );
}
return( ubi_trTRUE );
} /* ubi_btTraverse */
ubi_trBool ubi_btKillTree( ubi_btRootPtr RootPtr,
ubi_btKillNodeRtn FreeNode )
/* ------------------------------------------------------------------------ **
* Delete an entire tree (non-recursively) and reinitialize the ubi_btRoot
* structure. Note that this function will return FALSE if either parameter
* is NULL.
*
* Input: RootPtr - a pointer to an ubi_btRoot structure that indicates
* the root of the tree to delete.
* FreeNode - a function that will be called for each node in the
* tree to deallocate the memory used by the node.
*
* Output: A boolean value. FALSE if either input parameter was NULL, else
* TRUE.
*
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr p, q;
if( !(RootPtr) || !(FreeNode) )
return( ubi_trFALSE );
p = ubi_btFirst( RootPtr->root );
while( p )
{
q = p;
while( q->Link[RIGHT] )
q = SubSlide( q->Link[RIGHT], LEFT );
p = q->Link[PARENT];
if( p )
p->Link[ ((p->Link[LEFT] == q)?LEFT:RIGHT) ] = NULL;
FreeNode((void *)q);
}
(void)ubi_btInitTree( RootPtr,
RootPtr->cmp,
RootPtr->flags );
return( ubi_trTRUE );
} /* ubi_btKillTree */
ubi_btNodePtr ubi_btLeafNode( ubi_btNodePtr leader )
/* ------------------------------------------------------------------------ **
* Returns a pointer to a leaf node.
*
* Input: leader - Pointer to a node at which to start the descent.
*
* Output: A pointer to a leaf node selected in a somewhat arbitrary
* manner.
*
* Notes: I wrote this function because I was using splay trees as a
* database cache. The cache had a maximum size on it, and I
* needed a way of choosing a node to sacrifice if the cache
* became full. In a splay tree, less recently accessed nodes
* tend toward the bottom of the tree, meaning that leaf nodes
* are good candidates for removal. (I really can't think of
* any other reason to use this function.)
* + In a simple binary tree or an AVL tree, the most recently
* added nodes tend to be nearer the bottom, making this a *bad*
* way to choose which node to remove from the cache.
* + Randomizing the traversal order is probably a good idea. You
* can improve the randomization of leaf node selection by passing
* in pointers to nodes other than the root node each time. A
* pointer to any node in the tree will do. Of course, if you
* pass a pointer to a leaf node you'll get the same thing back.
*
* ------------------------------------------------------------------------ **
*/
{
ubi_btNodePtr follower = NULL;
int whichway = LEFT;
while( NULL != leader )
{
follower = leader;
leader = follower->Link[ whichway ];
if( NULL == leader )
{
whichway = RevWay( whichway );
leader = follower->Link[ whichway ];
}
}
return( follower );
} /* ubi_btLeafNode */
int ubi_btModuleID( int size, char *list[] )
/* ------------------------------------------------------------------------ **
* Returns a set of strings that identify the module.
*
* Input: size - The number of elements in the array <list>.
* list - An array of pointers of type (char *). This array
* should, initially, be empty. This function will fill
* in the array with pointers to strings.
* Output: The number of elements of <list> that were used. If this value
* is less than <size>, the values of the remaining elements are
* not guaranteed.
*
* Notes: Please keep in mind that the pointers returned indicate strings
* stored in static memory. Don't free() them, don't write over
* them, etc. Just read them.
* ------------------------------------------------------------------------ **
*/
{
if( size > 0 )
{
list[0] = ModuleID;
if( size > 1 )
list[1] = NULL;
return( 1 );
}
return( 0 );
} /* ubi_btModuleID */
/* ========================================================================== */
|