1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
/*
Unix SMB/CIFS implementation.
security access checking routines
Copyright (C) Nadezhda Ivanova 2009
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Description: Contains data handler functions for
* the object tree that must be constructed to perform access checks.
* The object tree is an unbalanced tree of depth 3, indexed by
* object type guid. Perhaps a different data structure
* should be concidered later to improve performance
*
* Author: Nadezhda Ivanova
*/
#include "includes.h"
#include "libcli/security/security.h"
#include "lib/util/dlinklist.h"
#include "librpc/ndr/libndr.h"
/* Adds a new node to the object tree. If attributeSecurityGUID is not zero and
* has already been added to the tree, the new node is added as a child of that node
* In all other cases as a child of the root
*/
struct object_tree * insert_in_object_tree(TALLOC_CTX *mem_ctx,
const struct GUID *schemaGUIDID,
const struct GUID *attributeSecurityGUID,
uint32_t init_access,
struct object_tree *root)
{
struct object_tree * parent = NULL;
struct object_tree * new_node;
new_node = talloc(mem_ctx, struct object_tree);
if (!new_node)
return NULL;
memset(new_node, 0, sizeof(struct object_tree));
new_node->remaining_access = init_access;
if (!root){
memcpy(&new_node->guid, schemaGUIDID, sizeof(struct GUID));
return new_node;
}
if (attributeSecurityGUID && !GUID_all_zero(attributeSecurityGUID)){
parent = get_object_tree_by_GUID(root, attributeSecurityGUID);
memcpy(&new_node->guid, attributeSecurityGUID, sizeof(struct GUID));
}
else
memcpy(&new_node->guid, schemaGUIDID, sizeof(struct GUID));
if (!parent)
parent = root;
new_node->remaining_access = init_access;
DLIST_ADD(parent, new_node);
return new_node;
}
/* search by GUID */
struct object_tree * get_object_tree_by_GUID(struct object_tree *root,
const struct GUID *guid)
{
struct object_tree *p;
struct object_tree *result = NULL;
if (!root || GUID_equal(&root->guid, guid))
result = root;
else{
for (p = root->children; p != NULL; p = p->next)
if ((result = get_object_tree_by_GUID(p, guid)))
break;
}
return result;
}
/* Change the granted access per each ACE */
void object_tree_modify_access(struct object_tree *root,
uint32_t access)
{
struct object_tree *p;
if (root){
root->remaining_access &= ~access;
}
for (p = root->children; p != NULL; p = p->next)
object_tree_modify_access(p, access);
}
|