summaryrefslogtreecommitdiff
path: root/source4/heimdal/lib/hcrypto/imath
diff options
context:
space:
mode:
authorAndrew Bartlett <abartlet@samba.org>2010-11-11 11:27:33 +1100
committerAndrew Bartlett <abartlet@samba.org>2010-11-15 01:25:06 +0000
commit1342185e333cb8139b7a70b7fe43571bcc2716a7 (patch)
tree0e1cb8d3cfc437bd7cc3a97f2bdc472f54d95dbd /source4/heimdal/lib/hcrypto/imath
parent13fd22f61017124d2d4964db3e32c667d119b56c (diff)
downloadsamba-1342185e333cb8139b7a70b7fe43571bcc2716a7.tar.gz
samba-1342185e333cb8139b7a70b7fe43571bcc2716a7.tar.bz2
samba-1342185e333cb8139b7a70b7fe43571bcc2716a7.zip
s4:heimdal: import lorikeet-heimdal-201011102149 (commit 5734d03c20e104c8f45533d07f2a2cbbd3224f29)
Diffstat (limited to 'source4/heimdal/lib/hcrypto/imath')
-rw-r--r--source4/heimdal/lib/hcrypto/imath/LICENSE21
-rw-r--r--source4/heimdal/lib/hcrypto/imath/imath.c3353
-rw-r--r--source4/heimdal/lib/hcrypto/imath/imath.h231
-rw-r--r--source4/heimdal/lib/hcrypto/imath/iprime.c189
-rw-r--r--source4/heimdal/lib/hcrypto/imath/iprime.h51
5 files changed, 0 insertions, 3845 deletions
diff --git a/source4/heimdal/lib/hcrypto/imath/LICENSE b/source4/heimdal/lib/hcrypto/imath/LICENSE
deleted file mode 100644
index 5b0104fa1b..0000000000
--- a/source4/heimdal/lib/hcrypto/imath/LICENSE
+++ /dev/null
@@ -1,21 +0,0 @@
-IMath is Copyright © 2002-2008 Michael J. Fromberger
-You may use it subject to the following Licensing Terms:
-
-Permission is hereby granted, free of charge, to any person obtaining
-a copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
-IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
-CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
-TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
-SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
diff --git a/source4/heimdal/lib/hcrypto/imath/imath.c b/source4/heimdal/lib/hcrypto/imath/imath.c
deleted file mode 100644
index 0079bafd02..0000000000
--- a/source4/heimdal/lib/hcrypto/imath/imath.c
+++ /dev/null
@@ -1,3353 +0,0 @@
-/*
- Name: imath.c
- Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
- Info: $Id: imath.c 826 2009-02-11 16:21:04Z sting $
-
- Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
-
-#include "imath.h"
-
-#if DEBUG
-#include <stdio.h>
-#endif
-
-#include <stdlib.h>
-#include <string.h>
-#include <ctype.h>
-
-#include <assert.h>
-
-#if DEBUG
-#define STATIC /* public */
-#else
-#define STATIC static
-#endif
-
-/* {{{ Constants */
-
-const mp_result MP_OK = 0; /* no error, all is well */
-const mp_result MP_FALSE = 0; /* boolean false */
-const mp_result MP_TRUE = -1; /* boolean true */
-const mp_result MP_MEMORY = -2; /* out of memory */
-const mp_result MP_RANGE = -3; /* argument out of range */
-const mp_result MP_UNDEF = -4; /* result undefined */
-const mp_result MP_TRUNC = -5; /* output truncated */
-const mp_result MP_BADARG = -6; /* invalid null argument */
-const mp_result MP_MINERR = -6;
-
-const mp_sign MP_NEG = 1; /* value is strictly negative */
-const mp_sign MP_ZPOS = 0; /* value is non-negative */
-
-STATIC const char *s_unknown_err = "unknown result code";
-STATIC const char *s_error_msg[] = {
- "error code 0",
- "boolean true",
- "out of memory",
- "argument out of range",
- "result undefined",
- "output truncated",
- "invalid argument",
- NULL
-};
-
-/* }}} */
-
-/* Argument checking macros
- Use CHECK() where a return value is required; NRCHECK() elsewhere */
-#define CHECK(TEST) assert(TEST)
-#define NRCHECK(TEST) assert(TEST)
-
-/* {{{ Logarithm table for computing output sizes */
-
-/* The ith entry of this table gives the value of log_i(2).
-
- An integer value n requires ceil(log_i(n)) digits to be represented
- in base i. Since it is easy to compute lg(n), by counting bits, we
- can compute log_i(n) = lg(n) * log_i(2).
-
- The use of this table eliminates a dependency upon linkage against
- the standard math libraries.
- */
-STATIC const double s_log2[] = {
- 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
- 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
- 0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
- 0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
- 0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
- 0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
- 0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
- 0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
- 0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
- 0.193426404, /* 36 */
-};
-
-/* }}} */
-/* {{{ Various macros */
-
-/* Return the number of digits needed to represent a static value */
-#define MP_VALUE_DIGITS(V) \
-((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
-
-/* Round precision P to nearest word boundary */
-#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
-
-/* Set array P of S digits to zero */
-#define ZERO(P, S) \
-do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P);memset(p__,0,i__);}while(0)
-
-/* Copy S digits from array P to array Q */
-#define COPY(P, Q, S) \
-do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P),*q__=(Q);\
-memcpy(q__,p__,i__);}while(0)
-
-/* Reverse N elements of type T in array A */
-#define REV(T, A, N) \
-do{T *u_=(A),*v_=u_+(N)-1;while(u_<v_){T xch=*u_;*u_++=*v_;*v_--=xch;}}while(0)
-
-#define CLAMP(Z) \
-do{mp_int z_=(Z);mp_size uz_=MP_USED(z_);mp_digit *dz_=MP_DIGITS(z_)+uz_-1;\
-while(uz_ > 1 && (*dz_-- == 0)) --uz_;MP_USED(z_)=uz_;}while(0)
-
-/* Select min/max. Do not provide expressions for which multiple
- evaluation would be problematic, e.g. x++ */
-#define MIN(A, B) ((B)<(A)?(B):(A))
-#define MAX(A, B) ((B)>(A)?(B):(A))
-
-/* Exchange lvalues A and B of type T, e.g.
- SWAP(int, x, y) where x and y are variables of type int. */
-#define SWAP(T, A, B) do{T t_=(A);A=(B);B=t_;}while(0)
-
-/* Used to set up and access simple temp stacks within functions. */
-#define TEMP(K) (temp + (K))
-#define SETUP(E, C) \
-do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
-
-/* Compare value to zero. */
-#define CMPZ(Z) \
-(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
-
-/* Multiply X by Y into Z, ignoring signs. Requires that Z have
- enough storage preallocated to hold the result. */
-#define UMUL(X, Y, Z) \
-do{mp_size ua_=MP_USED(X),ub_=MP_USED(Y);mp_size o_=ua_+ub_;\
-ZERO(MP_DIGITS(Z),o_);\
-(void) s_kmul(MP_DIGITS(X),MP_DIGITS(Y),MP_DIGITS(Z),ua_,ub_);\
-MP_USED(Z)=o_;CLAMP(Z);}while(0)
-
-/* Square X into Z. Requires that Z have enough storage to hold the
- result. */
-#define USQR(X, Z) \
-do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
-(void) s_ksqr(MP_DIGITS(X),MP_DIGITS(Z),ua_);MP_USED(Z)=o_;CLAMP(Z);}while(0)
-
-#define UPPER_HALF(W) ((mp_word)((W) >> MP_DIGIT_BIT))
-#define LOWER_HALF(W) ((mp_digit)(W))
-#define HIGH_BIT_SET(W) ((W) >> (MP_WORD_BIT - 1))
-#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
-
-/* }}} */
-/* {{{ Default configuration settings */
-
-/* Default number of digits allocated to a new mp_int */
-#if IMATH_TEST
-mp_size default_precision = MP_DEFAULT_PREC;
-#else
-STATIC const mp_size default_precision = MP_DEFAULT_PREC;
-#endif
-
-/* Minimum number of digits to invoke recursive multiply */
-#if IMATH_TEST
-mp_size multiply_threshold = MP_MULT_THRESH;
-#else
-STATIC const mp_size multiply_threshold = MP_MULT_THRESH;
-#endif
-
-/* }}} */
-
-/* Allocate a buffer of (at least) num digits, or return
- NULL if that couldn't be done. */
-STATIC mp_digit *s_alloc(mp_size num);
-
-/* Release a buffer of digits allocated by s_alloc(). */
-STATIC void s_free(void *ptr);
-
-/* Insure that z has at least min digits allocated, resizing if
- necessary. Returns true if successful, false if out of memory. */
-STATIC int s_pad(mp_int z, mp_size min);
-
-/* Fill in a "fake" mp_int on the stack with a given value */
-STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
-
-/* Compare two runs of digits of given length, returns <0, 0, >0 */
-STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
-
-/* Pack the unsigned digits of v into array t */
-STATIC int s_vpack(mp_small v, mp_digit t[]);
-
-/* Compare magnitudes of a and b, returns <0, 0, >0 */
-STATIC int s_ucmp(mp_int a, mp_int b);
-
-/* Compare magnitudes of a and v, returns <0, 0, >0 */
-STATIC int s_vcmp(mp_int a, mp_small v);
-
-/* Unsigned magnitude addition; assumes dc is big enough.
- Carry out is returned (no memory allocated). */
-STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
-
-/* Unsigned magnitude subtraction. Assumes dc is big enough. */
-STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
-
-/* Unsigned recursive multiplication. Assumes dc is big enough. */
-STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
-
-/* Unsigned magnitude multiplication. Assumes dc is big enough. */
-STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
-
-/* Unsigned recursive squaring. Assumes dc is big enough. */
-STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
-
-/* Unsigned magnitude squaring. Assumes dc is big enough. */
-STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a);
-
-/* Single digit addition. Assumes a is big enough. */
-STATIC void s_dadd(mp_int a, mp_digit b);
-
-/* Single digit multiplication. Assumes a is big enough. */
-STATIC void s_dmul(mp_int a, mp_digit b);
-
-/* Single digit multiplication on buffers; assumes dc is big enough. */
-STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
- mp_size size_a);
-
-/* Single digit division. Replaces a with the quotient,
- returns the remainder. */
-STATIC mp_digit s_ddiv(mp_int a, mp_digit b);
-
-/* Quick division by a power of 2, replaces z (no allocation) */
-STATIC void s_qdiv(mp_int z, mp_size p2);
-
-/* Quick remainder by a power of 2, replaces z (no allocation) */
-STATIC void s_qmod(mp_int z, mp_size p2);
-
-/* Quick multiplication by a power of 2, replaces z.
- Allocates if necessary; returns false in case this fails. */
-STATIC int s_qmul(mp_int z, mp_size p2);
-
-/* Quick subtraction from a power of 2, replaces z.
- Allocates if necessary; returns false in case this fails. */
-STATIC int s_qsub(mp_int z, mp_size p2);
-
-/* Return maximum k such that 2^k divides z. */
-STATIC int s_dp2k(mp_int z);
-
-/* Return k >= 0 such that z = 2^k, or -1 if there is no such k. */
-STATIC int s_isp2(mp_int z);
-
-/* Set z to 2^k. May allocate; returns false in case this fails. */
-STATIC int s_2expt(mp_int z, mp_small k);
-
-/* Normalize a and b for division, returns normalization constant */
-STATIC int s_norm(mp_int a, mp_int b);
-
-/* Compute constant mu for Barrett reduction, given modulus m, result
- replaces z, m is untouched. */
-STATIC mp_result s_brmu(mp_int z, mp_int m);
-
-/* Reduce a modulo m, using Barrett's algorithm. */
-STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
-
-/* Modular exponentiation, using Barrett reduction */
-STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
-
-/* Unsigned magnitude division. Assumes |a| > |b|. Allocates
- temporaries; overwrites a with quotient, b with remainder. */
-STATIC mp_result s_udiv(mp_int a, mp_int b);
-
-/* Compute the number of digits in radix r required to represent the
- given value. Does not account for sign flags, terminators, etc. */
-STATIC int s_outlen(mp_int z, mp_size r);
-
-/* Guess how many digits of precision will be needed to represent a
- radix r value of the specified number of digits. Returns a value
- guaranteed to be no smaller than the actual number required. */
-STATIC mp_size s_inlen(int len, mp_size r);
-
-/* Convert a character to a digit value in radix r, or
- -1 if out of range */
-STATIC int s_ch2val(char c, int r);
-
-/* Convert a digit value to a character */
-STATIC char s_val2ch(int v, int caps);
-
-/* Take 2's complement of a buffer in place */
-STATIC void s_2comp(unsigned char *buf, int len);
-
-/* Convert a value to binary, ignoring sign. On input, *limpos is the
- bound on how many bytes should be written to buf; on output, *limpos
- is set to the number of bytes actually written. */
-STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
-
-#if DEBUG
-/* Dump a representation of the mp_int to standard output */
-void s_print(char *tag, mp_int z);
-void s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
-/* {{{ mp_int_init(z) */
-
-mp_result mp_int_init(mp_int z)
-{
- if(z == NULL)
- return MP_BADARG;
-
- z->single = 0;
- z->digits = &(z->single);
- z->alloc = 1;
- z->used = 1;
- z->sign = MP_ZPOS;
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_alloc() */
-
-mp_int mp_int_alloc(void)
-{
- mp_int out = malloc(sizeof(mpz_t));
-
- if(out != NULL)
- mp_int_init(out);
-
- return out;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init_size(z, prec) */
-
-mp_result mp_int_init_size(mp_int z, mp_size prec)
-{
- CHECK(z != NULL);
-
- if(prec == 0)
- prec = default_precision;
- else if(prec == 1)
- return mp_int_init(z);
- else
- prec = (mp_size) ROUND_PREC(prec);
-
- if((MP_DIGITS(z) = s_alloc(prec)) == NULL)
- return MP_MEMORY;
-
- z->digits[0] = 0;
- MP_USED(z) = 1;
- MP_ALLOC(z) = prec;
- MP_SIGN(z) = MP_ZPOS;
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init_copy(z, old) */
-
-mp_result mp_int_init_copy(mp_int z, mp_int old)
-{
- mp_result res;
- mp_size uold;
-
- CHECK(z != NULL && old != NULL);
-
- uold = MP_USED(old);
- if(uold == 1) {
- mp_int_init(z);
- }
- else {
- mp_size target = MAX(uold, default_precision);
-
- if((res = mp_int_init_size(z, target)) != MP_OK)
- return res;
- }
-
- MP_USED(z) = uold;
- MP_SIGN(z) = MP_SIGN(old);
- COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init_value(z, value) */
-
-mp_result mp_int_init_value(mp_int z, mp_small value)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
- return mp_int_init_copy(z, &vtmp);
-}
-
-/* }}} */
-
-/* {{{ mp_int_set_value(z, value) */
-
-mp_result mp_int_set_value(mp_int z, mp_small value)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
- return mp_int_copy(&vtmp, z);
-}
-
-/* }}} */
-
-/* {{{ mp_int_clear(z) */
-
-void mp_int_clear(mp_int z)
-{
- if(z == NULL)
- return;
-
- if(MP_DIGITS(z) != NULL) {
- if((void *) MP_DIGITS(z) != (void *) z)
- s_free(MP_DIGITS(z));
-
- MP_DIGITS(z) = NULL;
- }
-}
-
-/* }}} */
-
-/* {{{ mp_int_free(z) */
-
-void mp_int_free(mp_int z)
-{
- NRCHECK(z != NULL);
-
- mp_int_clear(z);
- free(z); /* note: NOT s_free() */
-}
-
-/* }}} */
-
-/* {{{ mp_int_copy(a, c) */
-
-mp_result mp_int_copy(mp_int a, mp_int c)
-{
- CHECK(a != NULL && c != NULL);
-
- if(a != c) {
- mp_size ua = MP_USED(a);
- mp_digit *da, *dc;
-
- if(!s_pad(c, ua))
- return MP_MEMORY;
-
- da = MP_DIGITS(a); dc = MP_DIGITS(c);
- COPY(da, dc, ua);
-
- MP_USED(c) = ua;
- MP_SIGN(c) = MP_SIGN(a);
- }
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_swap(a, c) */
-
-void mp_int_swap(mp_int a, mp_int c)
-{
- if(a != c) {
- mpz_t tmp = *a;
-
- *a = *c;
- *c = tmp;
- }
-}
-
-/* }}} */
-
-/* {{{ mp_int_zero(z) */
-
-void mp_int_zero(mp_int z)
-{
- NRCHECK(z != NULL);
-
- z->digits[0] = 0;
- MP_USED(z) = 1;
- MP_SIGN(z) = MP_ZPOS;
-}
-
-/* }}} */
-
-/* {{{ mp_int_abs(a, c) */
-
-mp_result mp_int_abs(mp_int a, mp_int c)
-{
- mp_result res;
-
- CHECK(a != NULL && c != NULL);
-
- if((res = mp_int_copy(a, c)) != MP_OK)
- return res;
-
- MP_SIGN(c) = MP_ZPOS;
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_neg(a, c) */
-
-mp_result mp_int_neg(mp_int a, mp_int c)
-{
- mp_result res;
-
- CHECK(a != NULL && c != NULL);
-
- if((res = mp_int_copy(a, c)) != MP_OK)
- return res;
-
- if(CMPZ(c) != 0)
- MP_SIGN(c) = 1 - MP_SIGN(a);
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_add(a, b, c) */
-
-mp_result mp_int_add(mp_int a, mp_int b, mp_int c)
-{
- mp_size ua, ub, max;
-
- CHECK(a != NULL && b != NULL && c != NULL);
-
- ua = MP_USED(a); ub = MP_USED(b);
- max = MAX(ua, ub);
-
- if(MP_SIGN(a) == MP_SIGN(b)) {
- /* Same sign -- add magnitudes, preserve sign of addends */
- mp_digit carry;
- mp_size uc;
-
- if(!s_pad(c, max))
- return MP_MEMORY;
-
- carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
- uc = max;
-
- if(carry) {
- if(!s_pad(c, max + 1))
- return MP_MEMORY;
-
- c->digits[max] = carry;
- ++uc;
- }
-
- MP_USED(c) = uc;
- MP_SIGN(c) = MP_SIGN(a);
-
- }
- else {
- /* Different signs -- subtract magnitudes, preserve sign of greater */
- mp_int x, y;
- int cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
-
- /* Set x to max(a, b), y to min(a, b) to simplify later code.
- A special case yields zero for equal magnitudes.
- */
- if(cmp == 0) {
- mp_int_zero(c);
- return MP_OK;
- }
- else if(cmp < 0) {
- x = b; y = a;
- }
- else {
- x = a; y = b;
- }
-
- if(!s_pad(c, MP_USED(x)))
- return MP_MEMORY;
-
- /* Subtract smaller from larger */
- s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
- MP_USED(c) = MP_USED(x);
- CLAMP(c);
-
- /* Give result the sign of the larger */
- MP_SIGN(c) = MP_SIGN(x);
- }
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_add_value(a, value, c) */
-
-mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
-
- return mp_int_add(a, &vtmp, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_sub(a, b, c) */
-
-mp_result mp_int_sub(mp_int a, mp_int b, mp_int c)
-{
- mp_size ua, ub, max;
-
- CHECK(a != NULL && b != NULL && c != NULL);
-
- ua = MP_USED(a); ub = MP_USED(b);
- max = MAX(ua, ub);
-
- if(MP_SIGN(a) != MP_SIGN(b)) {
- /* Different signs -- add magnitudes and keep sign of a */
- mp_digit carry;
- mp_size uc;
-
- if(!s_pad(c, max))
- return MP_MEMORY;
-
- carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
- uc = max;
-
- if(carry) {
- if(!s_pad(c, max + 1))
- return MP_MEMORY;
-
- c->digits[max] = carry;
- ++uc;
- }
-
- MP_USED(c) = uc;
- MP_SIGN(c) = MP_SIGN(a);
-
- }
- else {
- /* Same signs -- subtract magnitudes */
- mp_int x, y;
- mp_sign osign;
- int cmp = s_ucmp(a, b);
-
- if(!s_pad(c, max))
- return MP_MEMORY;
-
- if(cmp >= 0) {
- x = a; y = b; osign = MP_ZPOS;
- }
- else {
- x = b; y = a; osign = MP_NEG;
- }
-
- if(MP_SIGN(a) == MP_NEG && cmp != 0)
- osign = 1 - osign;
-
- s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
- MP_USED(c) = MP_USED(x);
- CLAMP(c);
-
- MP_SIGN(c) = osign;
- }
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_sub_value(a, value, c) */
-
-mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
-
- return mp_int_sub(a, &vtmp, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_mul(a, b, c) */
-
-mp_result mp_int_mul(mp_int a, mp_int b, mp_int c)
-{
- mp_digit *out;
- mp_size osize, ua, ub, p = 0;
- mp_sign osign;
-
- CHECK(a != NULL && b != NULL && c != NULL);
-
- /* If either input is zero, we can shortcut multiplication */
- if(mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0) {
- mp_int_zero(c);
- return MP_OK;
- }
-
- /* Output is positive if inputs have same sign, otherwise negative */
- osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
-
- /* If the output is not identical to any of the inputs, we'll write
- the results directly; otherwise, allocate a temporary space. */
- ua = MP_USED(a); ub = MP_USED(b);
- osize = MAX(ua, ub);
- osize = 4 * ((osize + 1) / 2);
-
- if(c == a || c == b) {
- p = ROUND_PREC(osize);
- p = MAX(p, default_precision);
-
- if((out = s_alloc(p)) == NULL)
- return MP_MEMORY;
- }
- else {
- if(!s_pad(c, osize))
- return MP_MEMORY;
-
- out = MP_DIGITS(c);
- }
- ZERO(out, osize);
-
- if(!s_kmul(MP_DIGITS(a), MP_DIGITS(b), out, ua, ub))
- return MP_MEMORY;
-
- /* If we allocated a new buffer, get rid of whatever memory c was
- already using, and fix up its fields to reflect that.
- */
- if(out != MP_DIGITS(c)) {
- if((void *) MP_DIGITS(c) != (void *) c)
- s_free(MP_DIGITS(c));
- MP_DIGITS(c) = out;
- MP_ALLOC(c) = p;
- }
-
- MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
- CLAMP(c); /* ... right here */
- MP_SIGN(c) = osign;
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_mul_value(a, value, c) */
-
-mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
-
- return mp_int_mul(a, &vtmp, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_mul_pow2(a, p2, c) */
-
-mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
-{
- mp_result res;
- CHECK(a != NULL && c != NULL && p2 >= 0);
-
- if((res = mp_int_copy(a, c)) != MP_OK)
- return res;
-
- if(s_qmul(c, (mp_size) p2))
- return MP_OK;
- else
- return MP_MEMORY;
-}
-
-/* }}} */
-
-/* {{{ mp_int_sqr(a, c) */
-
-mp_result mp_int_sqr(mp_int a, mp_int c)
-{
- mp_digit *out;
- mp_size osize, p = 0;
-
- CHECK(a != NULL && c != NULL);
-
- /* Get a temporary buffer big enough to hold the result */
- osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
- if(a == c) {
- p = ROUND_PREC(osize);
- p = MAX(p, default_precision);
-
- if((out = s_alloc(p)) == NULL)
- return MP_MEMORY;
- }
- else {
- if(!s_pad(c, osize))
- return MP_MEMORY;
-
- out = MP_DIGITS(c);
- }
- ZERO(out, osize);
-
- s_ksqr(MP_DIGITS(a), out, MP_USED(a));
-
- /* Get rid of whatever memory c was already using, and fix up its
- fields to reflect the new digit array it's using
- */
- if(out != MP_DIGITS(c)) {
- if((void *) MP_DIGITS(c) != (void *) c)
- s_free(MP_DIGITS(c));
- MP_DIGITS(c) = out;
- MP_ALLOC(c) = p;
- }
-
- MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
- CLAMP(c); /* ... right here */
- MP_SIGN(c) = MP_ZPOS;
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_div(a, b, q, r) */
-
-mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
-{
- int cmp, last = 0, lg;
- mp_result res = MP_OK;
- mpz_t temp[2];
- mp_int qout, rout;
- mp_sign sa = MP_SIGN(a), sb = MP_SIGN(b);
-
- CHECK(a != NULL && b != NULL && q != r);
-
- if(CMPZ(b) == 0)
- return MP_UNDEF;
- else if((cmp = s_ucmp(a, b)) < 0) {
- /* If |a| < |b|, no division is required:
- q = 0, r = a
- */
- if(r && (res = mp_int_copy(a, r)) != MP_OK)
- return res;
-
- if(q)
- mp_int_zero(q);
-
- return MP_OK;
- }
- else if(cmp == 0) {
- /* If |a| = |b|, no division is required:
- q = 1 or -1, r = 0
- */
- if(r)
- mp_int_zero(r);
-
- if(q) {
- mp_int_zero(q);
- q->digits[0] = 1;
-
- if(sa != sb)
- MP_SIGN(q) = MP_NEG;
- }
-
- return MP_OK;
- }
-
- /* When |a| > |b|, real division is required. We need someplace to
- store quotient and remainder, but q and r are allowed to be NULL
- or to overlap with the inputs.
- */
- if((lg = s_isp2(b)) < 0) {
- if(q && b != q) {
- if((res = mp_int_copy(a, q)) != MP_OK)
- goto CLEANUP;
- else
- qout = q;
- }
- else {
- qout = TEMP(last);
- SETUP(mp_int_init_copy(TEMP(last), a), last);
- }
-
- if(r && a != r) {
- if((res = mp_int_copy(b, r)) != MP_OK)
- goto CLEANUP;
- else
- rout = r;
- }
- else {
- rout = TEMP(last);
- SETUP(mp_int_init_copy(TEMP(last), b), last);
- }
-
- if((res = s_udiv(qout, rout)) != MP_OK) goto CLEANUP;
- }
- else {
- if(q && (res = mp_int_copy(a, q)) != MP_OK) goto CLEANUP;
- if(r && (res = mp_int_copy(a, r)) != MP_OK) goto CLEANUP;
-
- if(q) s_qdiv(q, (mp_size) lg); qout = q;
- if(r) s_qmod(r, (mp_size) lg); rout = r;
- }
-
- /* Recompute signs for output */
- if(rout) {
- MP_SIGN(rout) = sa;
- if(CMPZ(rout) == 0)
- MP_SIGN(rout) = MP_ZPOS;
- }
- if(qout) {
- MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
- if(CMPZ(qout) == 0)
- MP_SIGN(qout) = MP_ZPOS;
- }
-
- if(q && (res = mp_int_copy(qout, q)) != MP_OK) goto CLEANUP;
- if(r && (res = mp_int_copy(rout, r)) != MP_OK) goto CLEANUP;
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_mod(a, m, c) */
-
-mp_result mp_int_mod(mp_int a, mp_int m, mp_int c)
-{
- mp_result res;
- mpz_t tmp;
- mp_int out;
-
- if(m == c) {
- mp_int_init(&tmp);
- out = &tmp;
- }
- else {
- out = c;
- }
-
- if((res = mp_int_div(a, m, NULL, out)) != MP_OK)
- goto CLEANUP;
-
- if(CMPZ(out) < 0)
- res = mp_int_add(out, m, c);
- else
- res = mp_int_copy(out, c);
-
- CLEANUP:
- if(out != c)
- mp_int_clear(&tmp);
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_div_value(a, value, q, r) */
-
-mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small *r)
-{
- mpz_t vtmp, rtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
- mp_result res;
-
- mp_int_init(&rtmp);
- s_fake(&vtmp, value, vbuf);
-
- if((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
- goto CLEANUP;
-
- if(r)
- (void) mp_int_to_int(&rtmp, r); /* can't fail */
-
- CLEANUP:
- mp_int_clear(&rtmp);
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_div_pow2(a, p2, q, r) */
-
-mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
-{
- mp_result res = MP_OK;
-
- CHECK(a != NULL && p2 >= 0 && q != r);
-
- if(q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
- s_qdiv(q, (mp_size) p2);
-
- if(res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
- s_qmod(r, (mp_size) p2);
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_expt(a, b, c) */
-
-mp_result mp_int_expt(mp_int a, mp_small b, mp_int c)
-{
- mpz_t t;
- mp_result res;
- unsigned int v = abs(b);
-
- CHECK(b >= 0 && c != NULL);
-
- if((res = mp_int_init_copy(&t, a)) != MP_OK)
- return res;
-
- (void) mp_int_set_value(c, 1);
- while(v != 0) {
- if(v & 1) {
- if((res = mp_int_mul(c, &t, c)) != MP_OK)
- goto CLEANUP;
- }
-
- v >>= 1;
- if(v == 0) break;
-
- if((res = mp_int_sqr(&t, &t)) != MP_OK)
- goto CLEANUP;
- }
-
- CLEANUP:
- mp_int_clear(&t);
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_expt_value(a, b, c) */
-
-mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c)
-{
- mpz_t t;
- mp_result res;
- unsigned int v = abs(b);
-
- CHECK(b >= 0 && c != NULL);
-
- if((res = mp_int_init_value(&t, a)) != MP_OK)
- return res;
-
- (void) mp_int_set_value(c, 1);
- while(v != 0) {
- if(v & 1) {
- if((res = mp_int_mul(c, &t, c)) != MP_OK)
- goto CLEANUP;
- }
-
- v >>= 1;
- if(v == 0) break;
-
- if((res = mp_int_sqr(&t, &t)) != MP_OK)
- goto CLEANUP;
- }
-
- CLEANUP:
- mp_int_clear(&t);
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare(a, b) */
-
-int mp_int_compare(mp_int a, mp_int b)
-{
- mp_sign sa;
-
- CHECK(a != NULL && b != NULL);
-
- sa = MP_SIGN(a);
- if(sa == MP_SIGN(b)) {
- int cmp = s_ucmp(a, b);
-
- /* If they're both zero or positive, the normal comparison
- applies; if both negative, the sense is reversed. */
- if(sa == MP_ZPOS)
- return cmp;
- else
- return -cmp;
-
- }
- else {
- if(sa == MP_ZPOS)
- return 1;
- else
- return -1;
- }
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare_unsigned(a, b) */
-
-int mp_int_compare_unsigned(mp_int a, mp_int b)
-{
- NRCHECK(a != NULL && b != NULL);
-
- return s_ucmp(a, b);
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare_zero(z) */
-
-int mp_int_compare_zero(mp_int z)
-{
- NRCHECK(z != NULL);
-
- if(MP_USED(z) == 1 && z->digits[0] == 0)
- return 0;
- else if(MP_SIGN(z) == MP_ZPOS)
- return 1;
- else
- return -1;
-}
-
-/* }}} */
-
-/* {{{ mp_int_compare_value(z, value) */
-
-int mp_int_compare_value(mp_int z, mp_small value)
-{
- mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
- int cmp;
-
- CHECK(z != NULL);
-
- if(vsign == MP_SIGN(z)) {
- cmp = s_vcmp(z, value);
-
- if(vsign == MP_ZPOS)
- return cmp;
- else
- return -cmp;
- }
- else {
- if(value < 0)
- return 1;
- else
- return -1;
- }
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod(a, b, m, c) */
-
-mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
-{
- mp_result res;
- mp_size um;
- mpz_t temp[3];
- mp_int s;
- int last = 0;
-
- CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
-
- /* Zero moduli and negative exponents are not considered. */
- if(CMPZ(m) == 0)
- return MP_UNDEF;
- if(CMPZ(b) < 0)
- return MP_RANGE;
-
- um = MP_USED(m);
- SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
- SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
-
- if(c == b || c == m) {
- SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
- s = TEMP(2);
- }
- else {
- s = c;
- }
-
- if((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
-
- if((res = s_brmu(TEMP(1), m)) != MP_OK) goto CLEANUP;
-
- if((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
- goto CLEANUP;
-
- res = mp_int_copy(s, c);
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod_evalue(a, value, m, c) */
-
-mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
-
- return mp_int_exptmod(a, &vtmp, m, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod_bvalue(v, b, m, c) */
-
-mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
- mp_int m, mp_int c)
-{
- mpz_t vtmp;
- mp_digit vbuf[MP_VALUE_DIGITS(value)];
-
- s_fake(&vtmp, value, vbuf);
-
- return mp_int_exptmod(&vtmp, b, m, c);
-}
-
-/* }}} */
-
-/* {{{ mp_int_exptmod_known(a, b, m, mu, c) */
-
-mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
-{
- mp_result res;
- mp_size um;
- mpz_t temp[2];
- mp_int s;
- int last = 0;
-
- CHECK(a && b && m && c);
-
- /* Zero moduli and negative exponents are not considered. */
- if(CMPZ(m) == 0)
- return MP_UNDEF;
- if(CMPZ(b) < 0)
- return MP_RANGE;
-
- um = MP_USED(m);
- SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
-
- if(c == b || c == m) {
- SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
- s = TEMP(1);
- }
- else {
- s = c;
- }
-
- if((res = mp_int_mod(a, m, TEMP(0))) != MP_OK) goto CLEANUP;
-
- if((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
- goto CLEANUP;
-
- res = mp_int_copy(s, c);
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_redux_const(m, c) */
-
-mp_result mp_int_redux_const(mp_int m, mp_int c)
-{
- CHECK(m != NULL && c != NULL && m != c);
-
- return s_brmu(c, m);
-}
-
-/* }}} */
-
-/* {{{ mp_int_invmod(a, m, c) */
-
-mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c)
-{
- mp_result res;
- mp_sign sa;
- int last = 0;
- mpz_t temp[2];
-
- CHECK(a != NULL && m != NULL && c != NULL);
-
- if(CMPZ(a) == 0 || CMPZ(m) <= 0)
- return MP_RANGE;
-
- sa = MP_SIGN(a); /* need this for the result later */
-
- for(last = 0; last < 2; ++last)
- mp_int_init(TEMP(last));
-
- if((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
- goto CLEANUP;
-
- if(mp_int_compare_value(TEMP(0), 1) != 0) {
- res = MP_UNDEF;
- goto CLEANUP;
- }
-
- /* It is first necessary to constrain the value to the proper range */
- if((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
- goto CLEANUP;
-
- /* Now, if 'a' was originally negative, the value we have is
- actually the magnitude of the negative representative; to get the
- positive value we have to subtract from the modulus. Otherwise,
- the value is okay as it stands.
- */
- if(sa == MP_NEG)
- res = mp_int_sub(m, TEMP(1), c);
- else
- res = mp_int_copy(TEMP(1), c);
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_gcd(a, b, c) */
-
-/* Binary GCD algorithm due to Josef Stein, 1961 */
-mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c)
-{
- int ca, cb, k = 0;
- mpz_t u, v, t;
- mp_result res;
-
- CHECK(a != NULL && b != NULL && c != NULL);
-
- ca = CMPZ(a);
- cb = CMPZ(b);
- if(ca == 0 && cb == 0)
- return MP_UNDEF;
- else if(ca == 0)
- return mp_int_abs(b, c);
- else if(cb == 0)
- return mp_int_abs(a, c);
-
- mp_int_init(&t);
- if((res = mp_int_init_copy(&u, a)) != MP_OK)
- goto U;
- if((res = mp_int_init_copy(&v, b)) != MP_OK)
- goto V;
-
- MP_SIGN(&u) = MP_ZPOS; MP_SIGN(&v) = MP_ZPOS;
-
- { /* Divide out common factors of 2 from u and v */
- int div2_u = s_dp2k(&u), div2_v = s_dp2k(&v);
-
- k = MIN(div2_u, div2_v);
- s_qdiv(&u, (mp_size) k);
- s_qdiv(&v, (mp_size) k);
- }
-
- if(mp_int_is_odd(&u)) {
- if((res = mp_int_neg(&v, &t)) != MP_OK)
- goto CLEANUP;
- }
- else {
- if((res = mp_int_copy(&u, &t)) != MP_OK)
- goto CLEANUP;
- }
-
- for(;;) {
- s_qdiv(&t, s_dp2k(&t));
-
- if(CMPZ(&t) > 0) {
- if((res = mp_int_copy(&t, &u)) != MP_OK)
- goto CLEANUP;
- }
- else {
- if((res = mp_int_neg(&t, &v)) != MP_OK)
- goto CLEANUP;
- }
-
- if((res = mp_int_sub(&u, &v, &t)) != MP_OK)
- goto CLEANUP;
-
- if(CMPZ(&t) == 0)
- break;
- }
-
- if((res = mp_int_abs(&u, c)) != MP_OK)
- goto CLEANUP;
- if(!s_qmul(c, (mp_size) k))
- res = MP_MEMORY;
-
- CLEANUP:
- mp_int_clear(&v);
- V: mp_int_clear(&u);
- U: mp_int_clear(&t);
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_egcd(a, b, c, x, y) */
-
-/* This is the binary GCD algorithm again, but this time we keep track
- of the elementary matrix operations as we go, so we can get values
- x and y satisfying c = ax + by.
- */
-mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c,
- mp_int x, mp_int y)
-{
- int k, last = 0, ca, cb;
- mpz_t temp[8];
- mp_result res;
-
- CHECK(a != NULL && b != NULL && c != NULL &&
- (x != NULL || y != NULL));
-
- ca = CMPZ(a);
- cb = CMPZ(b);
- if(ca == 0 && cb == 0)
- return MP_UNDEF;
- else if(ca == 0) {
- if((res = mp_int_abs(b, c)) != MP_OK) return res;
- mp_int_zero(x); (void) mp_int_set_value(y, 1); return MP_OK;
- }
- else if(cb == 0) {
- if((res = mp_int_abs(a, c)) != MP_OK) return res;
- (void) mp_int_set_value(x, 1); mp_int_zero(y); return MP_OK;
- }
-
- /* Initialize temporaries:
- A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7 */
- for(last = 0; last < 4; ++last)
- mp_int_init(TEMP(last));
- TEMP(0)->digits[0] = 1;
- TEMP(3)->digits[0] = 1;
-
- SETUP(mp_int_init_copy(TEMP(4), a), last);
- SETUP(mp_int_init_copy(TEMP(5), b), last);
-
- /* We will work with absolute values here */
- MP_SIGN(TEMP(4)) = MP_ZPOS;
- MP_SIGN(TEMP(5)) = MP_ZPOS;
-
- { /* Divide out common factors of 2 from u and v */
- int div2_u = s_dp2k(TEMP(4)), div2_v = s_dp2k(TEMP(5));
-
- k = MIN(div2_u, div2_v);
- s_qdiv(TEMP(4), k);
- s_qdiv(TEMP(5), k);
- }
-
- SETUP(mp_int_init_copy(TEMP(6), TEMP(4)), last);
- SETUP(mp_int_init_copy(TEMP(7), TEMP(5)), last);
-
- for(;;) {
- while(mp_int_is_even(TEMP(4))) {
- s_qdiv(TEMP(4), 1);
-
- if(mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1))) {
- if((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
- goto CLEANUP;
- }
-
- s_qdiv(TEMP(0), 1);
- s_qdiv(TEMP(1), 1);
- }
-
- while(mp_int_is_even(TEMP(5))) {
- s_qdiv(TEMP(5), 1);
-
- if(mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3))) {
- if((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
- goto CLEANUP;
- }
-
- s_qdiv(TEMP(2), 1);
- s_qdiv(TEMP(3), 1);
- }
-
- if(mp_int_compare(TEMP(4), TEMP(5)) >= 0) {
- if((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK) goto CLEANUP;
- if((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK) goto CLEANUP;
- if((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK) goto CLEANUP;
- }
- else {
- if((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK) goto CLEANUP;
- if((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK) goto CLEANUP;
- if((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK) goto CLEANUP;
- }
-
- if(CMPZ(TEMP(4)) == 0) {
- if(x && (res = mp_int_copy(TEMP(2), x)) != MP_OK) goto CLEANUP;
- if(y && (res = mp_int_copy(TEMP(3), y)) != MP_OK) goto CLEANUP;
- if(c) {
- if(!s_qmul(TEMP(5), k)) {
- res = MP_MEMORY;
- goto CLEANUP;
- }
-
- res = mp_int_copy(TEMP(5), c);
- }
-
- break;
- }
- }
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_lcm(a, b, c) */
-
-mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c)
-{
- mpz_t lcm;
- mp_result res;
-
- CHECK(a != NULL && b != NULL && c != NULL);
-
- /* Since a * b = gcd(a, b) * lcm(a, b), we can compute
- lcm(a, b) = (a / gcd(a, b)) * b.
-
- This formulation insures everything works even if the input
- variables share space.
- */
- if((res = mp_int_init(&lcm)) != MP_OK)
- return res;
- if((res = mp_int_gcd(a, b, &lcm)) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_div(a, &lcm, &lcm, NULL)) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_mul(&lcm, b, &lcm)) != MP_OK)
- goto CLEANUP;
-
- res = mp_int_copy(&lcm, c);
-
- CLEANUP:
- mp_int_clear(&lcm);
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_divisible_value(a, v) */
-
-int mp_int_divisible_value(mp_int a, mp_small v)
-{
- mp_small rem = 0;
-
- if(mp_int_div_value(a, v, NULL, &rem) != MP_OK)
- return 0;
-
- return rem == 0;
-}
-
-/* }}} */
-
-/* {{{ mp_int_is_pow2(z) */
-
-int mp_int_is_pow2(mp_int z)
-{
- CHECK(z != NULL);
-
- return s_isp2(z);
-}
-
-/* }}} */
-
-/* {{{ mp_int_root(a, b, c) */
-
-/* Implementation of Newton's root finding method, based loosely on a
- patch contributed by Hal Finkel <half@halssoftware.com>
- modified by M. J. Fromberger.
- */
-mp_result mp_int_root(mp_int a, mp_small b, mp_int c)
-{
- mp_result res = MP_OK;
- mpz_t temp[5];
- int last = 0;
- int flips = 0;
-
- CHECK(a != NULL && c != NULL && b > 0);
-
- if(b == 1) {
- return mp_int_copy(a, c);
- }
- if(MP_SIGN(a) == MP_NEG) {
- if(b % 2 == 0)
- return MP_UNDEF; /* root does not exist for negative a with even b */
- else
- flips = 1;
- }
-
- SETUP(mp_int_init_copy(TEMP(last), a), last);
- SETUP(mp_int_init_copy(TEMP(last), a), last);
- SETUP(mp_int_init(TEMP(last)), last);
- SETUP(mp_int_init(TEMP(last)), last);
- SETUP(mp_int_init(TEMP(last)), last);
-
- (void) mp_int_abs(TEMP(0), TEMP(0));
- (void) mp_int_abs(TEMP(1), TEMP(1));
-
- for(;;) {
- if((res = mp_int_expt(TEMP(1), b, TEMP(2))) != MP_OK)
- goto CLEANUP;
-
- if(mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
- break;
-
- if((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_expt(TEMP(1), b - 1, TEMP(3))) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_mul_value(TEMP(3), b, TEMP(3))) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL)) != MP_OK)
- goto CLEANUP;
- if((res = mp_int_sub(TEMP(1), TEMP(4), TEMP(4))) != MP_OK)
- goto CLEANUP;
-
- if(mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0) {
- if((res = mp_int_sub_value(TEMP(4), 1, TEMP(4))) != MP_OK)
- goto CLEANUP;
- }
- if((res = mp_int_copy(TEMP(4), TEMP(1))) != MP_OK)
- goto CLEANUP;
- }
-
- if((res = mp_int_copy(TEMP(1), c)) != MP_OK)
- goto CLEANUP;
-
- /* If the original value of a was negative, flip the output sign. */
- if(flips)
- (void) mp_int_neg(c, c); /* cannot fail */
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_int(z, out) */
-
-mp_result mp_int_to_int(mp_int z, mp_small *out)
-{
- mp_usmall uv = 0;
- mp_size uz;
- mp_digit *dz;
- mp_sign sz;
-
- CHECK(z != NULL);
-
- /* Make sure the value is representable as an int */
- sz = MP_SIGN(z);
- if((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
- mp_int_compare_value(z, MP_SMALL_MIN) < 0)
- return MP_RANGE;
-
- uz = MP_USED(z);
- dz = MP_DIGITS(z) + uz - 1;
-
- while(uz > 0) {
- uv <<= MP_DIGIT_BIT/2;
- uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
- --uz;
- }
-
- if(out)
- *out = (sz == MP_NEG) ? -(mp_small)uv : (mp_small)uv;
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_uint(z, *out) */
-
-mp_result mp_int_to_uint(mp_int z, mp_usmall *out)
-{
- mp_usmall uv = 0;
- mp_size uz;
- mp_digit *dz;
- mp_sign sz;
-
- CHECK(z != NULL);
-
- /* Make sure the value is representable as an int */
- sz = MP_SIGN(z);
- if(!(sz == MP_ZPOS && mp_int_compare_value(z, UINT_MAX) <= 0))
- return MP_RANGE;
-
- uz = MP_USED(z);
- dz = MP_DIGITS(z) + uz - 1;
-
- while(uz > 0) {
- uv <<= MP_DIGIT_BIT/2;
- uv = (uv << (MP_DIGIT_BIT/2)) | *dz--;
- --uz;
- }
-
- if(out)
- *out = uv;
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_string(z, radix, str, limit) */
-
-mp_result mp_int_to_string(mp_int z, mp_size radix,
- char *str, int limit)
-{
- mp_result res;
- int cmp = 0;
-
- CHECK(z != NULL && str != NULL && limit >= 2);
-
- if(radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
- return MP_RANGE;
-
- if(CMPZ(z) == 0) {
- *str++ = s_val2ch(0, 1);
- }
- else {
- mpz_t tmp;
- char *h, *t;
-
- if((res = mp_int_init_copy(&tmp, z)) != MP_OK)
- return res;
-
- if(MP_SIGN(z) == MP_NEG) {
- *str++ = '-';
- --limit;
- }
- h = str;
-
- /* Generate digits in reverse order until finished or limit reached */
- for(/* */; limit > 0; --limit) {
- mp_digit d;
-
- if((cmp = CMPZ(&tmp)) == 0)
- break;
-
- d = s_ddiv(&tmp, (mp_digit)radix);
- *str++ = s_val2ch(d, 1);
- }
- t = str - 1;
-
- /* Put digits back in correct output order */
- while(h < t) {
- char tc = *h;
- *h++ = *t;
- *t-- = tc;
- }
-
- mp_int_clear(&tmp);
- }
-
- *str = '\0';
- if(cmp == 0)
- return MP_OK;
- else
- return MP_TRUNC;
-}
-
-/* }}} */
-
-/* {{{ mp_int_string_len(z, radix) */
-
-mp_result mp_int_string_len(mp_int z, mp_size radix)
-{
- int len;
-
- CHECK(z != NULL);
-
- if(radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
- return MP_RANGE;
-
- len = s_outlen(z, radix) + 1; /* for terminator */
-
- /* Allow for sign marker on negatives */
- if(MP_SIGN(z) == MP_NEG)
- len += 1;
-
- return len;
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_string(z, radix, *str) */
-
-/* Read zero-terminated string into z */
-mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str)
-{
- return mp_int_read_cstring(z, radix, str, NULL);
-
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_cstring(z, radix, *str, **end) */
-
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
-{
- int ch;
-
- CHECK(z != NULL && str != NULL);
-
- if(radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
- return MP_RANGE;
-
- /* Skip leading whitespace */
- while(isspace((int)*str))
- ++str;
-
- /* Handle leading sign tag (+/-, positive default) */
- switch(*str) {
- case '-':
- MP_SIGN(z) = MP_NEG;
- ++str;
- break;
- case '+':
- ++str; /* fallthrough */
- default:
- MP_SIGN(z) = MP_ZPOS;
- break;
- }
-
- /* Skip leading zeroes */
- while((ch = s_ch2val(*str, radix)) == 0)
- ++str;
-
- /* Make sure there is enough space for the value */
- if(!s_pad(z, s_inlen(strlen(str), radix)))
- return MP_MEMORY;
-
- MP_USED(z) = 1; z->digits[0] = 0;
-
- while(*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0)) {
- s_dmul(z, (mp_digit)radix);
- s_dadd(z, (mp_digit)ch);
- ++str;
- }
-
- CLAMP(z);
-
- /* Override sign for zero, even if negative specified. */
- if(CMPZ(z) == 0)
- MP_SIGN(z) = MP_ZPOS;
-
- if(end != NULL)
- *end = (char *)str;
-
- /* Return a truncation error if the string has unprocessed
- characters remaining, so the caller can tell if the whole string
- was done */
- if(*str != '\0')
- return MP_TRUNC;
- else
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_count_bits(z) */
-
-mp_result mp_int_count_bits(mp_int z)
-{
- mp_size nbits = 0, uz;
- mp_digit d;
-
- CHECK(z != NULL);
-
- uz = MP_USED(z);
- if(uz == 1 && z->digits[0] == 0)
- return 1;
-
- --uz;
- nbits = uz * MP_DIGIT_BIT;
- d = z->digits[uz];
-
- while(d != 0) {
- d >>= 1;
- ++nbits;
- }
-
- return nbits;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_binary(z, buf, limit) */
-
-mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
-{
- static const int PAD_FOR_2C = 1;
-
- mp_result res;
- int limpos = limit;
-
- CHECK(z != NULL && buf != NULL);
-
- res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
-
- if(MP_SIGN(z) == MP_NEG)
- s_2comp(buf, limpos);
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_binary(z, buf, len) */
-
-mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len)
-{
- mp_size need, i;
- unsigned char *tmp;
- mp_digit *dz;
-
- CHECK(z != NULL && buf != NULL && len > 0);
-
- /* Figure out how many digits are needed to represent this value */
- need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
- if(!s_pad(z, need))
- return MP_MEMORY;
-
- mp_int_zero(z);
-
- /* If the high-order bit is set, take the 2's complement before
- reading the value (it will be restored afterward) */
- if(buf[0] >> (CHAR_BIT - 1)) {
- MP_SIGN(z) = MP_NEG;
- s_2comp(buf, len);
- }
-
- dz = MP_DIGITS(z);
- for(tmp = buf, i = len; i > 0; --i, ++tmp) {
- s_qmul(z, (mp_size) CHAR_BIT);
- *dz |= *tmp;
- }
-
- /* Restore 2's complement if we took it before */
- if(MP_SIGN(z) == MP_NEG)
- s_2comp(buf, len);
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_binary_len(z) */
-
-mp_result mp_int_binary_len(mp_int z)
-{
- mp_result res = mp_int_count_bits(z);
- int bytes;
-
- if(res <= 0)
- return res;
-
- bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
-
- /* If the highest-order bit falls exactly on a byte boundary, we
- need to pad with an extra byte so that the sign will be read
- correctly when reading it back in. */
- if(bytes * CHAR_BIT == res)
- ++bytes;
-
- return bytes;
-}
-
-/* }}} */
-
-/* {{{ mp_int_to_unsigned(z, buf, limit) */
-
-mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
-{
- static const int NO_PADDING = 0;
-
- CHECK(z != NULL && buf != NULL);
-
- return s_tobin(z, buf, &limit, NO_PADDING);
-}
-
-/* }}} */
-
-/* {{{ mp_int_read_unsigned(z, buf, len) */
-
-mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
-{
- mp_size need, i;
- unsigned char *tmp;
- mp_digit *dz;
-
- CHECK(z != NULL && buf != NULL && len > 0);
-
- /* Figure out how many digits are needed to represent this value */
- need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
- if(!s_pad(z, need))
- return MP_MEMORY;
-
- mp_int_zero(z);
-
- dz = MP_DIGITS(z);
- for(tmp = buf, i = len; i > 0; --i, ++tmp) {
- (void) s_qmul(z, CHAR_BIT);
- *dz |= *tmp;
- }
-
- return MP_OK;
-}
-
-/* }}} */
-
-/* {{{ mp_int_unsigned_len(z) */
-
-mp_result mp_int_unsigned_len(mp_int z)
-{
- mp_result res = mp_int_count_bits(z);
- int bytes;
-
- if(res <= 0)
- return res;
-
- bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
-
- return bytes;
-}
-
-/* }}} */
-
-/* {{{ mp_error_string(res) */
-
-const char *mp_error_string(mp_result res)
-{
- int ix;
- if(res > 0)
- return s_unknown_err;
-
- res = -res;
- for(ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
- ;
-
- if(s_error_msg[ix] != NULL)
- return s_error_msg[ix];
- else
- return s_unknown_err;
-}
-
-/* }}} */
-
-/*------------------------------------------------------------------------*/
-/* Private functions for internal use. These make assumptions. */
-
-/* {{{ s_alloc(num) */
-
-STATIC mp_digit *s_alloc(mp_size num)
-{
- mp_digit *out = malloc(num * sizeof(mp_digit));
-
- assert(out != NULL); /* for debugging */
-#if DEBUG > 1
- {
- mp_digit v = (mp_digit) 0xdeadbeef;
- int ix;
-
- for(ix = 0; ix < num; ++ix)
- out[ix] = v;
- }
-#endif
-
- return out;
-}
-
-/* }}} */
-
-/* {{{ s_realloc(old, osize, nsize) */
-
-STATIC mp_digit *s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
-{
-#if DEBUG > 1
- mp_digit *new = s_alloc(nsize);
- int ix;
-
- for(ix = 0; ix < nsize; ++ix)
- new[ix] = (mp_digit) 0xdeadbeef;
-
- memcpy(new, old, osize * sizeof(mp_digit));
-#else
- mp_digit *new = realloc(old, nsize * sizeof(mp_digit));
-
- assert(new != NULL); /* for debugging */
-#endif
- return new;
-}
-
-/* }}} */
-
-/* {{{ s_free(ptr) */
-
-STATIC void s_free(void *ptr)
-{
- free(ptr);
-}
-
-/* }}} */
-
-/* {{{ s_pad(z, min) */
-
-STATIC int s_pad(mp_int z, mp_size min)
-{
- if(MP_ALLOC(z) < min) {
- mp_size nsize = ROUND_PREC(min);
- mp_digit *tmp;
-
- if((void *)z->digits == (void *)z) {
- if((tmp = s_alloc(nsize)) == NULL)
- return 0;
-
- COPY(MP_DIGITS(z), tmp, MP_USED(z));
- }
- else if((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
- return 0;
-
- MP_DIGITS(z) = tmp;
- MP_ALLOC(z) = nsize;
- }
-
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_fake(z, value, vbuf) */
-
-STATIC void s_fake(mp_int z, mp_small value, mp_digit vbuf[])
-{
- mp_size uv = (mp_size) s_vpack(value, vbuf);
-
- z->used = uv;
- z->alloc = MP_VALUE_DIGITS(value);
- z->sign = (value < 0) ? MP_NEG : MP_ZPOS;
- z->digits = vbuf;
-}
-
-/* }}} */
-
-/* {{{ s_cdig(da, db, len) */
-
-STATIC int s_cdig(mp_digit *da, mp_digit *db, mp_size len)
-{
- mp_digit *dat = da + len - 1, *dbt = db + len - 1;
-
- for(/* */; len != 0; --len, --dat, --dbt) {
- if(*dat > *dbt)
- return 1;
- else if(*dat < *dbt)
- return -1;
- }
-
- return 0;
-}
-
-/* }}} */
-
-/* {{{ s_vpack(v, t[]) */
-
-STATIC int s_vpack(mp_small v, mp_digit t[])
-{
- mp_usmall uv = (mp_usmall) ((v < 0) ? -v : v);
- int ndig = 0;
-
- if(uv == 0)
- t[ndig++] = 0;
- else {
- while(uv != 0) {
- t[ndig++] = (mp_digit) uv;
- uv >>= MP_DIGIT_BIT/2;
- uv >>= MP_DIGIT_BIT/2;
- }
- }
-
- return ndig;
-}
-
-/* }}} */
-
-/* {{{ s_ucmp(a, b) */
-
-STATIC int s_ucmp(mp_int a, mp_int b)
-{
- mp_size ua = MP_USED(a), ub = MP_USED(b);
-
- if(ua > ub)
- return 1;
- else if(ub > ua)
- return -1;
- else
- return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
-}
-
-/* }}} */
-
-/* {{{ s_vcmp(a, v) */
-
-STATIC int s_vcmp(mp_int a, mp_small v)
-{
- mp_digit vdig[MP_VALUE_DIGITS(v)];
- int ndig = 0;
- mp_size ua = MP_USED(a);
-
- ndig = s_vpack(v, vdig);
-
- if(ua > ndig)
- return 1;
- else if(ua < ndig)
- return -1;
- else
- return s_cdig(MP_DIGITS(a), vdig, ndig);
-}
-
-/* }}} */
-
-/* {{{ s_uadd(da, db, dc, size_a, size_b) */
-
-STATIC mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
-{
- mp_size pos;
- mp_word w = 0;
-
- /* Insure that da is the longer of the two to simplify later code */
- if(size_b > size_a) {
- SWAP(mp_digit *, da, db);
- SWAP(mp_size, size_a, size_b);
- }
-
- /* Add corresponding digits until the shorter number runs out */
- for(pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
- w = w + (mp_word) *da + (mp_word) *db;
- *dc = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
-
- /* Propagate carries as far as necessary */
- for(/* */; pos < size_a; ++pos, ++da, ++dc) {
- w = w + *da;
-
- *dc = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
-
- /* Return carry out */
- return (mp_digit)w;
-}
-
-/* }}} */
-
-/* {{{ s_usub(da, db, dc, size_a, size_b) */
-
-STATIC void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
-{
- mp_size pos;
- mp_word w = 0;
-
- /* We assume that |a| >= |b| so this should definitely hold */
- assert(size_a >= size_b);
-
- /* Subtract corresponding digits and propagate borrow */
- for(pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc) {
- w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word)*da) - w - (mp_word)*db;
-
- *dc = LOWER_HALF(w);
- w = (UPPER_HALF(w) == 0);
- }
-
- /* Finish the subtraction for remaining upper digits of da */
- for(/* */; pos < size_a; ++pos, ++da, ++dc) {
- w = ((mp_word)MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word)*da) - w;
-
- *dc = LOWER_HALF(w);
- w = (UPPER_HALF(w) == 0);
- }
-
- /* If there is a borrow out at the end, it violates the precondition */
- assert(w == 0);
-}
-
-/* }}} */
-
-/* {{{ s_kmul(da, db, dc, size_a, size_b) */
-
-STATIC int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
-{
- mp_size bot_size;
-
- /* Make sure b is the smaller of the two input values */
- if(size_b > size_a) {
- SWAP(mp_digit *, da, db);
- SWAP(mp_size, size_a, size_b);
- }
-
- /* Insure that the bottom is the larger half in an odd-length split;
- the code below relies on this being true.
- */
- bot_size = (size_a + 1) / 2;
-
- /* If the values are big enough to bother with recursion, use the
- Karatsuba algorithm to compute the product; otherwise use the
- normal multiplication algorithm
- */
- if(multiply_threshold &&
- size_a >= multiply_threshold &&
- size_b > bot_size) {
-
- mp_digit *t1, *t2, *t3, carry;
-
- mp_digit *a_top = da + bot_size;
- mp_digit *b_top = db + bot_size;
-
- mp_size at_size = size_a - bot_size;
- mp_size bt_size = size_b - bot_size;
- mp_size buf_size = 2 * bot_size;
-
- /* Do a single allocation for all three temporary buffers needed;
- each buffer must be big enough to hold the product of two
- bottom halves, and one buffer needs space for the completed
- product; twice the space is plenty.
- */
- if((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
- t2 = t1 + buf_size;
- t3 = t2 + buf_size;
- ZERO(t1, 4 * buf_size);
-
- /* t1 and t2 are initially used as temporaries to compute the inner product
- (a1 + a0)(b1 + b0) = a1b1 + a1b0 + a0b1 + a0b0
- */
- carry = s_uadd(da, a_top, t1, bot_size, at_size); /* t1 = a1 + a0 */
- t1[bot_size] = carry;
-
- carry = s_uadd(db, b_top, t2, bot_size, bt_size); /* t2 = b1 + b0 */
- t2[bot_size] = carry;
-
- (void) s_kmul(t1, t2, t3, bot_size + 1, bot_size + 1); /* t3 = t1 * t2 */
-
- /* Now we'll get t1 = a0b0 and t2 = a1b1, and subtract them out so that
- we're left with only the pieces we want: t3 = a1b0 + a0b1
- */
- ZERO(t1, buf_size);
- ZERO(t2, buf_size);
- (void) s_kmul(da, db, t1, bot_size, bot_size); /* t1 = a0 * b0 */
- (void) s_kmul(a_top, b_top, t2, at_size, bt_size); /* t2 = a1 * b1 */
-
- /* Subtract out t1 and t2 to get the inner product */
- s_usub(t3, t1, t3, buf_size + 2, buf_size);
- s_usub(t3, t2, t3, buf_size + 2, buf_size);
-
- /* Assemble the output value */
- COPY(t1, dc, buf_size);
- carry = s_uadd(t3, dc + bot_size, dc + bot_size,
- buf_size + 1, buf_size);
- assert(carry == 0);
-
- carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
- buf_size, buf_size);
- assert(carry == 0);
-
- s_free(t1); /* note t2 and t3 are just internal pointers to t1 */
- }
- else {
- s_umul(da, db, dc, size_a, size_b);
- }
-
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_umul(da, db, dc, size_a, size_b) */
-
-STATIC void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
-{
- mp_size a, b;
- mp_word w;
-
- for(a = 0; a < size_a; ++a, ++dc, ++da) {
- mp_digit *dct = dc;
- mp_digit *dbt = db;
-
- if(*da == 0)
- continue;
-
- w = 0;
- for(b = 0; b < size_b; ++b, ++dbt, ++dct) {
- w = (mp_word)*da * (mp_word)*dbt + w + (mp_word)*dct;
-
- *dct = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
-
- *dct = (mp_digit)w;
- }
-}
-
-/* }}} */
-
-/* {{{ s_ksqr(da, dc, size_a) */
-
-STATIC int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
-{
- if(multiply_threshold && size_a > multiply_threshold) {
- mp_size bot_size = (size_a + 1) / 2;
- mp_digit *a_top = da + bot_size;
- mp_digit *t1, *t2, *t3, carry;
- mp_size at_size = size_a - bot_size;
- mp_size buf_size = 2 * bot_size;
-
- if((t1 = s_alloc(4 * buf_size)) == NULL) return 0;
- t2 = t1 + buf_size;
- t3 = t2 + buf_size;
- ZERO(t1, 4 * buf_size);
-
- (void) s_ksqr(da, t1, bot_size); /* t1 = a0 ^ 2 */
- (void) s_ksqr(a_top, t2, at_size); /* t2 = a1 ^ 2 */
-
- (void) s_kmul(da, a_top, t3, bot_size, at_size); /* t3 = a0 * a1 */
-
- /* Quick multiply t3 by 2, shifting left (can't overflow) */
- {
- int i, top = bot_size + at_size;
- mp_word w, save = 0;
-
- for(i = 0; i < top; ++i) {
- w = t3[i];
- w = (w << 1) | save;
- t3[i] = LOWER_HALF(w);
- save = UPPER_HALF(w);
- }
- t3[i] = LOWER_HALF(save);
- }
-
- /* Assemble the output value */
- COPY(t1, dc, 2 * bot_size);
- carry = s_uadd(t3, dc + bot_size, dc + bot_size,
- buf_size + 1, buf_size);
- assert(carry == 0);
-
- carry = s_uadd(t2, dc + 2*bot_size, dc + 2*bot_size,
- buf_size, buf_size);
- assert(carry == 0);
-
- s_free(t1); /* note that t2 and t2 are internal pointers only */
-
- }
- else {
- s_usqr(da, dc, size_a);
- }
-
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_usqr(da, dc, size_a) */
-
-STATIC void s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
-{
- mp_size i, j;
- mp_word w;
-
- for(i = 0; i < size_a; ++i, dc += 2, ++da) {
- mp_digit *dct = dc, *dat = da;
-
- if(*da == 0)
- continue;
-
- /* Take care of the first digit, no rollover */
- w = (mp_word)*dat * (mp_word)*dat + (mp_word)*dct;
- *dct = LOWER_HALF(w);
- w = UPPER_HALF(w);
- ++dat; ++dct;
-
- for(j = i + 1; j < size_a; ++j, ++dat, ++dct) {
- mp_word t = (mp_word)*da * (mp_word)*dat;
- mp_word u = w + (mp_word)*dct, ov = 0;
-
- /* Check if doubling t will overflow a word */
- if(HIGH_BIT_SET(t))
- ov = 1;
-
- w = t + t;
-
- /* Check if adding u to w will overflow a word */
- if(ADD_WILL_OVERFLOW(w, u))
- ov = 1;
-
- w += u;
-
- *dct = LOWER_HALF(w);
- w = UPPER_HALF(w);
- if(ov) {
- w += MP_DIGIT_MAX; /* MP_RADIX */
- ++w;
- }
- }
-
- w = w + *dct;
- *dct = (mp_digit)w;
- while((w = UPPER_HALF(w)) != 0) {
- ++dct; w = w + *dct;
- *dct = LOWER_HALF(w);
- }
-
- assert(w == 0);
- }
-}
-
-/* }}} */
-
-/* {{{ s_dadd(a, b) */
-
-STATIC void s_dadd(mp_int a, mp_digit b)
-{
- mp_word w = 0;
- mp_digit *da = MP_DIGITS(a);
- mp_size ua = MP_USED(a);
-
- w = (mp_word)*da + b;
- *da++ = LOWER_HALF(w);
- w = UPPER_HALF(w);
-
- for(ua -= 1; ua > 0; --ua, ++da) {
- w = (mp_word)*da + w;
-
- *da = LOWER_HALF(w);
- w = UPPER_HALF(w);
- }
-
- if(w) {
- *da = (mp_digit)w;
- MP_USED(a) += 1;
- }
-}
-
-/* }}} */
-
-/* {{{ s_dmul(a, b) */
-
-STATIC void s_dmul(mp_int a, mp_digit b)
-{
- mp_word w = 0;
- mp_digit *da = MP_DIGITS(a);
- mp_size ua = MP_USED(a);
-
- while(ua > 0) {
- w = (mp_word)*da * b + w;
- *da++ = LOWER_HALF(w);
- w = UPPER_HALF(w);
- --ua;
- }
-
- if(w) {
- *da = (mp_digit)w;
- MP_USED(a) += 1;
- }
-}
-
-/* }}} */
-
-/* {{{ s_dbmul(da, b, dc, size_a) */
-
-STATIC void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
-{
- mp_word w = 0;
-
- while(size_a > 0) {
- w = (mp_word)*da++ * (mp_word)b + w;
-
- *dc++ = LOWER_HALF(w);
- w = UPPER_HALF(w);
- --size_a;
- }
-
- if(w)
- *dc = LOWER_HALF(w);
-}
-
-/* }}} */
-
-/* {{{ s_ddiv(da, d, dc, size_a) */
-
-STATIC mp_digit s_ddiv(mp_int a, mp_digit b)
-{
- mp_word w = 0, qdigit;
- mp_size ua = MP_USED(a);
- mp_digit *da = MP_DIGITS(a) + ua - 1;
-
- for(/* */; ua > 0; --ua, --da) {
- w = (w << MP_DIGIT_BIT) | *da;
-
- if(w >= b) {
- qdigit = w / b;
- w = w % b;
- }
- else {
- qdigit = 0;
- }
-
- *da = (mp_digit)qdigit;
- }
-
- CLAMP(a);
- return (mp_digit)w;
-}
-
-/* }}} */
-
-/* {{{ s_qdiv(z, p2) */
-
-STATIC void s_qdiv(mp_int z, mp_size p2)
-{
- mp_size ndig = p2 / MP_DIGIT_BIT, nbits = p2 % MP_DIGIT_BIT;
- mp_size uz = MP_USED(z);
-
- if(ndig) {
- mp_size mark;
- mp_digit *to, *from;
-
- if(ndig >= uz) {
- mp_int_zero(z);
- return;
- }
-
- to = MP_DIGITS(z); from = to + ndig;
-
- for(mark = ndig; mark < uz; ++mark)
- *to++ = *from++;
-
- MP_USED(z) = uz - ndig;
- }
-
- if(nbits) {
- mp_digit d = 0, *dz, save;
- mp_size up = MP_DIGIT_BIT - nbits;
-
- uz = MP_USED(z);
- dz = MP_DIGITS(z) + uz - 1;
-
- for(/* */; uz > 0; --uz, --dz) {
- save = *dz;
-
- *dz = (*dz >> nbits) | (d << up);
- d = save;
- }
-
- CLAMP(z);
- }
-
- if(MP_USED(z) == 1 && z->digits[0] == 0)
- MP_SIGN(z) = MP_ZPOS;
-}
-
-/* }}} */
-
-/* {{{ s_qmod(z, p2) */
-
-STATIC void s_qmod(mp_int z, mp_size p2)
-{
- mp_size start = p2 / MP_DIGIT_BIT + 1, rest = p2 % MP_DIGIT_BIT;
- mp_size uz = MP_USED(z);
- mp_digit mask = (1 << rest) - 1;
-
- if(start <= uz) {
- MP_USED(z) = start;
- z->digits[start - 1] &= mask;
- CLAMP(z);
- }
-}
-
-/* }}} */
-
-/* {{{ s_qmul(z, p2) */
-
-STATIC int s_qmul(mp_int z, mp_size p2)
-{
- mp_size uz, need, rest, extra, i;
- mp_digit *from, *to, d;
-
- if(p2 == 0)
- return 1;
-
- uz = MP_USED(z);
- need = p2 / MP_DIGIT_BIT; rest = p2 % MP_DIGIT_BIT;
-
- /* Figure out if we need an extra digit at the top end; this occurs
- if the topmost `rest' bits of the high-order digit of z are not
- zero, meaning they will be shifted off the end if not preserved */
- extra = 0;
- if(rest != 0) {
- mp_digit *dz = MP_DIGITS(z) + uz - 1;
-
- if((*dz >> (MP_DIGIT_BIT - rest)) != 0)
- extra = 1;
- }
-
- if(!s_pad(z, uz + need + extra))
- return 0;
-
- /* If we need to shift by whole digits, do that in one pass, then
- to back and shift by partial digits.
- */
- if(need > 0) {
- from = MP_DIGITS(z) + uz - 1;
- to = from + need;
-
- for(i = 0; i < uz; ++i)
- *to-- = *from--;
-
- ZERO(MP_DIGITS(z), need);
- uz += need;
- }
-
- if(rest) {
- d = 0;
- for(i = need, from = MP_DIGITS(z) + need; i < uz; ++i, ++from) {
- mp_digit save = *from;
-
- *from = (*from << rest) | (d >> (MP_DIGIT_BIT - rest));
- d = save;
- }
-
- d >>= (MP_DIGIT_BIT - rest);
- if(d != 0) {
- *from = d;
- uz += extra;
- }
- }
-
- MP_USED(z) = uz;
- CLAMP(z);
-
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_qsub(z, p2) */
-
-/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
- The sign of the result is always zero/positive.
- */
-STATIC int s_qsub(mp_int z, mp_size p2)
-{
- mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)), *zp;
- mp_size tdig = (p2 / MP_DIGIT_BIT), pos;
- mp_word w = 0;
-
- if(!s_pad(z, tdig + 1))
- return 0;
-
- for(pos = 0, zp = MP_DIGITS(z); pos < tdig; ++pos, ++zp) {
- w = ((mp_word) MP_DIGIT_MAX + 1) - w - (mp_word)*zp;
-
- *zp = LOWER_HALF(w);
- w = UPPER_HALF(w) ? 0 : 1;
- }
-
- w = ((mp_word) MP_DIGIT_MAX + 1 + hi) - w - (mp_word)*zp;
- *zp = LOWER_HALF(w);
-
- assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
-
- MP_SIGN(z) = MP_ZPOS;
- CLAMP(z);
-
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_dp2k(z) */
-
-STATIC int s_dp2k(mp_int z)
-{
- int k = 0;
- mp_digit *dp = MP_DIGITS(z), d;
-
- if(MP_USED(z) == 1 && *dp == 0)
- return 1;
-
- while(*dp == 0) {
- k += MP_DIGIT_BIT;
- ++dp;
- }
-
- d = *dp;
- while((d & 1) == 0) {
- d >>= 1;
- ++k;
- }
-
- return k;
-}
-
-/* }}} */
-
-/* {{{ s_isp2(z) */
-
-STATIC int s_isp2(mp_int z)
-{
- mp_size uz = MP_USED(z), k = 0;
- mp_digit *dz = MP_DIGITS(z), d;
-
- while(uz > 1) {
- if(*dz++ != 0)
- return -1;
- k += MP_DIGIT_BIT;
- --uz;
- }
-
- d = *dz;
- while(d > 1) {
- if(d & 1)
- return -1;
- ++k; d >>= 1;
- }
-
- return (int) k;
-}
-
-/* }}} */
-
-/* {{{ s_2expt(z, k) */
-
-STATIC int s_2expt(mp_int z, mp_small k)
-{
- mp_size ndig, rest;
- mp_digit *dz;
-
- ndig = (k + MP_DIGIT_BIT) / MP_DIGIT_BIT;
- rest = k % MP_DIGIT_BIT;
-
- if(!s_pad(z, ndig))
- return 0;
-
- dz = MP_DIGITS(z);
- ZERO(dz, ndig);
- *(dz + ndig - 1) = (1 << rest);
- MP_USED(z) = ndig;
-
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_norm(a, b) */
-
-STATIC int s_norm(mp_int a, mp_int b)
-{
- mp_digit d = b->digits[MP_USED(b) - 1];
- int k = 0;
-
- while(d < (mp_digit) (1 << (MP_DIGIT_BIT - 1))) { /* d < (MP_RADIX / 2) */
- d <<= 1;
- ++k;
- }
-
- /* These multiplications can't fail */
- if(k != 0) {
- (void) s_qmul(a, (mp_size) k);
- (void) s_qmul(b, (mp_size) k);
- }
-
- return k;
-}
-
-/* }}} */
-
-/* {{{ s_brmu(z, m) */
-
-STATIC mp_result s_brmu(mp_int z, mp_int m)
-{
- mp_size um = MP_USED(m) * 2;
-
- if(!s_pad(z, um))
- return MP_MEMORY;
-
- s_2expt(z, MP_DIGIT_BIT * um);
- return mp_int_div(z, m, z, NULL);
-}
-
-/* }}} */
-
-/* {{{ s_reduce(x, m, mu, q1, q2) */
-
-STATIC int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
-{
- mp_size um = MP_USED(m), umb_p1, umb_m1;
-
- umb_p1 = (um + 1) * MP_DIGIT_BIT;
- umb_m1 = (um - 1) * MP_DIGIT_BIT;
-
- if(mp_int_copy(x, q1) != MP_OK)
- return 0;
-
- /* Compute q2 = floor((floor(x / b^(k-1)) * mu) / b^(k+1)) */
- s_qdiv(q1, umb_m1);
- UMUL(q1, mu, q2);
- s_qdiv(q2, umb_p1);
-
- /* Set x = x mod b^(k+1) */
- s_qmod(x, umb_p1);
-
- /* Now, q is a guess for the quotient a / m.
- Compute x - q * m mod b^(k+1), replacing x. This may be off
- by a factor of 2m, but no more than that.
- */
- UMUL(q2, m, q1);
- s_qmod(q1, umb_p1);
- (void) mp_int_sub(x, q1, x); /* can't fail */
-
- /* The result may be < 0; if it is, add b^(k+1) to pin it in the
- proper range. */
- if((CMPZ(x) < 0) && !s_qsub(x, umb_p1))
- return 0;
-
- /* If x > m, we need to back it off until it is in range.
- This will be required at most twice. */
- if(mp_int_compare(x, m) >= 0) {
- (void) mp_int_sub(x, m, x);
- if(mp_int_compare(x, m) >= 0)
- (void) mp_int_sub(x, m, x);
- }
-
- /* At this point, x has been properly reduced. */
- return 1;
-}
-
-/* }}} */
-
-/* {{{ s_embar(a, b, m, mu, c) */
-
-/* Perform modular exponentiation using Barrett's method, where mu is
- the reduction constant for m. Assumes a < m, b > 0. */
-STATIC mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
-{
- mp_digit *db, *dbt, umu, d;
- mpz_t temp[3];
- mp_result res = 0;
- int last = 0;
-
- umu = MP_USED(mu); db = MP_DIGITS(b); dbt = db + MP_USED(b) - 1;
-
- while(last < 3) {
- SETUP(mp_int_init_size(TEMP(last), 4 * umu), last);
- ZERO(MP_DIGITS(TEMP(last - 1)), MP_ALLOC(TEMP(last - 1)));
- }
-
- (void) mp_int_set_value(c, 1);
-
- /* Take care of low-order digits */
- while(db < dbt) {
- int i;
-
- for(d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1) {
- if(d & 1) {
- /* The use of a second temporary avoids allocation */
- UMUL(c, a, TEMP(0));
- if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- res = MP_MEMORY; goto CLEANUP;
- }
- mp_int_copy(TEMP(0), c);
- }
-
-
- USQR(a, TEMP(0));
- assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
- if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- res = MP_MEMORY; goto CLEANUP;
- }
- assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
- mp_int_copy(TEMP(0), a);
-
-
- }
-
- ++db;
- }
-
- /* Take care of highest-order digit */
- d = *dbt;
- for(;;) {
- if(d & 1) {
- UMUL(c, a, TEMP(0));
- if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- res = MP_MEMORY; goto CLEANUP;
- }
- mp_int_copy(TEMP(0), c);
- }
-
- d >>= 1;
- if(!d) break;
-
- USQR(a, TEMP(0));
- if(!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2))) {
- res = MP_MEMORY; goto CLEANUP;
- }
- (void) mp_int_copy(TEMP(0), a);
- }
-
- CLEANUP:
- while(--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
-}
-
-/* }}} */
-
-/* {{{ s_udiv(a, b) */
-
-/* Precondition: a >= b and b > 0
- Postcondition: a' = a / b, b' = a % b
- */
-STATIC mp_result s_udiv(mp_int a, mp_int b)
-{
- mpz_t q, r, t;
- mp_size ua, ub, qpos = 0;
- mp_digit *da, btop;
- mp_result res = MP_OK;
- int k, skip = 0;
-
- /* Force signs to positive */
- MP_SIGN(a) = MP_ZPOS;
- MP_SIGN(b) = MP_ZPOS;
-
- /* Normalize, per Knuth */
- k = s_norm(a, b);
-
- ua = MP_USED(a); ub = MP_USED(b); btop = b->digits[ub - 1];
- if((res = mp_int_init_size(&q, ua)) != MP_OK) return res;
- if((res = mp_int_init_size(&t, ua + 1)) != MP_OK) goto CLEANUP;
-
- da = MP_DIGITS(a);
- r.digits = da + ua - 1; /* The contents of r are shared with a */
- r.used = 1;
- r.sign = MP_ZPOS;
- r.alloc = MP_ALLOC(a);
- ZERO(t.digits, t.alloc);
-
- /* Solve for quotient digits, store in q.digits in reverse order */
- while(r.digits >= da) {
- assert(qpos <= q.alloc);
-
- if(s_ucmp(b, &r) > 0) {
- r.digits -= 1;
- r.used += 1;
-
- if(++skip > 1 && qpos > 0)
- q.digits[qpos++] = 0;
-
- CLAMP(&r);
- }
- else {
- mp_word pfx = r.digits[r.used - 1];
- mp_word qdigit;
-
- if(r.used > 1 && pfx <= btop) {
- pfx <<= MP_DIGIT_BIT / 2;
- pfx <<= MP_DIGIT_BIT / 2;
- pfx |= r.digits[r.used - 2];
- }
-
- qdigit = pfx / btop;
- if(qdigit > MP_DIGIT_MAX) {
- qdigit = MP_DIGIT_MAX;
- }
-
- s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
- t.used = ub + 1; CLAMP(&t);
- while(s_ucmp(&t, &r) > 0) {
- --qdigit;
- (void) mp_int_sub(&t, b, &t); /* cannot fail */
- }
-
- s_usub(r.digits, t.digits, r.digits, r.used, t.used);
- CLAMP(&r);
-
- q.digits[qpos++] = (mp_digit) qdigit;
- ZERO(t.digits, t.used);
- skip = 0;
- }
- }
-
- /* Put quotient digits in the correct order, and discard extra zeroes */
- q.used = qpos;
- REV(mp_digit, q.digits, qpos);
- CLAMP(&q);
-
- /* Denormalize the remainder */
- CLAMP(a);
- if(k != 0)
- s_qdiv(a, k);
-
- mp_int_copy(a, b); /* ok: 0 <= r < b */
- mp_int_copy(&q, a); /* ok: q <= a */
-
- mp_int_clear(&t);
- CLEANUP:
- mp_int_clear(&q);
- return res;
-}
-
-/* }}} */
-
-/* {{{ s_outlen(z, r) */
-
-STATIC int s_outlen(mp_int z, mp_size r)
-{
- mp_result bits;
- double raw;
-
- assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
-
- bits = mp_int_count_bits(z);
- raw = (double)bits * s_log2[r];
-
- return (int)(raw + 0.999999);
-}
-
-/* }}} */
-
-/* {{{ s_inlen(len, r) */
-
-STATIC mp_size s_inlen(int len, mp_size r)
-{
- double raw = (double)len / s_log2[r];
- mp_size bits = (mp_size)(raw + 0.5);
-
- return (mp_size)((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT);
-}
-
-/* }}} */
-
-/* {{{ s_ch2val(c, r) */
-
-STATIC int s_ch2val(char c, int r)
-{
- int out;
-
- if(isdigit((unsigned char) c))
- out = c - '0';
- else if(r > 10 && isalpha((unsigned char) c))
- out = toupper(c) - 'A' + 10;
- else
- return -1;
-
- return (out >= r) ? -1 : out;
-}
-
-/* }}} */
-
-/* {{{ s_val2ch(v, caps) */
-
-STATIC char s_val2ch(int v, int caps)
-{
- assert(v >= 0);
-
- if(v < 10)
- return v + '0';
- else {
- char out = (v - 10) + 'a';
-
- if(caps)
- return toupper(out);
- else
- return out;
- }
-}
-
-/* }}} */
-
-/* {{{ s_2comp(buf, len) */
-
-STATIC void s_2comp(unsigned char *buf, int len)
-{
- int i;
- unsigned short s = 1;
-
- for(i = len - 1; i >= 0; --i) {
- unsigned char c = ~buf[i];
-
- s = c + s;
- c = s & UCHAR_MAX;
- s >>= CHAR_BIT;
-
- buf[i] = c;
- }
-
- /* last carry out is ignored */
-}
-
-/* }}} */
-
-/* {{{ s_tobin(z, buf, *limpos) */
-
-STATIC mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
-{
- mp_size uz;
- mp_digit *dz;
- int pos = 0, limit = *limpos;
-
- uz = MP_USED(z); dz = MP_DIGITS(z);
- while(uz > 0 && pos < limit) {
- mp_digit d = *dz++;
- int i;
-
- for(i = sizeof(mp_digit); i > 0 && pos < limit; --i) {
- buf[pos++] = (unsigned char)d;
- d >>= CHAR_BIT;
-
- /* Don't write leading zeroes */
- if(d == 0 && uz == 1)
- i = 0; /* exit loop without signaling truncation */
- }
-
- /* Detect truncation (loop exited with pos >= limit) */
- if(i > 0) break;
-
- --uz;
- }
-
- if(pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1))) {
- if(pos < limit)
- buf[pos++] = 0;
- else
- uz = 1;
- }
-
- /* Digits are in reverse order, fix that */
- REV(unsigned char, buf, pos);
-
- /* Return the number of bytes actually written */
- *limpos = pos;
-
- return (uz == 0) ? MP_OK : MP_TRUNC;
-}
-
-/* }}} */
-
-/* {{{ s_print(tag, z) */
-
-#if DEBUG
-void s_print(char *tag, mp_int z)
-{
- int i;
-
- fprintf(stderr, "%s: %c ", tag,
- (MP_SIGN(z) == MP_NEG) ? '-' : '+');
-
- for(i = MP_USED(z) - 1; i >= 0; --i)
- fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), z->digits[i]);
-
- fputc('\n', stderr);
-
-}
-
-void s_print_buf(char *tag, mp_digit *buf, mp_size num)
-{
- int i;
-
- fprintf(stderr, "%s: ", tag);
-
- for(i = num - 1; i >= 0; --i)
- fprintf(stderr, "%0*X", (int)(MP_DIGIT_BIT / 4), buf[i]);
-
- fputc('\n', stderr);
-}
-#endif
-
-/* }}} */
-
-/* HERE THERE BE DRAGONS */
diff --git a/source4/heimdal/lib/hcrypto/imath/imath.h b/source4/heimdal/lib/hcrypto/imath/imath.h
deleted file mode 100644
index cb877959e9..0000000000
--- a/source4/heimdal/lib/hcrypto/imath/imath.h
+++ /dev/null
@@ -1,231 +0,0 @@
-/*
- Name: imath.h
- Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
- Info: $Id: imath.h 635 2008-01-08 18:19:40Z sting $
-
- Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
-
-#ifndef IMATH_H_
-#define IMATH_H_
-
-#include <limits.h>
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef unsigned char mp_sign;
-typedef unsigned int mp_size;
-typedef int mp_result;
-typedef long mp_small; /* must be a signed type */
-typedef unsigned long mp_usmall; /* must be an unsigned type */
-#ifdef USE_LONG_LONG
-typedef unsigned int mp_digit;
-typedef unsigned long long mp_word;
-#else
-typedef unsigned short mp_digit;
-typedef unsigned int mp_word;
-#endif
-
-typedef struct mpz {
- mp_digit single;
- mp_digit *digits;
- mp_size alloc;
- mp_size used;
- mp_sign sign;
-} mpz_t, *mp_int;
-
-#define MP_DIGITS(Z) ((Z)->digits)
-#define MP_ALLOC(Z) ((Z)->alloc)
-#define MP_USED(Z) ((Z)->used)
-#define MP_SIGN(Z) ((Z)->sign)
-
-extern const mp_result MP_OK;
-extern const mp_result MP_FALSE;
-extern const mp_result MP_TRUE;
-extern const mp_result MP_MEMORY;
-extern const mp_result MP_RANGE;
-extern const mp_result MP_UNDEF;
-extern const mp_result MP_TRUNC;
-extern const mp_result MP_BADARG;
-extern const mp_result MP_MINERR;
-
-#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
-#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
-#define MP_SMALL_MIN LONG_MIN
-#define MP_SMALL_MAX LONG_MAX
-#define MP_USMALL_MIN ULONG_MIN
-#define MP_USMALL_MAX ULONG_MAX
-
-#ifdef USE_LONG_LONG
-# ifndef ULONG_LONG_MAX
-# ifdef ULLONG_MAX
-# define ULONG_LONG_MAX ULLONG_MAX
-# else
-# error "Maximum value of unsigned long long not defined!"
-# endif
-# endif
-# define MP_DIGIT_MAX (ULONG_MAX * 1ULL)
-# define MP_WORD_MAX ULONG_LONG_MAX
-#else
-# define MP_DIGIT_MAX (USHRT_MAX * 1UL)
-# define MP_WORD_MAX (UINT_MAX * 1UL)
-#endif
-
-#define MP_MIN_RADIX 2
-#define MP_MAX_RADIX 36
-
-/* Values with fewer than this many significant digits use the
- standard multiplication algorithm; otherwise, a recursive algorithm
- is used. Choose a value to suit your platform.
- */
-#define MP_MULT_THRESH 22
-
-#define MP_DEFAULT_PREC 8 /* default memory allocation, in digits */
-
-extern const mp_sign MP_NEG;
-extern const mp_sign MP_ZPOS;
-
-#define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
-#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
-
-mp_result mp_int_init(mp_int z);
-mp_int mp_int_alloc(void);
-mp_result mp_int_init_size(mp_int z, mp_size prec);
-mp_result mp_int_init_copy(mp_int z, mp_int old);
-mp_result mp_int_init_value(mp_int z, mp_small value);
-mp_result mp_int_set_value(mp_int z, mp_small value);
-void mp_int_clear(mp_int z);
-void mp_int_free(mp_int z);
-
-mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */
-void mp_int_swap(mp_int a, mp_int c); /* swap a, c */
-void mp_int_zero(mp_int z); /* z = 0 */
-mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */
-mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */
-mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */
-mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
-mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */
-mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
-mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */
-mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
-mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
-mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */
-mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */
- mp_int q, mp_int r); /* r = a % b */
-mp_result mp_int_div_value(mp_int a, mp_small value, /* q = a / value */
- mp_int q, mp_small *r); /* r = a % value */
-mp_result mp_int_div_pow2(mp_int a, mp_small p2, /* q = a / 2^p2 */
- mp_int q, mp_int r); /* r = q % 2^p2 */
-mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */
-#define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
-mp_result mp_int_expt(mp_int a, mp_small b, mp_int c); /* c = a^b */
-mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c); /* c = a^b */
-
-int mp_int_compare(mp_int a, mp_int b); /* a <=> b */
-int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */
-int mp_int_compare_zero(mp_int z); /* a <=> 0 */
-int mp_int_compare_value(mp_int z, mp_small value); /* a <=> v */
-
-/* Returns true if v|a, false otherwise (including errors) */
-int mp_int_divisible_value(mp_int a, mp_small v);
-
-/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
-int mp_int_is_pow2(mp_int z);
-
-mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
- mp_int c); /* c = a^b (mod m) */
-mp_result mp_int_exptmod_evalue(mp_int a, mp_small value,
- mp_int m, mp_int c); /* c = a^v (mod m) */
-mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b,
- mp_int m, mp_int c); /* c = v^b (mod m) */
-mp_result mp_int_exptmod_known(mp_int a, mp_int b,
- mp_int m, mp_int mu,
- mp_int c); /* c = a^b (mod m) */
-mp_result mp_int_redux_const(mp_int m, mp_int c);
-
-mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
-
-mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */
-
-mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */
- mp_int x, mp_int y); /* c = ax + by */
-
-mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c); /* c = lcm(a, b) */
-
-mp_result mp_int_root(mp_int a, mp_small b, mp_int c); /* c = floor(a^{1/b}) */
-#define mp_int_sqrt(a, c) mp_int_root(a, 2, c) /* c = floor(sqrt(a)) */
-
-/* Convert to a small int, if representable; else MP_RANGE */
-mp_result mp_int_to_int(mp_int z, mp_small *out);
-mp_result mp_int_to_uint(mp_int z, mp_usmall *out);
-
-/* Convert to nul-terminated string with the specified radix, writing at
- most limit characters including the nul terminator */
-mp_result mp_int_to_string(mp_int z, mp_size radix,
- char *str, int limit);
-
-/* Return the number of characters required to represent
- z in the given radix. May over-estimate. */
-mp_result mp_int_string_len(mp_int z, mp_size radix);
-
-/* Read zero-terminated string into z */
-mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
- char **end);
-
-/* Return the number of significant bits in z */
-mp_result mp_int_count_bits(mp_int z);
-
-/* Convert z to two's complement binary, writing at most limit bytes */
-mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
-
-/* Read a two's complement binary value into z from the given buffer */
-mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
-
-/* Return the number of bytes required to represent z in binary. */
-mp_result mp_int_binary_len(mp_int z);
-
-/* Convert z to unsigned binary, writing at most limit bytes */
-mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
-
-/* Read an unsigned binary value into z from the given buffer */
-mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
-
-/* Return the number of bytes required to represent z as unsigned output */
-mp_result mp_int_unsigned_len(mp_int z);
-
-/* Return a statically allocated string describing error code res */
-const char *mp_error_string(mp_result res);
-
-#if DEBUG
-void s_print(char *tag, mp_int z);
-void s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-#endif /* end IMATH_H_ */
diff --git a/source4/heimdal/lib/hcrypto/imath/iprime.c b/source4/heimdal/lib/hcrypto/imath/iprime.c
deleted file mode 100644
index 2bc9e7a6d1..0000000000
--- a/source4/heimdal/lib/hcrypto/imath/iprime.c
+++ /dev/null
@@ -1,189 +0,0 @@
-/*
- Name: iprime.c
- Purpose: Pseudoprimality testing routines
- Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
- Info: $Id: iprime.c 635 2008-01-08 18:19:40Z sting $
-
- Copyright (C) 2002-2008 Michael J. Fromberger, All Rights Reserved.
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
-
-#include "iprime.h"
-#include <stdlib.h>
-
-static const int s_ptab[] = {
- 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
- 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
- 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
- 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
- 211, 223, 227, 229, 233, 239, 241, 251, 257, 263,
- 269, 271, 277, 281, 283, 293, 307, 311, 313, 317,
- 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
- 389, 397, 401, 409, 419, 421, 431, 433, 439, 443,
- 449, 457, 461, 463, 467, 479, 487, 491, 499, 503,
- 509, 521, 523, 541, 547, 557, 563, 569, 571, 577,
- 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
- 643, 647, 653, 659, 661, 673, 677, 683, 691, 701,
- 709, 719, 727, 733, 739, 743, 751, 757, 761, 769,
- 773, 787, 797, 809, 811, 821, 823, 827, 829, 839,
- 853, 857, 859, 863, 877, 881, 883, 887, 907, 911,
- 919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
- 991, 997
-#ifdef IMATH_LARGE_PRIME_TABLE
- , 1009, 1013, 1019, 1021, 1031, 1033,
- 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091,
- 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151,
- 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213,
- 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277,
- 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307,
- 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399,
- 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451,
- 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493,
- 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559,
- 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609,
- 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667,
- 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733,
- 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789,
- 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871,
- 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931,
- 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997,
- 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053,
- 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111,
- 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161,
- 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243,
- 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297,
- 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357,
- 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411,
- 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473,
- 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551,
- 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633,
- 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687,
- 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729,
- 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791,
- 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851,
- 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917,
- 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999,
- 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061,
- 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137,
- 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209,
- 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271,
- 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331,
- 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391,
- 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467,
- 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533,
- 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583,
- 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643,
- 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709,
- 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779,
- 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851,
- 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917,
- 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989,
- 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049,
- 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111,
- 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177,
- 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243,
- 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297,
- 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391,
- 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457,
- 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519,
- 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597,
- 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657,
- 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729,
- 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799,
- 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889,
- 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951,
- 4957, 4967, 4969, 4973, 4987, 4993, 4999
-#endif
-};
-static const int s_ptab_size = sizeof(s_ptab)/sizeof(s_ptab[0]);
-
-/* {{{ mp_int_is_prime(z) */
-
-/* Test whether z is likely to be prime:
- MP_TRUE means it is probably prime
- MP_FALSE means it is definitely composite
- */
-mp_result mp_int_is_prime(mp_int z)
-{
- int i;
- mp_small rem;
- mp_result res;
-
- /* First check for divisibility by small primes; this eliminates a
- large number of composite candidates quickly
- */
- for(i = 0; i < s_ptab_size; ++i) {
- if((res = mp_int_div_value(z, s_ptab[i], NULL, &rem)) != MP_OK)
- return res;
-
- if(rem == 0)
- return MP_FALSE;
- }
-
- /* Now try Fermat's test for several prime witnesses (since we now
- know from the above that z is not a multiple of any of them)
- */
- {
- mpz_t tmp;
-
- if((res = mp_int_init(&tmp)) != MP_OK) return res;
-
- for(i = 0; i < 10 && i < s_ptab_size; ++i) {
- if((res = mp_int_exptmod_bvalue(s_ptab[i], z, z, &tmp)) != MP_OK)
- return res;
-
- if(mp_int_compare_value(&tmp, s_ptab[i]) != 0) {
- mp_int_clear(&tmp);
- return MP_FALSE;
- }
- }
-
- mp_int_clear(&tmp);
- }
-
- return MP_TRUE;
-}
-
-/* }}} */
-
-/* {{{ mp_int_find_prime(z) */
-
-/* Find the first apparent prime in ascending order from z */
-mp_result mp_int_find_prime(mp_int z)
-{
- mp_result res;
-
- if(mp_int_is_even(z) && ((res = mp_int_add_value(z, 1, z)) != MP_OK))
- return res;
-
- while((res = mp_int_is_prime(z)) == MP_FALSE) {
- if((res = mp_int_add_value(z, 2, z)) != MP_OK)
- break;
-
- }
-
- return res;
-}
-
-/* }}} */
-
-/* Here there be dragons */
diff --git a/source4/heimdal/lib/hcrypto/imath/iprime.h b/source4/heimdal/lib/hcrypto/imath/iprime.h
deleted file mode 100644
index 6110dccb55..0000000000
--- a/source4/heimdal/lib/hcrypto/imath/iprime.h
+++ /dev/null
@@ -1,51 +0,0 @@
-/*
- Name: iprime.h
- Purpose: Pseudoprimality testing routines
- Author: M. J. Fromberger <http://spinning-yarns.org/michael/>
- Info: $Id: iprime.h 635 2008-01-08 18:19:40Z sting $
-
- Copyright (C) 2002-2008 Michael J. Fromberger, All Rights Reserved.
-
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
-
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
-
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- SOFTWARE.
- */
-
-#ifndef IPRIME_H_
-#define IPRIME_H_
-
-#include "imath.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* Test whether z is likely to be prime
- MP_YES means it is probably prime
- MP_NO means it is definitely composite
- */
-mp_result mp_int_is_prime(mp_int z);
-
-/* Find the first apparent prime in ascending order from z */
-mp_result mp_int_find_prime(mp_int z);
-
-#ifdef __cplusplus
-}
-#endif
-#endif /* IPRIME_H_ */